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Chapter 1

Introduction and Motivation

Literature Search

e http://www.slac.stanford.edu/spires/

e http://www.arxiv.org/



General Literature on Chiral Perturbation Theory and Effective Field
Theory

Classical Papers:

e S. Weinberg, Phenomenological Lagrangians, Physica A 96, 327
(1979)

e J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop,
Annals Phys. 158, 142 (1984)

e J. Gasser and H. Leutwyler, Chiral perturbation theory: expan-
sions in the mass of the strange quark, Nucl. Phys. B250, 465
(1985)

e J. Gasser, M. E. Sainio, and A. Svarc, Nucleons with chiral loops,
Nucl. Phys. B307, 779 (1988)

e S. Weinberg, Nuclear forces from chiral Lagrangians, Phys. Lett.
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B 251, 288 (1990)

e [. Jenkins and A. V. Manohar, Baryon chiral perturbation theory
using a heavy fermion Lagrangian, Phys. Lett. B 255, 558 (1991)

e 5. Weinberg, Effective chiral Lagrangians for nucleon-pion inter-
actions and nuclear forces, Nucl. Phys. B363, 3 (1991)

e V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meifiner, Chiral struc-
ture of the nucleon, Nucl. Phys. B388, 315 (1992)

e T'. Becher and H. Leutwyler, Baryon chiral perturbation theory in
manifestly Lorentz invariant form, Eur. Phys. J. C 9, 643 (1999)
larXiv:hep-ph/9901384]



Review Articles and Textbooks:

e H. Georgi, Weak interactions and modern particle theory (Ben-
jamin/Cummings, Menlo Park, 1984),
http://www.physics.harvard.edu/people /facpages/georgi.html

e H. Leutwyler, Chiral effective Lagrangians, in Perspectives in the
Standard Model, Proceedings of the 1991 Advanced Theoretical
Study Institute in Elementary Particle Physics, Boulder, Colorado,

2. - 28. June 1991, edited by R. K. Ellis, C. T'. Hill and J. D. Lykken
(World Scientific, Singapore, 1992)

e J. Bijnens, Chiral perturbation theory and anomalous processes,
Int. J. Mod. Phys. A 8, 3045 (1993)

e U.-G. Meifiner, Recent developments in chiral perturbation theory,
Rept. Prog. Phys. 56, 903 (1993) [arXiv:hep-ph/9302247]

e H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43, 209
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(1993),
http:/ /www.physics.harvard.edu/people /facpages/georgi.html

e H. Leutwyler, Principles of chiral perturbation theory, in Hadron
physics 94: Topics on the structure and interaction of hadronic
systems, Proceedings, Workshop, Gramado, Brasil, edited by V. E. Her-
scovitz (World Scientific, Singapore, 1995) [arXiv:hep-ph/9406283]

e S. Weinberg, The Quantum Theory Of Fields. Vol. 1: Founda-
tions (Cambridge University Press, Cambridge, 1995)

e G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35,
1 (1995) [arXiv:hep-ph/9501357]

e V. Bernard, N. Kaiser, and U.-G. Meifiner, Chiral dynamics in
nucleons and nuclei, Int. J. Mod. Phys. E 4, 193 (1995) [arXiv:hep-
ph/9501384]

e [. de Ratael, Chiral Lagrangians and kaon CP wviolation, in CP
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vtolation and the limits of the Standard Model, Proceedings of
the 1994 Advanced Theoretical Study Institute in Elementary Par-
ticle Physics, Boulder, Colorado, 29. May - 24. June 1994, edited
by J. F. Donoghue (World Scientific, Singapore, 1995) [arXiv:hep-
ph/9502254]

e A. Pich, Chiral perturbation theory, Rept. Prog. Phys. 58, 563
(1995) |arXiv:hep-ph /9502366

e A. V. Manohar, Effective field theories, Lectures given at 35th Int.
Universitatswochen fur Kern- und Teilchenphysik: Perturbative

and nonperturbative aspects of quantum field theory, Schladming,
Austria, 2. - 9. March 1996, arXiv:hep-ph /9606222

e S. Weinberg, The Quantum Theory Of Fields. Vol. 2: Modern
Applications (Cambridge University Press, Cambridge, 1996)

e A. Pich, Effective field theory, in Probing the Standard Model
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of particle interactions, Proceedings of the Les Houches Summer
School in Theoretical Physics, Session 68, Les Houches, France, 28. July-
5. September 1997, edited by R. Gupta, A. Morel, E. de Rafael, and
F. David (Elsevier, Amsterdam, 1999) [arXiv:hep-ph/9806303]

e C. P. Burgess, Goldstone and Pseudo-Goldstone bosons in nu-
clear, particle And condensed-matter physics, Phys. Rept. 330,

193 (2000) [arXiv:hep-th/9808176]

e 5. R. Beane, P. F. Bedaque, W. C. Haxton, D. R. Phillips, and
M. J. Savage, From hadrons to nuclei: crossing the border, arXiv:nucl-

th,/0008064

e P. I'. Bedaque and U. van Kolck, Effective field theory for few-
nucleon systems, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002) [arXiv:nucl-

£h /0203055]
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e S. Scherer, Introduction to chiral perturbation theory, in Advances
in Nuclear Physics, Vol. 27, edited by J. W. Negele and E. W. Vogt
(Kluwer Academic/Plenum Publishers, New York, 2003) [arXiv:hep-
ph/0210398]

e S. Scherer and M. R. Schindler, A chiral perturbation theory primer,
arXiv:hep-ph /0505265

o G. Ecker, Effective field theories, arXiv:hep-ph /0507056

e [. Epelbaum, Few-nucleon forces and systems in chiral effective
field theory, Prog. Part. Nucl. Phys. 57, 654 (2006) [arXiv:nucl-
th /0509032

e D. B. Kaplan, Five Lectures On Effective Field Theory, arXiv:nucl-
th /0510023

e J. Bijnens, Chiral perturbation theory beyond one loop, Prog. Part.
Nucl. Phys. 58 (2007) 521 [arXiv:hep-ph/0604043]
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e V. Bernard, Chiral perturbation theory and baryon properties,
arXiv:0706.0312 [hep-ph]

Some Textbooks on Quantum Field Theory:

e J. Collins, Renormalization (Cambridge University Press, Cam-
bridge, 1984)

e C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill,
Singapore, 1980)

e . Mandl und G. Shaw, Quantenfeldtheorie (Aula-Verlag, Wies-
baden, 1993)

e M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory (Westview Press, Boulder, 1995)
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e L. H. Ryder, Quantum Field Theory (Cambridge University Press,
Cambridge, 1985)

e ['. Scheck, Theoretische Physik 4. Quantisierte Felder. Von den
Symmetrien zur Quantenelektrodynamik (Springer, Berlin, 2001)

e 5. Weinberg, The Quantum Theory Of Fields. Vol. 1: Founda-
tions (Cambridge University Press, Cambridge, 1995)

e 5. Weinberg, The Quantum Theory Of Fields. Vol. 2: Modern
Applications (Cambridge University Press, Cambridge, 1996)

System of Units

e SI (Systeme International) units

— reduced Planck constant
A= 1.05457168(18) x 10734 J s,
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1J=1kgm?s?
— electron mass
me = 9.109 3826(16) x 1073 kg
— electron charge magnitude
e = 1.60217653(14) x 10719 C,
1C=1As
— permittivity of free space

1
€O — ——5
foc?

= 8.854187817...x 1072 C V' m™!
1V=1J/C
— speed of light in vacuum
c=299792458 m s !
— basic length scale of sub-nuclear physics
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1 fm=10""m
— unit of cross sections
1 barn = 102 fm?

e Natural units

—Set h=c=1=¢y)=
— fine-structure constant

62

O =

= 1/137.035999 11(46
dmeghc / (46)

— e /A
|
137

Y

— conversion constant
hc = 197.326 968(17) MeV fm — 1

16



allows one to express energies in terms of inverse lengths and
viceversa

e Maxwell equations (in the vaccuum)

V-E =p,
vx5-2%_;
ot
- = OB
VXE+4+— =0
e
V-B = 0.
e Continuity equation
N B
ot B

e [.orentz force



1.1 Motivation and Keywords

e Chiral perturbation theory (ChPT) is the effective field theory
(EFT) of the Standard Model/strong interactions at low energies.

e EFTs are low-energy approximations to (more) fundamental
theories.

e Instead of solving the underlying theory, low-energy physics is de-
scribed with a set of variables (effective degrees of freedom)
that is suited for the particular energy region of interest.

e ChPT: Pions and nucleons instead of the more fundamental
quarks and gluons of QCD.
Later: A resonance, vector and axial-vector mesons.

e Calculate physical quantities in terms of an expansion in p/A,
where p stands for momenta or masses that are smaller than a certain

18



momentum scale A.
Compare with QED: Perturbation theory in small coupling constant.

e There exists a regime where both fundamental and effective theories
yield the same results.

e EF'T's are based on the most general Lagrangian, which includes
all terms that are compatible with the symmetries of the underlying
theory.

= Infinite number of terms.
Each term is accompanied by a low-energy coupling constant ( LEC).
Compare with “fundamental” QED: 2 parameters, e and m..

e Method that allows one to decide which terms contribute in a calcu-
lation up to a certain accuracy:

Weinberg’s power counting.

19



e In actual calculations only a finite number of terms in the expansion
in p/A has to be considered.

= Predictive power.

e EF'T's are non-renormalizable in the traditional sense. However, con-
sider all terms that are allowed by the symmetries. =
Ultraviolet divergences that occur in calculations up to any given or-
der of p/A can be renormalized by redefining fields and parameters
of the Lagrangian of the EFT.

The so-called non-renormalizable theories are actually
just as renormalizable as renormalizable theories.
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1.2 Example from Electrostatics Illustrating the Idea of a (Distance)
Scale

Consider charge distribution p(Z') which is localized inside a sphere of
radius R:

Potential from solution to Poisson equation,

A¢ = —pP,

reads




Make use of

‘ 7-‘-22[_'_1 l—tl 52(9’ ¢> (97¢>

=
e Solution for |Z| < R complicated.

e Solution for |Z| > R simple, because

1 Y,.00,
o) = X | [ it ot o | s

[,m S

multipole moment g,

In Cartesian coordinates

47T¢<f):—‘|‘—‘|‘ ZQZJZUZEJ Ty
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1. total charge

~ / p(z') &’

ﬁ:/f,p<f/>d3$/

2. electric dipole moment

3. traceless quadrupole moment tensor
Qij = / (3aja’y — r%6;;)p(Z") I’
4. etc.

e Infinite number of terms.

e However, far away, details of charge distribution not important,
knowledge of the leading-order terms sufficient.

23



e Systematic improvement possible.
e For smaller r, higher multipoles become more important.

® ¢, parameterize short-distance physics.

1 Y,(0,9)

® o T

determine the long-distance effects of short-distance physics.

e (Simplified) analogies’

Multipole expansion EFT
dim LECs
QZilnTl(f{(b) Structures of most general Lgpt

e Here: Simple separation of scales (R).

e ChPT: Scales depend on underlying dynamics and masses of the
participating particles.

LObservables will be calculated in perturbation theory using Lgpr.
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Outlook: Important scales in ChPT

1. 47 F;, where F, = 92.4 MeV is the pion-decay constant.
2. m, = (775.5 £ 0.4) MeV is the rho-meson mass.

e Fixamples

— Strong interaction: Root mean square electric radius of the proton
r = (0.870 & 0.008) fm.

— Electromagnetic interaction: Bohr radius
0.5291772108(18) x 107 m.

1.3 Electron Scattering off a Static Charge Distribution

Consider electron scattering in the Coulomb potential of an infinitely
heavy point charge:
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Ze

Kinematics
= |ki| = |kyl,
q° = ki + k) —2ky - k;

&DPQl??‘
I

— 2k*[1 — cos(0)] = 4k*sin” (g) :
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Without proof: Mott cross section

()= e o (5).
— — 1l —vosin” | = .
0Q) o Fsin® (9) 2

Nonrelativistic limit

E—>O
E Y
E — m,.

= Rutherford formula

2
( do ) B meZ o
ds2 Rutherford N 2k? SiIl2 (g) |
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Extension from point charge to static, spinless charge distribution Zep(%)
with normalization

= (Cross section

where

Result



1

—— i (7)) d3
2@%/¢m@d@ T +

%(SZCZZC] — 7"2(5@]' —+ 7”252']')

p1 Qi 1., 5
ze 6%% ze 6q <T >+

(r?) mean squared radius + multipole moments

= 1+1q-

e Conclusions

— More and more details can be resolved with increasing |7|.

— In reverse, a fixed upper value of || sets a limit on the physics
phenomena that can be studied at small distances.

1.4 Weinberg’s Effective Field Theory Program

Foundations of EFT as a Quantum Field Theory
S. Weinberg, Physica A 96, 327 (1979)

29



if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles,
and then calculates matrix elements with this Lagrangian to any
given order of perturbation theory, the result will simply be
the most general possible S—matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed

symmetry principles.

Explanation of terms

e Symmetries: Poincaré invariance, discrete symmetries C', P, T, but
also internal symmetries such as isospin symmetry, chiral symmetry
including the possibility of a spontaneous symmetry breakdown.,

e Analyticity <> Causality.

e Unitarity: the sum over the probabilities of the final states must

30



yield exactly 1,

D SISl =1.

f

e Cluster decomposition (Weinberg, Vol. 1, chapter 4): loosely speak-
ing, distant experiments must yield uncorrelated results:

S’Y+5<—0¢—|—5 — S&—Bsw—a-

far away from each other
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1.5 Classification of Effective Field Theories

See G. Ecker, arXiv:hep-ph /0507056, for more details.
A first classification of EFTs is based on the structure of the transitions
from the “fundamental” (energies > A) to the “effective” level (energies
< A).

