Name:

## Symmetries in Physics (WS 2018/2019) Exercise 2

1. Consider a Lorentz transformation $\Lambda \in L_{+}^{\uparrow}$ satisfying $\Lambda t=t$, where

$$
t=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

(a) [2] Verify that the set $\left\{\Lambda \in L_{+}^{\uparrow} \mid \Lambda t=t\right\}$ is a subgroup of $L_{+}^{\uparrow}$. Remark: The group is referred to as the little group of $t$.
(b) [5] Show that $\Lambda$ is isomorphic to a proper rotation.

Hint: Express $\Lambda$ as

$$
\Lambda=\left(\begin{array}{c|ccc}
\Lambda_{00} & \Lambda_{01} & \Lambda_{02} & \Lambda_{03} \\
\hline \Lambda_{10} & & & \\
\Lambda_{20} & & D_{3 \times 3} & \\
\Lambda_{30} & & &
\end{array}\right)
$$

and make use of $\Lambda t=t$. From this you will obtain conditions for $\Lambda_{00}$ and $\Lambda_{i 0}, i=1,2,3$. Then insert the new form of $\Lambda$ into $G=\Lambda^{T} G \Lambda$. From this you will obtain conditions for $\Lambda_{0 j}, j=1,2,3$ and $D_{3 \times 3}$. Finally, make use of $\operatorname{det}(\Lambda)=1$.
2. Let $\Lambda_{1}$ and $\Lambda_{2}$ be proper, orthochronous Lorentz transformations, i.e., $\Lambda_{i} \in L_{+}^{\uparrow}$. Verify for $\Lambda_{3}=\Lambda_{2} \Lambda_{1}$
(a) $[1] \Lambda_{3}^{T} G \Lambda_{3}=G$,
(b) $[1] \operatorname{det}\left(\Lambda_{3}\right)=+1$.
3. We consider the group $G=\mathrm{SU}(2)$. Which of the following maps $A$ defines an action of $G$ on $M$ ?
(a) $[1]$

$$
M:=\left\{\left.m=\binom{z_{1}}{z_{2}} \right\rvert\, z_{i} \in \mathbb{C}\right\}, A_{i}(g, m)=g_{i j} z_{j} \text { or } A(g, m)=g m .
$$

(b) $[1]$

$$
M:=\left\{\left.m=\binom{x_{1}}{x_{2}} \right\rvert\, x_{i} \in \mathbb{R}\right\}, \quad A_{i}(g, m)=g_{i j} x_{j} \text { or } A(g, m)=g m .
$$

(c) $[1]$

$$
M:=\{m \in \mathrm{SU}(2)\}, A_{i j}(g, m)=g_{i k} m_{k j} \text { or } A(g, m)=g m
$$

(d) $[1]$

$$
M:=\{m \in \mathrm{SU}(2)\}, \quad A_{i j}(g, m)=g_{i k} m_{k l} g_{j l}^{*} \text { or } A(g, m)=g m g^{\dagger} .
$$

(e) $[1]$

$$
M:=\{m \in \mathrm{SU}(2)\}, A_{i j}(g, m)=g_{i k} m_{k l} g_{l j} \text { or } A(g, m)=g m g
$$

(f) $[1]$

$$
\begin{aligned}
& M:=\{m \mid m \text { Hermitian } 2 \times 2 \text { matrix }\} \\
& A_{i j}(g, m)=g_{i k} m_{k l} g_{j l}^{*} \text { or } A(g, m)=g m g^{\dagger}
\end{aligned}
$$

4. The centre $Z$ of a group $G$ consists of all elements $z \in G$ which commute with all elements of the group:

$$
Z:=\{z \in G \mid z g=g z \forall g \in G\} .
$$

(a) [1] Verify that $Z$ is an Abelian subgroup of $G$.
(b) [1] Verify that $Z$ is a normal subgroup of $G$.
5. [3] Verify the group axioms $(G 1)-(G 3)$ for the factor group $G / H$.
6. Let $G=\{C=(A, B) \mid A \in \mathrm{SU}(n), B \in \mathrm{SU}(n)\}$ with $C_{1} C_{2}=\left(A_{1} A_{2}, B_{1} B_{2}\right)$. Which of the following sets is a subgroup of $G$ ? Is any of the subgroups a normal subgroup?
(a) $[1]\{X=(A, A) \mid A \in \operatorname{SU}(n)\}$,
(b) $[1]\left\{X=\left(A, \mathbb{1}_{n \times n}\right) \mid A \in \mathrm{SU}(n)\right\}$,
(c) $[1]\left\{X=\left(A, A^{\dagger}\right) \mid A \in \operatorname{SU}(n)\right\}$.
7. [3] Consider the group $D_{3}=\langle c, b\rangle$ with the defining relations $c^{3}=b^{2}=(b c)^{2}=$ $e$ and its normal subgroup $C_{3}=\langle c\rangle$ with $c^{3}=e$. Identify the elements of the factor group $D_{3} / C_{3}$. Explicitly calculate the products of the elements of the factor group.
8. [2] Consider the subgroup $C_{2}=\langle b\rangle$ with $b^{2}=e$. Note that $C_{2}$ is not a normal subgroup. Determine the set of all left cosets $g C_{2}$ and the set of all right cosets $C_{2} g$. What is the difference in comparison with the set of left and right cosets of a normal subgroup?
9. [2] Verify that the group $\mathrm{O}(3)$ is the internal direct product of $\mathrm{SO}(3)$ and $\{e, p\}=\left\{\mathbb{1}_{3 \times 3},-\mathbb{1}_{3 \times 3}\right\}$.