1. Complete decoupling

The fundamental theory contains heavy and light degrees of freedom.
For energies << A the heavy particles are never produced.

In modern jargon (obtained from the path integral formalism): the
heavy degrees of freedom have been integrated out (simplified dis-
cussion below).

Typical xxample: weak interactions in the Standard Model.
E.g., neutron beta decay n — pe™ 1, with ¢ = p, — p):
[P0 — pp)°| < My

32



1 . 1
¢ — My, My,

= effective V' — A theory of the weak interactions.

Example: “Integrating out” a heavy degree of freedom in a toy
model (m < M)

L = EO + Linta
1 1
EO = 5((%(138“@ — M2q32> —+ 5(@@0“@ — m2902),
A
Eint = ——CDQDQ

2
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Equations of motion:

oL oL
00,0 0P

A
0, :D®+M2<I>+§gp2 — 0,
Op +mip + Apd = 0.

Formally solve (x):

_ A L
2M?1 +%@ |
[nsert solution into (xx). =
A? 1
O + mp — c =
A Ve

Expand to leading order in 1/M?:
)\2
2M?

34
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Q: Which effective Lagrangian generates ( * x)?

1

)\2
A: Leg = 5(@903“90 — m?p?) + 1

ik

Compare with original Lagrangian:

e Heavy degree of freedom is gone.

e A different interaction term has appeared.

Q: Do the two Lagrangians produce the same low-energy scattering
amplitude for ¢(p1) + ¢(p2) = ©(p3) + @(ps)?
A: Yes!

e Calculation with original Lagrangian.

Dotted line: light particle; solid line: heavy particle.
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Mandelstam variables

s = (p1+p2)” = (p3+ 1),
t p3) (p1 — p2)°,
u = (p1 ) (p3 — p2)°,
s+t+u = 4m?
Condition: {s, |t], |u|} < M?* = A2 (%)
Result:

||
§

7 ( b
Mun — _.)\2 ; ] '
fund ( 7’) (S—MQ—I—ZO++t—M2—|—ZO++U_M2+Zo+)
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(+) 3N {s,t,u}

e Effective theory: description in terms of contact interaction

N i34l 3i)\?
/’<\\ Meﬁ — 8M2

Both calculations yield the same result!

EFT calculation simpler.

2. Partial decoupling

The heavy fields do not disappear completely from the EFT but only
their high-momentum modes.
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Application: physics of heavy quarks

3. Spontaneous symmetry breaking

The fundamental theory exhibits spontaneous symmetry breaking
oiving rise to massless Goldstone bosons. EFT written in terms of
Goldstone boson degrees of freedom. A spontaneously broken sym-
metry relates processes with different numbers of Goldstone bosons.
(Compare with Wigner-Eckart theorem, relating processes of the
same type.) The corresponding effective Lagrangian is not renor-
malizable in the traditional sense.

Example: chiral symmetry of QCD for N massless quark flavors.

Another classification of EFT's is related to the status of their coupling
constants.

1. Coupling constants can be determined by matching the EFT with
the underlying theory at short distances.
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Example: physics of heavy quarks.
2. Coupling constants are constrained by symmetries only.

e The underlying theory is not known. The coupling constants
parameterize so-called new physics.

Example: physics beyond the Standard Model.

e The matching cannot be performed in perturbation theory even
though the underlying theory is known.

Example: QCD <« ChPT.

However, nonperturbative methods such as Lattice QCD start to
predict LECs.

Example for two EFTs in operation

e (ki) + p(pi) = velkys) + n(py)
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At the “fundamental’ level
e Ve

u d
af | [ ]
d (:I \:) d

1
f(@),

My = (80.425 %+ 0.038) GeV.
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Transition to V' — A description of the weak interaction for |¢?| < M7,

ZG QE

1
~ \f Y — =
Clebsch- Gordan coefficient <~ 2\[ Miy 2\@

hadromc vertex leptonic vertex

2

T 42M2,

Gp: Fermi constant, e = gsin(fy), Oy: weak angle; sin®(fy) =
0.23149(15) (the numerical value depends on the definition, here effective
angle).

= Gr = 1.16639(1) x 107"GeV 2.
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Transition to effective field theory of the strong interaction (ChPT):

1.6 Aim of these lectures

Most general description of the strong interactions at low energies: n,
m N, etc., taking the spontaneous breakdown of chiral symmetry in QCD
into account.

e Challenge: we need the

1. the most general Lagrangian;

2. a consistent power counting scheme to perform perturbative cal-
culations.
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Chapter 2

Lagrangian Formalism and Noether Theorem

2.1 Lagrangian Formalism of Fields

Q: Why Lagrangian formalism?
A: Weinberg, Vol. I, p 292

.. it makes it easy to satisfy Lorentz invariance and other symme-
tries: a classical theory with a Lorentz-invariant Lagrangian will
when canonically quantized lead to a Lorentz-invariant quantum
theory:.
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Continuous systems: Introduce fields as dynamical variables.

Both time and space coordinates, z# = (¢, ¥), are regarded as parame-
ters.

Consider the Lagrangian (density) £ of a scalar field, ®(z) = o(t, T),

L=L(D(x),0,P(x)), (2.1)

9, 0P (8@ o0d 0P 8@).

T Ozt \ 0t 0x dy’ 0z

(Here: explicit dependence of £ on x excluded.)
Lagrange function L(t)

L(t) = /]Rg A’z L(O(z),0,P(x)). (2.2)

Classical equation of motion (EOM) for ®(z) from Hamilton’s princi-
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ple of critical action applied to

t2
S|P] = / dt/ d°z L(®(1),0,D(x)). (2.3)
NG t1 R? J
[, d*x
Define
P (x) = O(x) + eh(x), (2.4)

where h(x) = 0 for x € OR (OR boundary of R).
Let

F(e) = / d'z L(®(z) + eh(x), 0,®(x) + €d,h(x)), (2.5)
e

X

so that F(0)
Expand F

oL oL
_ 4 4
F(e) = /Rde(CD,@M@)qLE/Rdx(haq)Jr@Mhaauq))

45



+0(é%).
Principle of critical action

5S[®] = F'(0) = 0,

oL oL
_ 4
0= /R 'z (h—aq) +aﬂhaau®) .

Apply product rule to second term

l.e.

oL oL 0L
h—— =D, | h — hD,——
a“ 8(’%@ a < (‘?Q}D) “@C%CD’
where 5 5 5
Du = @ + @fba—q) -+ 8Mayq)m

(2.6)
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Intermediate step

/d4xp ( aacb> /11{3(13 /1 N ( )
Jof ol )
Ll

——
0, since h(ty, T h(tg, ) 0

oo b

O7 since h(t, 7) =0 for v — +o0

h_

8x
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oL oL
_ 4 _
0= /R d*x h(x) (8@ DM@E?M@) . (2.7)

Apply fundamental lemma of variational calculus:

If the integral f;f dah(x)g(x) vanishes for arbitrary continuous
functions h(x) with continuous derivatives and h(x1) = h(xy) =
0, then g(x) = 0 in |z, z9|.

= Euler-Lagrange equation (of motion) (EOM)

oL oL
=~ _D = 2.
0P 100, 0, (2:8)
or written out explicitly
oL d oL d oL R

00 dto (%) dzo (22)
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e Remark: Almost every physics text writes 0, instead of D, with
the understanding that differentiation with respect to both explicit
and implicit x dependence is meant. From now on we follow this
convention.

Generalization to n fields ®;(x) straightforward: perform n independent
variations.

Define
D () = Di(x) + €hi(z), i=1,---,n (2.9)

and
Fley, -, e,) = S5[D;). (2.10)

Demand critical value

=0, i=1--n, (2.11)
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= n EOM
" oL oL

0,  "99,0;

0, i=1,---,n. (2.12)

2.2 Examples

1. Free scalar field :
1 1
L= 5((‘9”@8#@ — m?d?) = §<gwauq>ayq> —m?®Y.  (2.13)

The metric tensor allows one to lower and raise indices:

L 0 0 0
v 0—-1 0 0

9 = (g/w> — <g,u ) — 0 0 —1 0 )
0 0 0 -1

Juw = YGupu,
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Gy = Gu@’ = Guua” = gy Gy =g v,
90, D
_ PP
00,0 M T
or 2
= 2
2
1 1%
a& CI) — 59” <g,up8Vq) + 8[L(I)ng>
0
1
= L9004 0r0g)

5t

1
0'D 4 0°D) = 9D = fP(z, D, 0,9),
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oL 6‘fp ofr ofr
= +0,® —— 40,0,
90,0~ Qar, " 90, 90,0
N——"
O O DOPD po
00,0 9
= .
“Quick” way: o
— = 0,0'd = .
8‘)88[)(1) 0,0
Klein-Gordon equation:
(O +m*)® = 0.

(2.14)

e Side note: Both approaches yield the same answer.

Consider general structure
"9, - --0,,0.
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“Quick” method including application of chain/product rule:

Op( @y ® -+ 0, )
= md" 9,09, -0,
+O" (0,0, ® -+ 0, @ + -+ - + 9y - - - 0,0, P)

7

n tgrms
Second method:
9, 9, .
(8“%_@ + auavq)m)(@ amq) T 8#71(1))

= md" 19,09, -0,
+9"0,0,9(9y," - 0y, @+ + 0 -+ g,,") -
O™ (3,0, D 0y D+ -+ - + 9y D+ - - 0,0, D)
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Solutions of the Klein-Gordon equation can be written as

o) = | @ﬂii@ s |a®)e e+ ar(ets].

where

k'ﬂf:]ﬁoﬂfo—g'f, k0:w<g):\/m2—|—]22.

2. Free Dirac field W with mass m:

L =Vir"9, U — mUV. (2.15)
Recall:
Uy
| W
U = v, |
Uy

where U, continuously differentiable complex functions.
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We will use so-called standard or Dirac representation of gamma
matrices

N Loxa  O2x2 5 Ooxo O
O2x2 —loxo /7 —0 Oaxo )’

o;: Pauli matrices

01 0 —1 I 0
Jx—(lo), O'y—(z. 0>, UZ—(O_l). (2.16)

Notation
b= Why = (U] Uy — 5 — 0.
EOM:
0L 0L _ _
— — 0 = —mV¥ — 0,V = 0.
ov ~ Pogw T El

Take adjoint, make use of ¥ = A94#~% and multiply by 7°. =
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Dirac equation:

f : f :
YV(=m A" U4y A9, 0) = (i —m)V =0. (2.17)

0.0 0
3 ‘1—/
1

Feynman slash: ¢ = a,7".
Solutions of the Dirac equation are of the type
ul”) (p)e ?* r=1,2, (so-called positive-energy solutions)
vM(F)e?, r=1,2, (so-called negative-energy solutions)
where p'€ R? and py = E(p') = /m? + p2.
Properties of the Dirac spinors:
( — m)ul (17 ) =
(B +m)o")(p) =
a (@) P —m) =0,
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Explicit representation

u(p) = ¢E<ﬁ>+m< i )

E(ﬁ)erXT

G-p
o(p) = VEP)+m ( EHETRG ) ,

Xr

(). ()

Solutions to the Dirac equation can be written as

where

V() = 2; / (2@2[2%@ (B () + ()0 ()|
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3. Pseudoscalar pion-nucleon interaction:

()

(p and n are both four-component Dirac fields) and isospin triplet of
real pseudoscalar fields

Define isospin doublet

Of]
d=1 Py
D3

Terminology pseudoscalar refers to behavior under parity:
CI%(t, f) > —(I)Z'(t, —f)

Fields corresponding to physical (charged) states

1 1
7t = — (0 —iDy), T = —(D+iDy), 7' =Ps. (218
\/§< 1 2> \/§< 1 2) 3 ( )
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Using the Pauli matrices 7; (for isospin)

n:(?é), 72:(2_5), 73:((1)_(1)) (2.19)

- 7
.
g <\/§7T_ —Tr

Note
(7- P =79,
because 7; Hermitian and ®; real.

Define a BM b= ad,b— (0,a)b and consider Lagrangian

_ © 1 S S S _ -
= <% d — ) Vg (aucb L OMD — ngﬂ) — igUnsT - OV,
(2.20)
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where

O2x2 Toxo
V=" =1y = (1 o > {159} =0.
2x2 Y2x2

Parameters:

my = my, =m,, m,=9383MeV, m, =939.6MeV,
M;=M+=M>o, M=+=139.6MeV, M_ o= 135.0MeV,
g = 0N, GzN = 13.2.

Introduce components of the nucleon field

Ve,

f =1,2: isospin index (p, n),
a =1

,2,3,4: bispinor or Dirac index.
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Eq. (2.20) is compact version of
2 4

1 s _
=5 D D WP walp 0¥ sa = 0,0 pray walps V)
1. f=1d a=1
2 4
—my Y Y UpalaadppUsy,
f.f=1d ,a=1
1 3
- p 2p2
+ Zl (0,D,0"D; — M20?)
2 4 3
—1g S: L 2 Ve sanaTip eV sa®i
fl.f=1d ,a=1 1=
Remarks:

e Unit matrices (in isospin and Dirac space) are usually omitted.
e Matrices operating in different spaces commute.
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Example: 7,75 = 57;.

EOM
oL oL i , i
= 0y = U — gV —igysT - DU — 9, [ —=A"T ) =0
o0~ Yiggg = Y Tl T “( > ) ’
= (i§ —mnN)V = igysT - DU, (2.21)
oL oL L B
= = 0y——= = —M:D — igUys7V — OO = 0,
o> 99,0
= (O+M)d = —igly;7U. (2.22)
Remarks:

e Set of coupled partial differential equations.

e Lagrangians of interacting systems are of the type

L= Ligut Ly
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Correspondingly, EOM are of the type:

free including interaction
O+ M>)®; =0 —| (O+ M*)P; = “source”

(1@ —my)V =0— | (iJ — my)¥V = “source”

Compare with electrostatics
Ap = —p.

4. * Interaction of electromagnetic field with external four-current (den-
sity) JH:
1

L=~ FuF" = J, A", (2.23)
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where

0 —E, —E, —E,
E, 0-B. B
Fiy = QrAY — VAl = | O 2.24
(F™) E, B. B (2.24)
E. -B, B, 0

Symbolically

) = (45). @) = @) = (425)).

and thus
0 E, E, E.
| —E; 0 -B, B,
(F/ﬂ/> _Ey s _Ba:




In words: F),, results from F'*” by the substitutions E — —E and
B — B.

Recall: B
. A - LS
E = _%—t —Vd, B=VxA. (2.25)
Using
OF,, 0 o o
99 /jq — 99 A (a,uAV aVA,u) = 9u gyp Jv gupa
o41p o41p
8 1% g g 1% g
aa A <F,UJVFILL ) — 2(9,u ng — Gv gMP)F,U — 4F £
o/1p
we obtain

oL 5 9L
0A,  790,A,
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Covariant version of the inhomogeneous Maxwell equations

0, F°" = J’.
Corresponds to
5 o . - OE -
V- -FE = VxB—-—=1/J.
/07 at
e (): Where are the homogeneous equations?
5 o - - OB

endequation
e A: Because of Eq. (2.25) automatically satisfied.

Introducing dual tensor

v _lewm I3
9 PO
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where €,,,, denotes the totally antisymmetric Levi-Civita tensor,

+1 if {u, v, p,o} is an even permutation of {0, 1,2,3}

€wpe = 4 —1 i {p, v, p,0} is an odd permutation of {0, 1,2, 3}
0 otherwise

€uvpe = —€P? one finds
0 -B, —B, —B,
~ B 0 FE. —F
uv x z Y
Y = B, —F. 0 £ | (2.30)
B, L, —L, 0
1e one obtams F™ from F™ via the substitutions £ — B and
B % _E in Eq. (2.24). (e.g., FOl — (( 1) Fyg + F3o) = Fo3 =
—B,).
Homogeneous equations are automatically satisfied:
1

OuF" = 2" 0,9y Ag — O, A,) =~ 9,0,A, =0,
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since €77 is antisymmetric under p <+ p and 0,0,4, is symmetric
under p <> p.

. Free spin-1 field of mass m:

F, = 90,V, —0,V,, (2.31)
1 1
L= —FuF"+ §m2VMV“. (2.32)
Note sign of mass term!
oL oL
— -0, =m’V* + 9,F7" = 0. 2.33
v, “agv, VT (2:33)
Take 0, of Eq. (2.33). Antisymmetry of F°” under o <+ p. =
mQ@pr = 0,

so that, for m? # 0, we obtain an additional condition

9,V = 0. (2.34)
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[nsert into EOM, Eq. (2.33). =
O+ m*) VP = 0, (2.35)
o0,V’ = 0. (2.36)
Second equation yields condition among the four components of V7.
= Three independent degrees of freedom (spin-1 object).

Solutions of Proca equation can be decomposed into plane waves as

Hlo) = &k 3 (K a, (ke C
V() /(%)%(E)Z Kk Jay (k) + He.,

r=1

where kg = w(k) = Vm2+ k2.
Polarization vectors er(lg ) satisfy, for any k.
& (k) - (k) = =0y,
Moreover, 9,V#(x) = 0 implies
ke(k) = 0.

70



Example:

_)]C — (w(k),0,0,‘kD,
(k) = (0,1,0,0),
es(k) = (0,0,1,0),
6302) — (’E|70»0>W(E>)/m

2.3 Effective Lagrangians Involving Higher-Derivative Terms

Lagrangians discussed so far contained fields and their first partial deriva-
tives.
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EFT: Most general Lagrangian containing arbitrarily high partial deriva-
tives.
Symbolically

L(P, 0,®,0,0,9, - ). (2.37)
Define
S[P] = / dx L(D, 0,9,0,0,9, - - ) (2.38)
R

and consider test functions ®.(z) = ®(x) + eh(x), where h(x) = 0,
O,h(x) =0, -, for z € OR. Define

F(e) = / d*z L(® + ¢h, 0,® + €d,h, 0,0,® + €0,0,h, - - -)
R

oL oL oL
— F 1.1 2= h B
<O)+€/R d*x lﬁcthrf)‘@MCDa” +6‘6M5’V<Da“a +

+0(€%). (2.39)
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Apply Hamilton’s principle

Vo [ oL oc oL
O—F(O)—/d [aq) 5,50+ g g g0+ |- (240

Consider, e.g., third term on right-hand side of Eq. (2.40):

oL oL oL
4 _ 4 4
/ ' 08 0@6 O = de@ (08 0@6 h) /Rdx<8“80M8VCI>> Ot

0, since @h(@R) =0

oL oL
_ 4 4
— /Rdxé’y (auﬁé’u@,,@h) /Rdxhﬁauﬁaaq)

0, since fLZé‘R) =0

Systematics as follows: Using partial integration move derivatives off A,
make use of boundary condition.

73



= Final result is of the type

/Rd“g;h[ | =0.

Apply fundamental lemma of variational calculus.
= (generalized) EOM

oL oL oL
oD a“aa 3% a“aauaycp

Alternating signs originate from odd or even number of partial integra-
tions, respectively.

— =0 (2.41)

e Toy model:

1 1
L= (0,010"®1 — mi®7) + 5 (0,020 Py — m5®3) — g(OD1)*D3.
(2.42)

74



e Remark on dimension of coupling constant g:
dim[£] = E*, dim[®;] = E, dim[0,] = E. = dim[g] = 1/E*.

(The quantized theory is not renormalizable in the usual sense.)

e LOM

oL oL oL )
e 0 o, + 0,0, 5508, —mi®, — Od; — g0(20P,P3) = 0,
= (O+m)d, = —290(0D,P3), (2.43)
oL oL
00, %90 Dy —m;®y — 00y — 2g(0d;) D = 0,

= (O+m3)dy = —2¢(0D;)*®,. (2.44)
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2.4 Noether Theorem

Continuous symmetries <+ conserved quantities

Consider Lagrangian £ depending on n independent fields ®; and their
first partial derivatives.

Extension to higher-order derivatives is also possible.

Typically n > 2 for bosons, and n > 1 for fermions, e.g. U(1).

L = L(D;,8,P,). (2.45)
= n EOM op op
B 0 i=1--n 2.4
00, "00,; 0, t=1-m (246)

Consider infinitesimal transformations which depend on r real local pa-
rameters €,(x) (method of Gell-Mann and Lévy, Nuovo Cim. 16, 705
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(1960))
Oi(x) = Di(x) = Pi(x) + 0D;(x) = Pi(x) — e, (x) F[P;(x)]. (2.47)

Variation of the Lagrangian

oL oL
— ! A
0L = L], 0,]) — L(%:, 0,81) = 500i + &MfM®
0,60, = —i[,e(x)| Y — i€ (x), FY,

0L . 0L . oL .
- = e,(7) ( (9<I> — zaaﬂ)i@uFi ) + 0,€4() (—zaaﬂ)iFi )

= €,(2)0,J"" + (9#6@(:1:)J“’“. (2.48)
Define for each infinitesimal transformation a four-current density as
oL
JH = —q F?. (2.49)

00,0; '
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Consistency for solutions of the EOM

oL oL oL oL
0, J""=—i (0 F'—i Ff' = —i—F"—i F*.
: : ( “aauq%) T 50,0,0 T = gt g5, 0t
Currents and divergences of currents from variation
0L
JH = 2.
aaﬂ€a7 ( 50)
0oL
= : 2.51

Assume Lagrangian to be invariant under a global transformation:
OL=0 A Oue.(x)]"" =0.
= Current J"* is conserved
0, J"" = 0.
Charge

Q"(t) = / Bz J0(t, 7) (2.52)
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is time independent, i.e., a constant of the motion:

1Q (1) / 15, 01(t, )

dt ot

Make use of
/d%ﬁfa:/dﬁ-ﬁ: lim RQ/dQéT-fa:O.

R—oo

Current density J*(¢, Z) must fall off faster than 1/r2 as r = |Z| — .

Usually the case, except in the presence of massless “charged” particles
[see J. Bernstein, Rev. Mod. Phys. 46, 1 (1974)].

0,a = . .
_ /dgaﬁ <6J ait,x) I ve Ja<t73—7»>) _ / d3£C aMJM’CL(t,f)

— d%a(m —0 for 6L =0. 2.53
B,
€a
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e Remark: So far classical fields. Charge Q® is not yet quantized and
can have any continuous value.

Different versions of classical conservation laws (Weinberg, Vol. 1, chap-
ter 7.3) i
O DP+0P =P+ 60D

Invariant quantity | conservation law | current density or charge
0L =0 0, J" =0 T = 55509
0L = €, J" 9, J" =0 J' = 55500 — J*
L =0 W — g = [ du%560
0L = d%) %Et):o :fdgxaa@5q) Q
05 =0 o J"' =10 explicit form of J#
not known
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e [ixample from Assignment 1:

1 A
L= [0,2:0"1 + 0,2:0"By — (0 + @5)] — T (0] + 2)°

(2.54)
Perform infinitesimal, active rotation of the fields by angle e(z) (1 local
parameter) (After replacing the fields by field operators, the correspond-
ing Hilbert space states must be transformed oppositely.)

q)ll — <I>1+5<I>1 — (I)l —6([17)(1)2, (I)/Q — <I>2+5CI>2 = ®2+€($>@1. (255)

oL oL
oL = 0P, 88 P, 80,3, 0n0
— \—?7%2(1)1[ ( )](I)Q m @26(33)@;
0

= A@F + P {Pi[—e(2)] s + Doc(a) P}

0
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+(9’”‘<I>1(9N[—e(a:)<1>2] -+ (9“@2(%[6(3:)@1]

= 8Me(:1:)(—(‘9“<1>1<b2 + @1(9“(1)2). (256)
0L 0L
= J 8(‘%6 16 9 0 1Po, (‘LJ e 0 ( 57)

e Conclusion: Lagrangian of Eq. (2.54) is invariant under global ro-
tation of fields ®; and ®5. Underlying symmetry group is O(2) =

SO(2) U SSO(2), where
I 0
s=(5 1)

Elements of SO(2) may be described by a continuous parameter ( <

© < 2T
[ cos(p) —sin(yp)
Rlp) = < sin(e)  cos(yp) ) '

Conserved current of Eq. (2.57) is associated with this invariance.
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Remark: The groups SO(2) and U(1) are isomorphic.

2.5 Canonical Quantization of a Scalar Field

Literature
e [tzykson and Zuber, chapter 3.1
e Ryder, chapter 4.1

So far: Free scalar field as classical system.

Quantum-mechanical interpretation of Klein-Gordon equation as rela-
tivistic single-particle equation faces two difficulties:

1. Klein-Gordon equation allows for solutions of “negative energy,” if
one interprets 10" as operator corresponding to four-momentum.

2. It is not possible to define a positive definite probability density p.
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Both problems disappear in quantum field theory:.
Hamiltonian formulation

Introduce generalized momentum II conjugate to field ®

OL oL

p:a—q — H:(?—(i) (2.58)
and Hamiltonian density
H=pj—L — H=I1d-L. (2.59)
Hamilton function
H = / d*z H. (2.60)

Free scalar field
M=,
. 1/.. o
H = @2—§(q>q>—vq>-vq>—m2q>2)
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1 L.
:§(H2+V<b-vq>+m2q>2),
1

H = 5/@139; (H2 +VD-VO +m2c1>2) . (2.61)
Note: H(t) > 0 (integrand always positive), i.e., problem of “negative
energies” does not show up in classical field theory.

Canonical quantization

Interpret ®(¢, ¥) as Hermitian operator in analogy to transition from
classical mechanics to quantum mechanics.

Corresponding Hilbert space still needs to be identified (see below).
Operator @ plays role similar to that of position operator g of nonrela-
tivistic quantum mechanics.

Interpret Z as some sort of parameter, resulting in (uncountably) infinite
number of degrees of freedom, i.e., at each & one has a dynamical degree
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of freedom ®(Z) (which is function of t).

Visualization of quantization procedure
1. Divide three-dimensional space into cells of volume o0V.

2. Denote each cell by a triplet 7 of integers (see Fig. 2.1).

Figure 2.1: Two-dimensional illustration of the cells.
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3. ®7 average value of ® in cell 7 (function of ¢).
4. L average of Lagrangian density in cell 7.

5. Lagrange function reads
L=Y Li=)» 0VL; g /d3:z: L. (2.62)

6. Define momentum pr conjugate to ® as

oL oVOLr
T 0by  0by
with continuum limit Eq. (2.58).

b oV1lz, (2.63)

7. Quantization rule: Consider ®and py as operators in the Heisenberg
picture
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Recall

4, p5] = 1055 = [qmi(t), pry(1)]  —
qmi(t), qmi(t)] =0  —
pui(t), PHjn) =0 —

Take limit 0V — 0,

5%}130 oV L1, )
O 3,
s 5y = 089,

= so-called canonical equal-time commutation relations (ETCR) of
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the operators @ and I1I:

(¢, 7),11(t,5)] = i6°(T — 9),
@(t, 7), 0(t, )] = [11(t, 7), 11(t, 7)] = 0. (2.65)
Note: Real field has “turned into” Hermitian operator.
Operator ® must satisty ETCR + EOM obtained from Hamilton’s vari-

ational principle,
O+ m?)®(x) = 0. (2.66)

Solution: Consider Fourier decomposition

7) = dgk 7 e—ik-x CLT 7 ez'k-a: _ HT 7
o(t, 3 /< e e = 06,2, (260

A&

d°k
where
1. ko= w(k) = Vm2 + k2 (Assignment 2, 6. (a)).
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2. a(k) and af(k ) operators.

Assignment 3, 1. (a): ETCR imply commutation relations

—

a(k), a' (k)] = (21)°2w(k)8*(k—K'), [a(k ), a(K)] = [a'(k),a'(K)] = 0.

(2.68)
Interpretation of operators a(k) and a'(k)
Assignment 3, 1. (b):
1 [~ - L Lo

H= §/d3kw(k> (aT(k)a(k> + a(k>af(/<)) . (2.69)

Let
H|E) = E|E)

Consider



+a(k) \aT(E'z,r a(k)] —|—\a(/§’)‘,ra(/2 ) al(K')}
S.a. O
= —w(k)a(k)
— [E _ w(E)} a(k)|E) (2.70)

Analogously



Repeat for momentum operator
P / Bk Fal (K )a(k). (2.72)

Conclusion: Operators a'(k ) and a(k ) create and destroy a quantum
of energy w(k) and momentum k.

Remark on normal ordering;:

Let |0) denote ground state (vacuum) with
a(k)0) =0, (Olaf(k)=0 V F (2.73)

Consider vacuum expectation value (VEV) of Hamilton operator of Eq.
(2.69):

O110) = 5 [ PhaE)0] (al(F)alk) + ol )al () 0
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:%/&Nm@w@af(%) a(kK)  +a(F),al (E)]|0)

= 00, (2.74)

because [a(k ), al(k)] ~ 63(0) and, in addition, one needs to integrate
over k.

Interpretation of infinite constant: infinite sum over oscillator ground-
state energies.

Redefinition of Hamilton operator such that ground state corresponds
to energy eigenvalue Ey = 0:

H = 1/@@@0(%) [af (F)a(F) + a(F )al (F)



1 [~ - L Lo
= §/d3kw(k) cal(k)alk) +a(k)a(k) -
= / Bhw(k)al (k)a(k). (2.75)
. denotes symbol for normal ordering: annihilation operators are
always to the right of creation operators. For bosons, creation and an-

nihilation operators commute, when they are written inside a normal
product.

Example

- RN < X - o ot T
- a(F)al(q)a (F)a(F) 2 al(@)a(F)al (7)a(F) = ol (7)a! (7)a(F)a(F).
Construction of Hilbert space
Define number operator as

N = / Bk al (B )a(k). (2.76)



Properties (Assignment 3, 1. (¢))

N = NT,
N, H] =0,
[N, P] = 0.
Consider one-particle state
k) = al(k)|0) (2.77)

normalized as

(k'|k) = (0la(k")a' (k)]0)

—

= (0]a'(k Ja(k") + la (k'),a'(k )]|0)
= (2m)%2w(k )6k — k). (2.78)

Basis of complete Hilbert space (so-called Fock space) is constructed as

al (k1) - -~ a' (k) 0), (2.79)
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where the k; are not necessarily different. Recall:

Hal (k1) al (k)|0) = (al(i)H + [H,al(Fy)]) -+ al(£,)]0)

(
ﬁ — (]Zl_|_..._|_];n)...7
n

N--w = (2.80)

Basis states described in terms of occupation numbers n(E ) correspond-
ing to eigenstate of momentum k:

—

i)l = I 1@)' ()" 0. sy

Eq. (2.68) = all creation operators commute.
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Arbitrary normalized state as superposition

—_— . . 1 —— ——— L . .
‘(I)> = (CO + d3]€1 Cl(]ﬁ)CLT(kl) + ﬁ dgkldSkg Cg(lﬁ, kQ)CLT(kl)CLT(k‘Q)

1 o o o > 5 - - — -
—i_ﬁ d3k1d3k2d3k303(k1, ]{/‘2, kg)&T(lﬁl)aT(k2>ClT(k3> + - ) ‘0>
(2.82)

(Recall: n objects may be ordered in n! different ways.) Normalization
condition =

1= (P[®) = IcO\2+/d3k1|c1</Z1)|2+ Clord kol ea(k, k) + - -
(2.83)

¢,,: momentum distribution of the component containing n quanta ( “wave
function in momentum space”).

af(k),a’(K)] = 0 = momentum space wave functions are symmetric
under interchange of any two arguments.
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Probability of finding “particle 17 with momentum k and “particle 27
with momentum & is the same as finding “particle 17 with momen-
tum &' and “particle 2”7 with momentum k. The so-called Bose-Einstein
statistics originates from the commutation relations of Eq. (2.68).

2.6 Quantization of the Dirac Field

Literature
e [tzykson and Zuber, chapter 3.3
e Ryder, chapter 4.3

Empirical fact: Spin—% particles obey Fermi-Dirac statistics and the Pauli
exclusion principle.
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Decompose U and U into plane-wave solutions

= 3 [ G @+ )

= U () + T (), (2.84)
U(z) = Z; / (2@?2%@ b)) () + d (7)) (7)e
= U(z) + TH(2) = UH(2) + TO) (), (2.85)

where pg = E(p) = /m? + p2.

In order to satisty Pauli exclusion principle, postulate anti commutation
relations for creation operators bl and d (annihilation operators b, and
d,) for particles and antiparticles

{b:(9),01(5")} = (2m)°2E(p)0° (5 — §")drs, (2.86)
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{d (), d}(p")} = (20)2E(p)6° (5 — §")drs.

All remaining anti commutation relations vanish:

Simplification of notation:

W —+ »

»w—+ O

W —+ U —Fuw—+

100

~ ~

~

~

~

~

o o e e
|
OO OO0 0o o O

(2.87)

(2.88)
(2.89)
(2.90)

(2.91)



2

> [ e 2
7)0%(p

r= 1

1
{b,(7), bl (7)) = (2n)2E(p — 5)6,s > {bi b} =6, ete.
Substitute back at end of calculation.

Example: Consider superposition of two particles

By — %Z@@,j)bszym
_ %ZCQ@ 7)(=1)bib]0)
1 2]

- czg,i)bjbj.ym,



i. e. wave function is antisymmetric under exchange of two arguments:

C2(i, J) = =24, 9).
In particular: 0 for ¢ = j (Pauli principle).
Normalization
(P|P) =1

leads to

I = Z|62(i7j)‘2
2
H/27r32E Z/ 2732E*'262p’rp ) =1

7“’:1

Anti commutation relations of Dirac fields from
e anti commutation relations of Eqs. (2.86) - (2.91)

e properties of Dirac spinors of chapter 2.2, example 2
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{Vs (t,f),ﬁl%(tjy_’)} — 53<f_g>5a57
{Vs (tvf)aqjﬁ(tag>} = 0,
{Wh(t,2),i(t,9)} =0,

« and (3: Dirac indices (1,2,3,4).

VA A

Example

Rewrite symbolically

Z (b wi(x) + dTvZ( )) :

(2.92)
(2.93)

(2.94)



Thus

Wal(z), ¥

(W) Yoo=yo = Z{b Uia (T
— Z uza

Continuous notation

’:/<27r>

gl

f T,
) + d;via(®), bjuss(y

(y) + djv;5<y>}xo=yo

y) {bi, b} +wia(2)0],(y) {bi, d;}

H,_/

ul oy ){d* b} +via()0]

d’p - . ,
7”) — — (T)T — 10"
32E( ) E , (ua (p)@ ! uﬁ <p)6py_|_
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[
(2m)32E(p)

Make use of
9

r=1

—(E‘|—m>< G ﬁQ

%
-
—_
N\
S
23
—
g1l
N———
g
=3
—
N
g~}
N———
CBN
=
”e'i
S
_1_
~

= @ +m)n (po=Ep))




Completely analogous

> o@ @) = ¢ =m0 = E@).

r=1

Put together

(Wa@) Voo = [ G [0+ mime ™

+(p — m)%e—iﬁ(f—ﬁ)}

Substitution in the second term p — —p’;
Note E(—p’) = E(p’) and ¢ = 1:

dgp i (F—17 S
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Hamilton operator
Start from Lagrangian

L=V(ijd —m)¥
define canonically conjugate momentum
m— 2 _
ov

Hamiltonian density

H =T0—L = iU T—T(iygd)+i7-V—m) U = U(—i7-V+m)¥ = Uhil

for solutions of the Dirac equation.

Remark: Interpreting the Dirac equation as a field equation is not suf-
ficient to remove the problem of “negative energies.” Quantization in
terms of anti commutation relations required.
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Consider Hamilton operator

H = /d?’x?-[

T

2 D’
d3
/ / 27) 32E Z/ 27) 32E (p")

/

ST
<0} )5y )l
xi[—iB(p")][b (" )u'" ) (5")e "

Perform integration [ A’z

ZlZ[ "

ul (7 )ul) (e 0P
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—dy ()] (7)o o) e BB )58 — )
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1 / . —/ =/
d —/ dT —/ ( )T —/ (7’ ) =/ _Z'IO[E(p )_E(p )]
T R SRRl J

e Perform sum ) ;

e rename p’ — p:

. / R ZE (7)) — de(P)d}(F).

So far: We only made use of the properties of the Dirac spinors. We
made sure to write creation and annihilation operators in the order as
they appear in the multiplication.
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Introduce normal ordering including a sign change for each inter-
change of fermion operators.

Example
U = (\Tf&_) + \ng+))FQ@(\IJ(ﬁ+) + \If(ﬁ_)) :
= \ngj)Faﬁ\IJ(; + \Tf@_)Fa[g\D(ﬁ_) + \If((j)ragqf(ﬁ+) — \If(ﬂ_)raﬁqf(j),
(2.95)
with ' an arbitrary 4 x 4 matrix.
Recall:
(+) ~ annihilation operator x e~ "%,

(=) ~ creation operator x ™77,

Result for normal-ordered Hamilton operator
H - / B+ U ()i (z)
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Sign change in second term =- Hamilton-Operator positive definite.

Using commutation instead of anti commutation relations would have
led to Hamilton operator which is not bounded from below. In other
words, existence of a stable ground state requires that Dirac equation be
quantized according to Dirac-Fermi statistics (anti commutators). Spe-
cial example of the so-called spin-statistics theorem, according to which

fermions/bosons are quantized with anti commutation/commutation re-
lations (see, e.g., W. Pauli, Phys. Rev. 88, 716 (1940)).
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2.7 More on Noether’s Theorem in Quantum (Field) Theory

So far: Noether’s theorem on the classical level.
In principle, charges Q%(t) can have any continuous real value.
Now: Transition to a Quantum (Field) Theory.

Analogy: Point mass m in a central potential V() = V (r).
Lagrange and Hamilton functions are rotationally invariant.
Consequence: Angular momentum [ = 7 X p is a constant of the motion.

Transition to quantum mechanics. = Operators

Components of angular momentum operator

A

li = €ijTipr = —ip; (—i€iji) Tk,
(L2
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LM 3 x 3 matrices satisfying [L2, L?d] = deij L3,
satisfy commutation relations
i, U] = i€ijily
i.e., they cannot simultaneously be diagonalized.
Recall: Angular momentum operators are generators of rotations:

") = exp(—ioyl;)| D).
Rotational invariance of the quantum system
(H,1] =0
e., I; are still constants of the motion.

Simultaneously diagonalize H, A 2 and ls.

Example: Hydrogen atom



where n =n’ + 1+ 1; n’ > 0 denotes principal quantum number.
Degeneracy of an energy level is given by n? (spin neglected).

e Value I and spacing of levels determined by dynamics of the sys-
tem, i.e., specific form of potential.

e Multiplets with eigenvalues I(I + 1) and m = —[,-- -1
(1=0,1,2,--).
Multiplicities of energy levels are consequence of underlying rota-
tional symmetry. (In fact, accidental degeneracy for n > 2 is result
of even higher symmetry of 1/r Hamiltonian, namely SO(4) symme-

try.)

In short: Multiplicities depend on underlying symmetry:;
energy eigenvalues depend on V' (dynamics).

What happens in QFT"
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After canonical quantization: Fields ®; and conjugate momenta II; =
0L /0(0yP;) are considered as operators subject to ETCR

[;(t, T), 1L;(t, §)] = i6*(T — §)6;; +> i, Dj) = 10y
Di(t, 7), Q;(t, )] =0 < [2;,25] =0
1Lt ), IL;(t,4)] = 0 <> [pi,pj] =0

Consider as special case of Eq. (2.47) infinitesimal transformations which
are linear in fields

Oj(x) = Oi(x) = j(x) —ie,(2)t];Pj(x) Ty = Ti—iep(—ierij)T;

(2.96)
ti; are constants generating mixing of fields
a . aﬁ a

Qa<t) = —i/dgﬂf HZ(LU) tgj CD]<£IZ'> < Zk = —z’ﬁ@(—iekij)ﬁ:j = ekij'{i;iﬁja
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(2.98)

where J*%(x) and Q%(t) are now operators.

Transformation behavior of field operators

Q(t), Pi(t, y)] =

—

i / B [TL(t, T)D; (¢, T), Di(t, )]

it [ % (L (t, ), (t,2), 4. )
+HILi(t, Z), Pk (¢, ¥)|P;(2, 7))

—it!, / dz (—i0*(Z — §)04.9,(t, 7))

— ;56 9) (2.99)

Uy i) = i€ni52 (2.100)

Q)" are generators of the transformations acting on the states of Hilbert

space.
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Interpretation of charge operators

1. Time-independent charge operators satisfy (Heisenberg picture)

dQ*
dt

i.e., H and Q% may simultaneously be diagonalized.
Group theory: Degeneracy of an energy level is associated with di-
mensionality of irreducible representations of underlying symmetry
group.
= Investigation of particle spectrum yields information on underly-
Ing symmetry.

=1|Q", H] =0,
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Example: Isospin multiplets

Name | [ I3 Y | Mass Life time |s] (Main-)
MeV] Width [MeV] Decay
pion |1 +1 0| 140 2.6-1075s ™ —=ut+u,
0 135 8.4-10717s 0 — Ay
N 0 0| 547 1.2 keV T
0 1 1,0,—1 [ 0] 770 151 MeV s
nucleon % D % 1] 938 stable
(> 2.1 x 10% years)
n: —% | 1] 940 886 s pe v,
A 3180 -2, -2 1] 1232 120 MeV N
Q=1I;+3Y. (200MeV) ' & 110 %5




2. Symmetries relate scattering amplitudes of various processes (of the

same type).
To be discussed later. Also: Green functions of different types: Ward
identities.

Example: Isospin symmetry = 7N Scalztering may be described
in terms of two scattering amplitudes T2 and T2 (Wigner-Eckart
theorem):

(', [§|T|I, I3) = T]5H'5131§-

Interpret constants t7; as entries in ith row and jth column of an n x n
matrix 1,

a . . . a/
11 1n
Ta, — . .

a a
nl tnn
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Assumption: Matrices form n-dimensional representation of a Lie alge-
bra

)

[T T" = iCy T (2.101)

with structure constants Cy.. = Charge operators Q“(t) form a Lie
algebra

Q (1), Q"(1)] = iCabeQ“(2). (2.102)
Infinitesimal, linear transformations of fields ®; may then be written in
compact form,

@1(33)
: = O(x) — '(z) = (1 — ie,T")D(x). (2.103)

Py, ()
1T, may be brought into block-diagonal form. = Only fields belonging
to the same multiplet transform into each other under the symmetry

group.
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Example 1: U(1) (or O(2))

Scalar field theory with a global U(1) invariance:

1 2 A
L = §<auq>1aﬂq>1 + 0,020 Dy) — %(be + P — Z(cb% + $2)?
= 0,070"d — m*®Td — \(dTP)?, (2.104)
where
1 1
d(z) = ﬁ[@l(@ +iDy(x)], B(z) = ﬁ[%(m) — i®y()],

with real scalar fields ®; and ®s.
L is invariant under the global transformations

O = (1+ie)®,
T = (1 —ie)dT,
or
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(g’;)zu—k(_ ?))(3) (2.105)

with € infinitesimal real parameter.
Apply method of Gell-Mann and Lévy with local parameter €(x),

0L = 0,e(x) (10" DT — i®dTo" D), (2.106)
= current density
00 L et ot

JH = = (10"PTd — i dTO'D), (2.107)

00,€

00L
P 2T . 2.108
O 5% 0 (2.108)

Extend analysis to quantum field theory:.
Define conjugate momenta,

oL .
1= — T, I
00, !

00,97

. (2.109)
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Operators subject to ETCR
@, 2),11(t, 7)) = [0}, ), (¢, 7)) = i0* @ — 7). (2110)
Remaining ETCR vanish.
Current operator of quantized theory reads
JHz) =: (10"DTP — idTO D) -, (2.111)

where : : denotes normal or Wick ordering, i.e., annihilation operators
appear to the right of creation operators.

Charge operator (generator of infinitesimal transformations of Hilbert
space states)

Q= /d?’xJO(t, ). (2.112)
Apply Eq. (2.110) to obtain equal-time commutation relations

[J0<t7f)7®(tvg)] — 53<f_ g>®(t>f)7
[J()(tv f)? H(tv g)] — _53(f_ gj)l_[(t, f):
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[t 2), @1(t, g)] = —8°(F — 9Pt T),
[, D), T (8, 9)] = &7 — g (t, 7). (2.113)
(From [A, B] = AB — BA = C we obtain [A', BT] = —C. Note that
J(x) = J"N(x)).
Remark: Transition to normal ordering involves an (infinite) constant

which does not contribute to commutator.
Example:

IO, Z), (¢, )] = i[ll(t, Z)D(t, &) — O (¢, D) (¢, &), D(t, §)]
i(—3)6% (T — §)D(t, T)
= (% — )D(t, 7).
Perform space integrals in Egs. (2.113). =
Q,(z)] = (),
Q, ()]
Q, 27 (x)]




0,1 (z)] = TIf(z). (2.114)

Q: Why are commutation relations involving charge operators so impor-
tant?
A: They specity how operators transform.

Motivation: Consider operator A and basis {|k)}.
Perform infinitesimal, unitary transformation of states

k) = (14 1ie,Q")|k),
A = A+¢€,0A,
such that '
(I'| A7) = (i|Alg) ¥ i,
We obtain
(1 —1€,QY) (A + €0 Ap) (1 +ie.Q°) = A,
& A+e0A, = (1+16,Q")A(1 —ie.Q°),
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& 0A, =1Q", Al
Physical interpretation of Eqgs. (2.114):

Take eigenstate |a) of Q) with eigenvalue ¢, and consider action of ®(x)
on that state,

Q (P(z)|a) = (|Q, ©(z)] + (2)Q) |o) = (1 4 o) (P()]cv)).
Conclusion: Operators ®(z) and IIf(z) [®T(x) and II(z)] increase (de-
crease) the Noether charge of a system by one unit.

Example 2: U(1) for fermions

Start from Lagrangian of free theory describing electrons
Lo=V(id —m)V. (2.115)
Ly is invariant under global U(1) transformation
U(x) = V(z) =e "“U(z),
U(z) — U'(x)=U(x)e,
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where a € |0, 27]:

wwk+\yei U= U,

Uy, 0" We'%y,0M'e "V = We'e "y, 0" = Uy, 0",

Consider infinitesimal transformation
e 3 ] — e
and substitute € — €(x)

0Ly = —10,e(x)iV (z)y" U (z).

8L,

JH
0€

= Wy,
with charge operator
Qz/fﬁ@%ﬁﬁ@@:.
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Assignment 4, 4. (a)

Q=3 [ Grans B @) - dw)iw),

Minus sign for antiparticle contribution is related to normal-ordering
procedure. Note that

@|0) =0,
because

br(P)]0)
d(p)|0) =

Consider one-particle states:
Qle™(p, 7)) = Qbl(p)]0) = ([Q,bl(P)] + bl(F)Q)|0) = +1]e”(7,7)),
Qle*(p,r)) = Qdi(p)|0) = =1le™(p, 7).
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We made use of

Q,61(7)] = b},
Q. dl(p)] = —dl(p).
Verification: Express commutator in terms of anticommutator (fermions)

lab, ¢] = abc — cab = abc + acb — acb — cab = a{b, c} — {a, c}b.

b1(@)b5(@), b1(D)] = l(@){bs(7), b}(7)} — {bLT), bL(F)} bs(T)
0
= (27)°2E(7)0%(q — §)0::0(q).
[di(q)dy(7), bl(F)] = 0
Substitute into expression for (), perform integration = result.
Second calculation analogous. Minus sign originates in minus sign in ).

Interpretation: () is charge operator in units of —e, e > 0.
Or: () is electron number operator.
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Chapter 3

Quantum Chromodynamics and Chiral
Symmetry

3.1 Some Remarks on SU(3)

Role of SU(3) in the context of the strong interactions:
1. Gauge group of QCD:

2. flavor SU(3) is approximately realized as a global symmetry of the
hadron spectrum (Eightfold Way);
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3. direct product SU(3); x SU(3)p is the chiral-symmetry group of
QCD for vanishing u-, d-, and s-quark masses.

Basic properties of SU(3) and its Lie algebra su(3)

Definition:

SU(3) = set of all unitary, unimodular, 3 x 3 matrices U:

UTU = 1, det(U) = 1.

Elements of SU(3) are conveniently written in terms of exponential rep-
resentation

U(©) =exp (—z’ Z @a);> : (3.1)
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O,: real numbers:
Ao: Gell-Mann matrices satistying

Ao OU
2~ 90,
Ao = Al
Tr()\a)\b) = 25@67
Tr(Ay) = 0.

Eq. (33) = U =U"
detlexp(C)] = exp[Tr(C)] + Eq. (3.5) = det(U)=1.

Explicit representation

1
0
0

O . O
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(0, -
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7())7

o O
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w W W W
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00 1 00 —i 000
M=looo], x=[o0 o). x=[001],
100 i0 0 010

00 0 S/10 0
=00 =i |, x=4l01 0], (3.6)
0i 0 3\ o0 -2
Definition:

Lie algebra su(3) of SU(3) = set of all complex, traceless,
skew-Hermitian, 3 X 3 matrices.

Set {i\,} constitutes basis of su(3).

Lie product defined in terms of ordinary matrix multiplication as com-
mutator of two elements of su(3).

Lie properties of anti-commutativity

(A, B] = —[B, A] (3.7)
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and Jacobi identity
A, |B,C||+ |B,|C,A]| + |C,[A, B]] = 0. (3.8)

Structure of SU(3) is encoded in commutation relations of Gell-Mann
matrices,

Aa b

[5 5] = ifu 39

Structure constants f,;.: real, totally symmetrlc. Given by (Assignment

5, 1. (a)) 1
fabc — Tr([)\aa >\b]>\ ) (310)

abc | 123147156 246 2571345367 | 458 678

i 1] 1 I 1 111 I
fab0122222223 3

Anticommutation relations

4
{)\a, )\b} — géab + 2d gy (3.11)
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. real, totally symmetric. (Assignment 5, 1. (¢))

1

dabc — ZTI({)\aa Ab}Ac)a
abe | 1181146 | 157 | 228 | 247 256| 338 344
g, L I I L[ I I L] 1
abc| T30 2] 2 /3 2 2 /3 2
abc | 3551366 | 377 448 | bH5H8| 668| 778 888
d i1yt 1T {1 1 7 1 [_ 1
abe| 2] 72| 72| 23] 2Bl 231 23] 3

Often useful:
= /2/3diag(1,1,1).

Eqs. (3.3) and (3.4) Sat1sﬁed by the nine matrices A\,. {iAsla =0, -, 8}
basis of Lie algebra u(3) of U(3), ie., the set of all complex, skew-
Hermitian, 3 X 3 matrices.
e Many useful properties of the Gell-Mann matrices can be found in
Sect. 8 of CORE (Compendium of relations) by V. 1. Borodulin,
R. N. Rogalyov, and S. R. Slabospitsky, hep-ph/9507456.
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Arbitrary 3 x 3 matrix M can be written as

M=) AM,, (3.13)

where M, are complex numbers given by

1
M, = STr(AM).

3.2 Local Symmetries and the QCD Lagrangian

Gauge principle: Tremendously successtul method in elementary parti-
cle physics to generate interactions between matter fields through the
exchange of (massless) gauge bosons.
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3.2.1 QED

Quantum electrodynamics (QED) obtained from promoting global U(1)
symmetry of free-electron Lagrangian,

U — exp(iO)V : Lieo = V(iv"D, — m)V = Lpee, (3.14)

to local symmetry.
Q: What does that mean?

Parameter 0 < © < 27 describing element of U(1) is allowed to vary
smoothly in space-time, © — O(x) (sometimes referred to as gauging
the U(1) group).

Requirement: Keep invariance of Lagrangian under local transforma-
tions.

Resolution: Introduce four-potential A, into theory which transforms
under gauge transformation A, — A, + 0,0/e (“gauging Lagrangian
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with respect to U(1)”):
_ 1
Lqoep = V|in"(0, — ieA,) — m|V — Z'F”WFW’ (3.15)

where e > 0; F,,, = 0,A, — 0, A, field strength tensor (see Sect. 2.2).
Introduce covariant derivative of W,

DV = (9, —ieA,)V.
Criterion: Under so-called gauge transformation of the second kind
U(z) — expliO(x)|V(z), A, (x)— A (x)+0,0(x)/e, (3.16)
D,V transforms in the same way as W itself:
DV(x) — D;\If’(x)

= [0, —ieA,(x) — i0,0(x)]e® T (z)

= PW[9, 4i0,0(z) — ieA,(z) —i0,0(x)]¥(z)

= ©W[9, —ieA,(2)]¥(x). (3.17)
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Remarks:

1. F,,FH term makes gauge potential a dynamical degree of freedom
as opposed to a pure external field.

2. Mass term is excluded, since it would violate gauge invariance:

1, 1, 2 1 |

§M A A" — §M (A A"+ gﬁu@/w + ?(%@W@) =+ §M A, A
Gauge principle requires massless gauge bosons. (Masses of gauge
fields can be induced through a spontaneous breakdown of the gauge

symmetry. )

3. Identify A, with electromagnetic four-potential and F,, with field
strength tensor containing electric and magnetic fields.

4. Gauge principle has (naturally) generated the interaction of the elec-
tromagnetic field with matter.
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3.2.2 The QCD Lagrangian

Quantum chromodynamics (QCD) is the gauge theory of the strong
interactions with color SU(3) as the underlying gauge group.

Ingredients

The matter fields of QCD are the so-called quarks which are spin-1/2
fermions, with six different flavors in addition to their three possible
colors. (Masses from PDG: Review of Particle Physics, 2006).

flavor u d S
charge [e] 2/3 —1/3 —1/3
mass [MeV]| 1.5 — 3.0 3—7 95 £ 25
flavor C b t
charge [e] 2/3 —1/3 2/3
mass |GeV] | 1.25+0.09 14.20 + 0.07174.2 + 3.3
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Quark field components

df A
1,2,3,4,5,6: flavor index (u, d, s, ¢, b, t)
1,2, 3: color index (red, green, blue)
1,2,3,4: Dirac spinor index

f
A

Consider “free” quark Lagrangian without interaction:

6 3 4
Lo quarks = y:y: y: 040 (VoortOu — Mplaar)qs a0 (3.18)

f=1 A=1 a,a/=1

Sum of 6 X 3 = 18 free fermion Lagrangians.
For each quark flavor f introduce color triplet

qdf1
qr=| qr2 |- (3.19)
qf,3
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Lo quarks 1S invariant under global SU(3) transformations of the gy,

8
/ » Aa
qf — qf = U(@)Qf — eXp [—Z @a? (320)

a=1

Superscript ¢ denotes Gell-Mann matrices acting in color space (usually
omitted).

(In principle, each flavor invariant under separate transformations.)
Apply gauge principle with respect to the group SU(3) (all g tans-
formed by the same SU(3) matrix):

1. We need 8 gauge potentials to compensate for

0Lo quarks = 1 quwﬂ 1) 0,U(0(x)) ay.

acts in color space

2. Non-abelian nature of SU(3) = field strength tensor more compli-
cated.
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QCD Lagrangian

6 3 4
Locp = Y 7 Y — M 0aar)0 AN
f.f'=1 AA=1 a,«a
8

X "1
=03 ) A= Vet 101y 00 = D (G G
a=1

a=
\ . 7

from gauge principle

Short version

Locp = Z qr(t gauyg I (3.21)

u,d,s,
f=7 c,b,t

Extremely short version

1
Laop = 46D = M)g = 7 T1.(G,6")
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Locep 1s invariant under the gauge transformations

S @a(@;g] 0 = Uy,

qr — qf = exp

Y '
Av= Ayt = UAUT + gic‘?MUU‘L.
3

Covariant derivative of the quark fields

. Exercise:
D.qr = (0, +igsAgr = (Dugy) = D;ﬂ} = UD,qy

transforms as quark fields.
Field strengths transform as

s
guz/ — ga/w?
Equivalent (Gell-Mann matrices!)

ga,uy — a,uAaz/ — aV-Aa,u — g3fabcAb,u~Acu-
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Exercise: Lgep invariant under local SU(3).

Note: Squared field strength tensor gives rise to gauge-field self inter-
action vertices with three and four gauge fields of strength g3 and g3,
respectively. Characteristic of non-Abelian gauge theories, absent in
Abelian gauge theories.

Gauge invariance also allows for (quark masses originate from elec-
troweak symmetry breaking)

. 93 o
£9 — 6471' Z gauugapa

959 oo
— 3237T26M P Trc(gw/gpa)
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+1 if {u, v, p,o} even permutation of {0, 1,2, 3}
€wpe = § —1 if {p, v, p,0} odd permutation of {0, 1,2, 3}
0 otherwise

So-called 6 term implies explicit P and C'P violation in the strong in-
teractions:

P ga,uu(ta f) = géLV(t? _f)7
P = —€uvpos
= Ly(t,T) — —Ly(t, —7).
—

1. electric dipole moment of the neutron; empirical information: very
small.

2.m — 47" (= &) (not (yet) observed).
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3.3 Accidental, Global Symmetries of Lqcp
3.3.1 Light and Heavy Quarks
The pion is special!

quark content mesons
ud T, p"

(i —dd)/vV2 7°, p°
du mw ,p"

M.+ =140 MeV < M, =776 MeV,
M, < my, =938 MeV.

M.+ < Mg+ =494 MeV < MD+ = 1869 MeV.
N

cd
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= (1.5 — 3.0) MeV m. = (1.25 + 0.09) GeV
mg=(3—7T)MeV | <A, ~1GeV < | my=(4.20=£0.07) GeV
— (95 £ 25) MeV my = (174.2 £ 3.3) GeV

Motivation
my > 2m,, + my

Consider light-flavor quarks in so-called chiral limit m,,, mg, ms — 0 as
starting point in discussion of low-energy QCD:

Loep = Z Qi) g — g,w,agéw. (3.22)

I=u,d,s

3.3.2 Left-Handed and Right-Handed Quark Fields

Recall: Starting point of EFT are underlying symmetries.

Q: What are the global symmetries of CQCD
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Chirality matrix
01,23 i

=9"=iv"vry =, Y sk=0, =1

Projection operators
1

1
P, ==(1-n) =P}, PR:§<1+75):P]J;'

2
Exercise: Properties

Pr+ Pr=1,
P} =Py, Pp= Py,
P;Pr = PrP; = 0.
Left- and right-handed quark fields g7, and qg

qr. = Prq, qr = Pgrq

Explanation of terminology: Consider positive-energy spinor

W(@F) = VE +m (_ifx ) |
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Take extreme-relativistic limit /2 > m with spin projection in posi-
tive/negative momentum direction, i. e.,

7 DPX+ = X+

wl) 2 VE( )
Make use of
L [ 1oxo loxo 1 Loxo —Ilaxo
Pr=- and P; =-—
=9 (12><2 loxs P o —laxe laxo
to obtain

1

Pru, — §<1z><2 12><2)\/E(X+> :\/E(X+> _——
1
2

Loxa loxo X+ X+

loxo —loxo VE[ Xt ) =0
—laxo  laxo X+ ’
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Py = 1<1z><2 12><2) @(_X) _0,

2\ laxa laxo X-
P = 1 Loywo —1oxo VE X-\ _,
2\l 1o —X— o

In the extreme relativistic (or in the zero-mass limit), the operators Pg
and Py, project to the positive and negative helicity eigenstates. In this
limit chirality equals helicity.

Goal: Analyze the symmetry of the QCD Lagrangian with respect to
independent global transformations of the left- and right-handed fields.
Make use of (Exercise)

_ qrl1qr + qrligr for Ty € {7, "5}

Fg=24 1 L - 3.26

i { qrl'2qr + qrlaqr for Ty € {1,75,0"} (3.26)
L, 1

[T T %
o Q[Wﬁ]
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and

qr = C]Iﬂo = QTP}TWO = ¢'Ppyo = ¢"oPr = qP, und qp = GP.

QCD Lagrangian in the chiral limit
: . 1 y
E%CD = Z (qratD) qry + qratl) qry) — Zgawgéf (3.27)
I=u,d,s

invariant under (covariant derivative flavor independent!)

ur, ur, 8 )\f . ur,
dr — Up | dj =exp | —1 Z @CLL?CL e 1© dr |,
ST, ST, a=1 ST,

UR UR 3 )\f . UR
dp | = Ur | dp | =exp —2'2657@ e | dp
SR SR a=1

(3.28)
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Ur, and Ug: independent unitary 3 X 3 matrices.
Superscript f denotes Gell-Mann matrices acting in flavor space (will be
omitted from now on).

L{cp has a classical global U(3); x U(3), symmetry.

Applying Noether’s theorem from such an invariance one would expect
a total of 2 x (8 + 1) = 18 conserved currents

3.3.3 Global Symmetry Currents of the Light-Quark Sector
Consider infinitesimal, local tranformations (Gell-Mann-Levy trick)

qr, — (1 — ’LZ ef(m)% — ieL(az)> qr,

a=1
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qr +— <1 — ’LZ ef(:z:)% — @'GR@;)) qR-

a=1
Variation (sign from ¢ x (—2) = 1)

8
Aq
55%(3[) = qL (Z a,ﬁé; + @M€L> Yaqr, + (L — R).

a=1

Currents
DOLY A DOLY
Lt = QCD _ CYL’YM—CLC]L, 0,L! = QCD _ 0,
00,e- 2 Oel
OOLY OOLY
LM = 0 = a9l = — =0,
Oel

00,e"

+ analogous expressions for Rt and RF.
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Make use of

L
PLW“PRiPRWMPLZV”<P}22iP§>ZWM(PRiPL):{zu%

= linear combinations

Ao
Vi = Ri+Li= a5, (3.32)
Aa
Ay = By = Ly = 07" 175¢ (3.33)

Transform under parity as vector and axial-vector current densities, re-
spectively,

PV, T) > Viu(t, —7), (3.34)
P ANt ) s —Agu(t, — ), (3.35)

because

Pt %) = v0q(t, =), 707" =% 07" 5% = =W
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Conserved singlet vector current (from transformation of all left-handed
and right-handed quark fields by the same phase)

Vi =R LF = gy'q, 9,V" =0. (3.36)

Singlet axial-vector current (from transformation of all left-handed quark
fields with one phase and all right-handed with the opposite phase)

AY = RF — LV = gvyFysq. (3.37)

This symmetry is not preserved by quantization and there will be extra
terms, referred to as anomalies, resulting in

2
0,A" = 39 €woo TG G €gro3 = 1
0 392 pvpocIa Ja 0123 .

Factor 3 originates from the number of flavors.
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3.3.4 The Chiral Algebra

Define “charge operators” as space integrals of charge densities (a =
1,---,8)

Qur(t) = / dgxqz(t,f)%qL(t,f), (3.38)
Qur(t) = / d%q;(t,@%%(t,f), (3.39)
Qult) = / (o}t Daslt, D) + ah(t, Danlt, D] . (3.40)

q'q

QCD Hamilton operator in the chiral limit, HQ, exhibits global SU(3), x
QCD L
SU(3) 5 x U(1),, symmetry:

[Qab H(%CD] — [QaR, H(%CD] — [Qv, H(%CD] = 0. (3-41)
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Q: What are the commutation relations among the charges?

A: Lie algebra of SU(3); x SU(3), x U(1):
[QaLaQbL: — ifachcLy
Qar:s Qvr] = 1 fucQcr,
[QCL[nQbR: — 07
Qar, Qv] = |Qur, Qv] = 0.

Q): How does one verify these commutation relations?

1. Anti-commutation relations of Fermi fields

{Qf,A7a< ) Q}/ Al o /(
{qr.4.0(t, ), Qf’ Aot
{0 4ot B), a5 4 (L

>} — 53( g)dff’éAA’éao/a

vy =0,
vy =0

2. Exercise: |ab, ed] = a{b, c}d — ac{b,d} + {a,c}db — c{a, d}b.
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3. Let F;, C;, and I'; be 3 x 3 flavor matrices, 3 x 3 color matrices, 4 x 4
Dirac matrices, respectively:

[qT(ta f>F101F1Q(t7 f)a qT(ta g>F202FQQ<t7 g)]

— [gl,A,a@? fzglaa’clAA’Flozocj’ QCL/,A/,O/<t7 f)a qg,B”@(ta g)Fbe’CQBB’FZBB’Qb’,B’,B’(ta g)]
() M

— Mlu’MQJJ (qZ ) )Q? (t y>53<$ _ g)dlj - ;(ta g)Qz’@vf)éS(f_ @7)62]/>

4. Insert appropriate projection operators

5. Integrate with respect to  and ¥
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Example (recall Pz = Pp and P = P)

Qar, Qur] = /dgiﬁdgy[ (t, )Py ZPLQ( 7),q'(t, y)PT);PLQ@ )]

Ao N
= / Prd®ys*(F — §)q'(t, ¥) PLPLPI P, 75(1(75 J)

Py
L N
- / Crd’yd® (7 — §)q' (¢, y)PLngCJ(t 7)
A

= ifne / gl (1,72 Pra(t, ©) = i fun Q.

3.3.5 Chiral Symmetry Breaking Due to Quark Masses

So far: Idealized world.

Finite u-, d-, and s-quark masses = explicit divergences of the symmetry
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currents.
Quark-mass matrix

M = diag(my, mg, ms).
Quark-mass term ~ 14,4 = mixes left- and right-handed fields
Ly =—qMq = —(qrMqr + Gt Mgqg). (3.47)
Transformation of left-handed ﬁelds

(1 — 1 Z €, — — 1€ )
Variation 6L

—igrM (Ze “te >QL+ZQL (Ze Lt >MQR]

g
. A _ a _ _
— [ E el (CILEMQR — CH%M;QL) + € (qLMar — QRMQL)] :

a=1

SLam = —
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Divergences

0L A _ Aa
o, L, = el —i (CIL?MQR — QRM?C]L> ,
00L L -
o0, L" = aELj\/l = —i (qgeMqr — GrMaqr) (3.48)

+ analogous expressions for d,R! and 0,R* (R <> L). More common
(linear combinations)

g
a,uvllu — Zq_[Mvg]Q7
- Aa
0,4 = ia{M, F s,

9, V" = 0,

- 3 ’ v po
auAM = 22q/\/l75q+32—€r26uyp095 gg ,  €0123 — 1. (349)
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Summary

e Massless quarks: 16 conserved currents L and R¥ (V. and AY) + 1
conserved singlet vector current V#. Singlet axial-vector current A*
has an anomaly.

e For any value of quark masses: flavor currents uy*u, dv*d, and svy*s
are always conserved.
e Fqual quark masses m, = myg = m:

8 conserved vector currents V* ([Ag, 1] = 0).
SU(3) flavor symmetry.

8 axial-vector currents A# are not conserved.
Microscopic origin of the PCAC relation (partially conserved axial-
vector current).

® 1M, = Myg: 150Spin symmetry.
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3.4 Green Functions and Chiral Ward Identities
3.4.1 Chiral Green Functions

Motivation

Recall standard chain of arguments:

Continuous symmetries = conserved currents = time-independent charge
operators:

Q. H] = 0.
=

e classify spectrum in terms of multiplets;
e transformation properties of operators:
[Qa; Ab] — CabcAc-

Apply Wigner-Eckart theorem = relation among matrix elements
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of the same type (Clebsch-Gordan coefficients + reduced matrix el-
ements); example: pion-nucleon scattering.

But: There is more to symmetries!

1. QFT: Objects of interest are Green functions = matrix elements of
time-ordered products.

2. Pictorially: Green functions = vertices related to physical scattering
amplitudes through the Lehmann-Symanzik-Zimmermann (LSZ) re-
duction formalism.

3. If we know all Green functions, we have completely solved the QFT.
4. Symmetries provide strong constraints for

(a) transformation behavior of scattering amplitudes;

(b) Green functions, in particular, relations among different Green
functions (so-called Ward identities).
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Famous example: Ward identity of QED associated with U(1) gauge
invariance,

-1 -1
(), = p U0, p) =S¢ (0) = Sk (p). (3.50)
Relates electromagnetic vertex of an electron (3-point Green function)

to inverse propagator (2-point Green function).
[llustration in lowest-order perturbation theory:
My, p) = ",
1
S =
1 1
=)V =p' =9 =@ —m) = —m)=5 ()= 5Sr (p).
Symmetry currents relevant to SU(3); x SU(3), x U(1),:
Ao

Vit = R+ Lo =054 (3.51)
VI = gvtq, (3.52)
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A

A= Rl - L= vt (353

+ scalar and pseudoscalar densities (see divergences of currents)
Sa(x) = q(x)Aagq(x), (3.54)
Pa(z) = 1q(x)v50aq(), (3.59)

where a =0, ---, 8.

Some examples of Green functions
“Vacuum” sector
(OT'[AfL () Py(y)]|0)  pion decay
(O|T[P,(x)J"(y)P.(2)]|0) pion electromagnetic form factor
(0|T[P,(w)Py(x)P.(y)Py(2)]|0) pion-pion scattering

One-nucleon sector

(N|J#(x)|N) nucleon electromagnetic form factors
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(N|AY(x)|N) axial form factor 4+ induced pseudoscalar form factor
(N|T[J"(x)J"(y)]|N) Compton scattering
(N|T[J*(x)P,(y)]|N) pion electroproduction

A chiral Ward identity relates the divergence of a Green function
containing at least one factor of V* or A* [see Egs. (3.51) and (3.53)] to
some linear combination of other Green functions.

Q: Why chiral?
A: VI and AF contain LF and RV

Simple example (The time ordering of n points 1, - - -, x, gives rise to
n! distinct orderings, each involving products of n — 1 theta functions):

G pu,y) = (O|T[AX()Py(y)][0)
— (g — o) (O] AL () By()|0) + O(yo — 20){0] Py(y) AL()]0).
(3.56)
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Evaluate divergence
aﬁfoxP (T, Y)
= 0![0(x0 — yo) (0| A% () Py(y)|0) + O(yo — z0) (0| Py(y) AL ()[0)],
make use of

0,0(zo — yo) = d(z0 — Yo)gop = —3;,0(yo — ),

- = 0(x0 — y0){0[ Ag(2) Py(y)|0) — d(zo — 40) (0| Py(y) Aq()[0)
+0(x0 = 40) {019, A7 (x) Fy(y)[0) + O(yo — 20){0[ Po(y) 5, A7 ()]0)
= (w0 — yo) (O[Aq(), Po(y)]|0) + (0IT[0, A5 () Py(y)]]0).
Main features of (chiral) Ward identities:

1. Differentiation of the theta functions = Equal-time commutators
between a charge density and the remaining quadratic forms = Re-
flection of underlying symmetry. Generation of §*(z — y), reduction
by one power of quark bilinears [see Eq. (3.46)].
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2. Divergence of the current operator in question.

e Perfect symmetry = such terms vanish
Example: Electromagnetic case with its U(1) symmetry.

e Approximate symmetry = additional term involving the symme-
try breaking appears.

Soft breaking: treat divergence as a perturbation.
Generalization to (n + 1)-point Green function is symbolically of the
form

0, 01T{J"(z)Ar(1) - - ( n)}0) =

OIT{[0,J" ()] Ar (2 1) An(24)}0)

+0(2” = 27)(O|T{[Jo(2), Ar(w1)] As(w2) - - - An(24)}0)

+6(2” — 933)<0|T{A1(371>[Jo< ), Ao(x2)] - - - An() }0)

o+ 0(2” — @) (O[T { A (1) - - [Jo(w), An(2a)]}0), (3.57)
where J# stands generically for any of the Noether currents.
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3.4.2 QCD in the Presence of External Fields and the Generating Functional

So far: Explicitly work out the chiral Ward identity you are interested
.

Q: Is it possible to somehow obtain all chiral Ward identities from a
single expression?
A: Yes (without proof)

1. Introduce into the Lagrangian of QQCD the couplings of the

(a) nine vector currents,
(b) eight axial-vector currents,
(¢) nine scalar quark densities,

(d) nine pseudoscalar quark densities

to external c-number fields v/(x), vé), at(x), s(x), and p(x):

L= Lcp + Lexts

172



1 .
Lext = qu(v” + v +750")q = 4(s — 1v5p)g.

Parameterization
8

8 8 8
A A
vt = Z ?“fug, al' = Z Eaaﬁf, s = Z NaSas P = Z AaDa-
a=1 a=1 a=0 a=0
2. Combine all Green functions in a generating functional

exp(iZ]v,a, s, p|) = (0|T exp [i/d4x£ext(x)] 10)o.
Note: Quark field operators ¢ in Ley and ground state |0) refer to
the chiral limit, indicated by subscript 0.

3. Obtain Green function through a functional derivative with respect
to the external fields.
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Some remarks on functional derivatives (as we need them):

Functional derivatives are natural generalizations of classical partial
derivatives to infinite dimensions.

Let F denote a set of functions, e.g., F = C*(R", R) (infinitely
differentiable functions).

Functional F: Mapping from F to R or C, i.e., function + real
or complex number.

Typical example: Integral of the type

FIf] = / zg(f (),

with g integrable C*°(R, R) function.
e Often used convention: Arguments of functionals are written in
square brackets.
e Let f be function of two sets of variables, collectively denoted by
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xr and y. F|f(y)] denotes functional which depends on values of
f for all x at fixed y.

Functional derivative

Consider Dirac’s delta function

5 R" — IR,
Pl T 0p(X) =0T — 7).

Introduce functional derivative as

SFIf) _ . Flf +ebf = FIf
o) T e

Analogy to partial derivative of ordinary function

o) _ . fE+et) = f(F)

0x; e—0 €

(3.58)
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Basic properties:

R N N . OF|f] N OF>|f]
Linearity: (5f((sf) ( 1F1[f]+ 2F§2[f][)f] 15f(f) +525§§3‘3’)’
F1 F2
product rule: 5fgﬂ>(F1[f]F2[f]) — (5f(f)5];[f] + Fl[f]éf(f)’

chain rule:

sy W =g (F@))gmmh=9(fl
[mportant rule (functional derivative of a funtion):

0f(y)
0f(Z)

because: Define f(3) as functional

= 0"y —1T),

1(7) = Fif] = / w8 — 7)1 (7)
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and consider functional derivative

0Fylf] Fylf + €dz] — Fyl f]

SFE) O g
i G ENSE) + ()~ [ G~ E)
e—0 €
— /dngj’(sn(y—»_ f/>5n(f/ . f) _ 5n<g» L f)
Analogously:
09U WT)) i =y 1ipm
sfr) 0 W T )
and
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4. Pedagogical illustration

L = £0(¢> +£ext7
£ext — ]<$)¢<$>

Generating functional for Green functions of the type

Gz, wn) = (O[T|o(z1) - - ¢(2,)]|0)

exp(iZ]j]) = (0|T exp [z / d%cext(x)] 0)

4 / a2 () (0 (x)|0)
+Z%/d4:c1 dwgj(an) - @) 0T [d(x1) - - d(a)]]0)
— +%/d4:1:1d 227 (21)7(22)(0|T[P(x1)P(22)]|0) +
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Remark: In many textbooks you will find the nomenclature Z|j]
for our exp(:Z[j]) and W{j] for our Z|j]. We follow Gasser and
Leutwyler.

Example

G(x1,29) = (0T[@(1)p(x2)][0)
,0% exp(iZ7])

5] (21)07(2) 5=0

Powers and sort of functional derivatives must match:

1, i/d4$j(ac)<0|gb($)\0>: too few terms

Z’/{:

o7 [ o) @) Ol - - @laa) 0), k = 3

too many terms, because j is set equal to 0 at the end.
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Analogy: Consider the series (ag, ai, as, - - ). Define generating func-
tion f as
Ly, 1
f(x) :a0+a1x+§a2x +§a3:1: + .-,

The element a,, is obtained as

d" f

a, = dx”(x =0)
Exercise: Make use of

0j() 4

Sy @Y
to obtain

e [ @) 0TI = OTlow o))

07(w1)07(z2)2

5. Back to QCD
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Recall
£ - £%CD ‘l‘ Cexta

xp(iZla,5.5)) = OTexp i [ doos(o)] 0

where
8

A
Lot = Y vha 0+, cmq + Z cm%—
a=1
Q_UD:YUQ

8 8
—~ Z SadMad + Z Pai @5 A\ad;

!

i.e. we have 35 real functlons véj? Ul

7

) at', s,, and p,, collectively

denoted by [v, a, s, p|.
Remark: The subscript 0 reminds us that both quark fields and
ground state are considered in the chiral limit.
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For example

A 0

Vi) = ey Gale) = 5o | ALy

e Scalar quark condensate in the chiral limit, (0|zwu|0),

(Ola(z)u(z)|0)o =
i 2 9 ) J ) .
2 [\/;(580<£E> i ds3(x) " \/5588(55)] 2L 5,2

Note: Express uu as gM g with appropriate matrix M, namely

1
M=10
0

o O O
o O O
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Make use of

M=) M, M,= %Tr(AaM),

1 /2 1 11
i =~/ =GNoq + ~GA3q + ———=GAsg.

e We can even obtain Green functions of the “real world,” where
quark fields and ground state are those with finite quark masses.

e T'wo-point function of two axial-vector currents of the “real world,”
i.e., for s = diag(m,, mg, ms), and the “true vacuum” |0),

(0T A; (x) Ay (0)]|0) =
(5
0aq u(x)day,(0)

exp(1Z[v, a, s, pl)
v=a=p=0,s:diag(mu,md,ms)
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Note: Left-hand side involves quark fields and ground state of “real
world,” right-hand side is generating functional defined in terms
quark fields and ground state of the chiral limit.

. Q: But where is QCD?

A: In |0) and q (solutions to EOM).

(The actual value of the generating functional for a given configura-
tion of external fields v, a, s, and p reflects the dynamics generated

by the QCD Lagrangian.)
. Q: But where is the (infinite) set of all chiral Ward identities?

A: Ward identities obeyed by the Green functions are equivalent to an
invariance of the generating functional under a local transformation
of the external fields

. The use of local transformations allows one to also consider diver-
gences of Green functions.
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9. Q: What do we require of the external fields?

A: We want £ to be a Hermitian Lorentz scalar, to be even under
P, C.and T, and to be invariant under local chiral transformations.

What does that imply for the external fields?
e Parity
Transformation behavior of quark fields:

—
.

. P

Properties of the Dirac matrices I

1oy | s

Yol Yo | 1| Yy | Opw | =75 | —VuV5

Requirement of parity conservation:

c.) s e, —a).
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P

P P
vt = vy, vé)l—wv()

’ P P
wy o Al e —ay, s s, p .

(Change of arguments from (¢, Z) to (¢, —&) implied.)

Example:

o S ~ P _ . - . S
q(t, Z)yV' v, (t, D)q(t, T) = q(t, —8)Y V"0, (t, =)y q(t, — )
Tilde denotes the transformed external field.
Make use of table, i.e., Y0/ = v,

N~ S o S S S
" — q_(t7 —37>’Yu’0u(ta _aj>Q(t7 _aj) — Q<t7 _x>7/ivlu<t7 —$>Q(t, —Qj)

We thus obtain

uult, ) 5 v (¢, — ).
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e Charge conjugation

Transformation behavior of the quark fields

C _ C _q
Go.f = Capsfs oy = —q8.5C54

a and 3: Dirac spinor indices,

f: flavor index
C=iy"y =

usual charge conjugation matrix.

Properties of the Dirac matrices I:

LA o™ s 9%
—CTIC |1 =" | =™ |95 | "5




Using

qI'Fq Go,flapFrpqs, g

Q1

—y,fCoiTasFr pCasls p
Fermi statistics _ _
= G5 Frpr CraLasCls a1

Fh (Cc-TO),
= gF! QC_ll“C)]; q
CTpT 1T
= —gCT!CFyq.

Invariance of L.y under charge conjugation requires the transforma-
tion properties

T

T () G (9T T

poo f
transposition refers to the flavor space.

C C C T T
UM—>—U , CLM—>CL S, p—=>S8 ,p,
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e Time reversal: Nothing new (because of CPT theorem).

e Local chiral SU(3), x SU(3), x U(1)y transformations
First step: Rewrite in terms of the left- and right-handed quark fields.

Exercise

We first define
ry=v,+ta, l,=v,—a,.

1. Make use of the projection operators P; and Pr and verify

1

Y (v + g’”ff) + Y5a,)q =

1 1
qrY" ("“u + g%@) qr + qry" (lu + gvff)) qr-
2. Also verify

q(s — ivsp)q = qr(s — ip)qr + qr(s +ip)qr.
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= (QCD Lagrangian with coupling to external fields

1 1
L = Locp + q” (l + SU*(‘)> qr + qrY" (TMJF 5 fb)) 4R
—qr(s+ip)qr — qr(s — ip)qgr. (3.59)

Eq. (3.59) remains invariant under local transformations
Oz
qr > xXp (—Z ( )> Vr(z)qr,

3
) Vi(z)qr, (3.60)

( O(x)
qr, — exp | —1 3
Vr(x) and Vi(x): independent space-time-dependent SU(3) matri-
ces, provided the external fields are subject to the transformations
ry = Var, Vi —id,VaVi,
[, — sz V-9,V Vi,

U/(f) —> UM — 0,0,
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s+ip — Va(s+ip)Vy,
s —ip — V(s — z'p)V]; (3.61)

(Derivative terms in serve the same purpose as in the construction
of gauge theories, i.e., they cancel analogous terms originating from
the kinetic part of the quark Lagrangian. Note: External currents
are coupled with “opposite” sign in comparison with our convention
for gauge theories.)

e Practical implications of the local invariance

Allows one to also discuss a coupling to external gauge fields in the
transition to the EFT.

1. Coupling of the electromagnetic field to point-like fundamental
particles results from gauging a U(1) symmetry. Here, the corre-
sponding U(1) group is to be understood as a subgroup of a local

SU(3), x SU(3),.
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2. Interaction of the light quarks with the charged and neutral gauge
bosons of the weak interactions.

Q: What do we have to insert for the external fields to describe the
electromagnetic interaction of quarks?

A:

quark charge matrix

ry=1,=—eQA, Q=

O O wliNe
I

O wli— O

w— o O

Verification

Loxt = —eA GOV qr + GrQY'qr) = —eA,qQYq

2 I - |
= —eA, (guvﬂu — §d7“d — §s*y“s)

= —eA,J".
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“SU(2) version” of ChPT:

-
ry=1,= —653./4#, o) = =

because /
T3
Q=-1 + —.
6 2%X2 2
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Chapter 4

Spontaneous Symmetry Breaking and the
(Goldstone Theorem

4.1 Spontaneous Breakdown of a Global, Continuous, Non-Abelian
Symmetry

Spontaneous symmetry breaking occurs if the ground state has a lower
symmetry than the Hamiltonian.
Mustration of relevant features in terms of O(3) “sigma model:”

L(D,8,D) = L(Dy, Dy, D3, D, D1, 0, D, 9, D)
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1 m? A
= —0,0,0"'D; — —;0; — =(D;D;)*. 4.1
0 L0, - 5@ (4]
®;: Real (hermitian) fields.
Hamilton density

. 1, 1o = m A )
H =10 - L= S A5 VP Vi 4 0,0, + Z(CDZ-CD@-) . (4.2)
ey B N
) V(D)
> ()

A > 0: ‘H bounded from below.

Fields Cf)mm minimizing H must be constant and uniform and must also
minimize potential since V((x)) > V(i)

Distinguish two different cases:

o m? > 0: Wigner-Weyl realization of the symmetry.
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V(z) = x*/2 + 2* /4.

V has its minimum for ® = 0. In the quantized theory we associate
a unique ground state |0) with this minimum.

e m? < 0: Nambu-Goldstone realization.




Several distinct minima.

In the following: m? < 0.

L invariant under a global “isospin” rotation

g €S0(3): ®; = ;= Dyj(g)®; = (7" h);;d;,  (4.3)

[CFZ') C[’]] — ZGZ]kaa

where
00 0 00 ¢ 0 —2 0
Ti=100 —¢ |, Ty= 0001, I5=1 1 00
02z 0 —72 0 0 0 00
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Two-dimensional rotationally invariant potential:

2240,2)2
V(w,y) = —(a® + ) +

Exercise: Determine the minimum of the potential

’ A
V(D1 By, B3) = %Cbﬂ)i + (@)
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We find

- —1m2 -
Boial = | = = B] = /@2 + 03+ B2 (4.4)

Note that cf>min satisfies EOM:

Oy, 11 P + AL Py = Piin (m? + NP2 ) = 0.

min

®in can point in any direction in isospin space.
= non-countably infinite number of degenerate vacua.
Spontaneous symmetry breaking (hidden symmetry)

Any infinitesimal external perturbation which is not invariant under
SO(3) will select a particular direction.
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Appropriate orientation of the internal coordinate frame =
0
(I)min — Uég — 0 . (45)
v

1. 5min not invariant under full group G' = SO(3).
Rotations about the 1 and 2 axis change ®,,;,, 1. . 17 and 75 do not
annihilate ® .

00 0 0 0
TP = 00 =i JolO0] =0 —i],
0i 0 1 0
00 i 0 i
To®in = | 000 o0 ]=0v|0]. (4.6)
—i 00 1 0

do not leave ®,;, invariant does not

=

Set of transformations whic
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form a group, because it does not contain the identity.

—

2. Oy invariant under subgroup H of G: rotations about the 3 axis
he H: & =DMhd=e DB, DB = Buins

1. ©

0 —2 0 0
T3q)min - 1 00 v 0 = 0.
0O 00 1
Exercise: Expand ®3(x) = v+n(z). = New expression for the potential
- 1 A A
V = —(=2m*)0° + don(®] + 03 + ) + =(O] + 5+ 1) = o
2 < 4 P 4
-~ =~
Interaction terms constant
(4.7)

Read off masses:

mgbl = m?pQ =0, m?7 = —2m*.
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Model-independent feature of the above example:

1. For each of the two generators 77 and 75 which do not annihilate the
eround state one obtains a massless Goldstone boson.

2. Number of Goldstone bosons is determined by the structure of the
symmetry groups:

e G symmetry group of the Lagrangian with ng generators.

e [ subgroup with ny generators which leaves the ground state
after spontanecous symmetry breaking invariant.

e +# of Goldstone bosons: ng — ny.

3. Criterion for spontaneous symmetry breaking: Non-vanishing vac-
uum expectation value of some Hermitian operator, here (0|®3(0)|0) =
v.
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4.2 Goldstone Theorem

Different approach to Goldstone bosons.

Presupposition:
1. Some Hamilton operator with a global symmetry group G' = SO(3).

2. O(z) = (D1(x), Po(x), P3(x)): Triplet of local hermitian operators
transforming as a vector under G:

ge G CE(:C) — 5’(3:) )y & aka5<x)€—iZ?:1 Q)
= e Xm0 P () £ B(a). (4.8)

Q;: Generators of the SO(3) transformations on the Hilbert space

satistying |Q;, Q] = i€ Q.
T; = (t%): Matrices of the three-dimensional representation satisfy-

ing t;- — —’i€¢j1€.
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3. One component of the multiplet acquires a non-vanishing vacuum
expectation value:

(0]P1(2)[0) = (0]®2(2)]0) = 0,  (0]P3(2)[0) =v #0. (4.9
Claim:

1. The two generators ()1 and ()» do not annihilate the ground state.

2. To each such generator corresponds a massless Goldstone boson.
Proof:

1. Expand Eq. (4.8) to first order in the ay:
3 3
P =0+iY lQr®=(1-i) uT)d=>+dx .
k=1 k=1

Compare terms linear in the ay:

ik Qry Oi| = €kmar o
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a can be chosen independently =

i|Qr, D] = —€1im P,

i. e. field operators ®; transform as a (iso-) vector.

Analogy
Qi — i,
CDZ' — Xy,
i, ] = —€pmTm.
€kimCkin — 25mn =
)

_§€kln[Qk7 (I)l] — 5mnq)m — (I)n

In particular, ,
1
O3y = _§<[Q17 CDQ] - [Q% q)lba

with cyclic permutations for the other two cases.
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Consider Eq. (4.8) for a = (0, 7/2,0),

cos(m/2) 0 sin(w/2) Py P
6_2%712(5 — 0 1 0 CDQ — (I)Q
—sin(m/2) 0 cos(m/2) D — Py
by
_ pi5@ D, o502
b3

First row =
(I)g = 6%@2@16—%’%@2.

Take vacuum expectation value
v = (0|e'292d,e3%2|0).

Since v # 0, clearly (Q2|0) # 0, because otherwise the exponential
operator could be replaced by unity and the right-hand side would
vanish ((0|®]0) = 0).
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Analogously 1]0) # 0.

Remarks:

(a) “States” Qy(2)|0) cannot be normalized. Rigorous derivation:

/ B (0][0(¢, 7), B.(0)]|0),

determine commutator before evaluating the integral.

(b) Some derivations of Goldstone’s theorem right away start by as-
suming @1(2)|0) # 0. However, in QCD it is advantageous to es-
tablish the connection between the existence of Goldstone bosons
and a non-vanishing vacuum expectation value.

2. Existence of Goldstone bosons.

0 # v = (014(0)[0) = —{0] (@1, D(0)] — [, 21(0)))0) = —(A-B).
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Show A = —B. Perform rotation of fields and generators by 7 /2
about the 3 axis ( @ = (0,0, 7/2)):

and
—Q2
Q1
Q3
=

B = (0][Q2, ©1(0)]|0) =

—d dq
O, | = e'29s D, e_i%%,
b3 D3
(1
— ¢l2Ws Q) e 1503
@3

(O] (62%623(—@1) ¢ 129361508 <I>2(O)e_i%Q3
1

29, <0)6—i%Q36i%Q3(_Q1>e—z‘gQ3> 0)

—(0[[Q1, P2(0)]|0) = —A.

We made use of @3]0) = 0 (vacuum invariant under rotations about
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the 3 axis).
= v can also be written as

0#v = (0]93(0)[0) = —i(0][Q1, P2(0)]|0)
_ / B2 (0|[JO(¢, T), Do(0)][0). (411)

Insert complete set of states 1 = Y |n)(n| (abbreviation includes
integral over the total momentum p and all other quantum numbers
necessary to fully specify the states) into commutator

‘Z’%f [ 2 (0122} (0]02(0)10) ~ (O12(0))nl J(E,7)1)).

translational invariance, A(z) = e*A(0)e~ ",

zf [ (OO ) nl@2(0)0) -
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— ;Z‘ (2m)°8%(B,) ("5 (0] J2(0)]n) (n | @(0)]0)

—e"{0]P2(0)|n) (] J1(0)]0)) -

Integration with respect to the momentum of the inserted interme-
diate states =

/
_ —i(27r)3 Z (e—z’Ent . ottt ) 7

prime indicates that only states with P = 0 need to be considered.
Hermiticity of the symmetry current operators J# and the ®; =

cn = (01J7(0)]12) (n|®5(0)[0) = (n[.J}(0)]0)*(0[P2(0)|n)",
such that

/
v = —i(27) Z (cpe™ "t — ety (4.12)
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Conclusions:

(a) v # 0 = there must exist states |n) for which both <O|Jf(2)(0)|n>

and (n|®y(2)(0)|0) do not vanish. Vacuum itself cannot contribute
because (0]®;(2)(0)[0) = 0.

(b) States with E,, > 0 contribute (¢, is the phase of ¢,)

- (cne 1Ept C;;GZEnt) _ _.‘Cn‘ <€wne 1Ent e zgonezEnt)
(}

0
= 2|c,|sin(p, — Epnt).

v is time-independent = the sum over states with (E, > 0,0)
must vanish.

(¢) = contribution from states with zero energy as well as zero mo-

mentum thus zero mass. These zero-mass states are the Goldstone
bosons.
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4.3 Particle Spectrum in the Presence of Spontaneous Symmetry
Breaking

e Indication for spontaneous symmetry breaking: Existence of (al-
most) massless spin-0 particles. Properties of these Goldstone bosons
are tightly connected to the properties of the generators which do not
annihilate the vacuum. To each @, with Q,]|0) # 0 corresponds a
Goldstone boson.

e The multiplet structure of a theory (in the presence of spontaneous
symmetry breaking) is determined by irreducible representation of
the group G leaving the ground state invariant (Coleman theorem).
The symmetry group of the ground state is always a symmetry group
of the Hamilton operator (but not viceversa).
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4.4 Explicit Symmetry Breaking: A First Look

Modify potential by adding a®s,
2 A
V(q)l, (1)2, @3) = m?q)zq)l + Z<CDZCI)Z>2 + a<I>3, <413>

m? < 0, A >0, a > 0 and real fields ;.

New potential has lower symmetry: O(2) symmetry (rotations about
the 3 axis).

Conditions for the new minimum (from VoV = 0) read
O =Dy =0, A5+ m?*P3+a=0.
Eixercise: Solve using a perturbative ansatz
(@5) = D) + adlV + O(a?).
Result:



Cbéo): Result without explicit breaking.
Expand potential with &3 = ($3) + x =

m3 =m3 = a A m? = —2m* + 3a A
Oy ®9 —m2’ X —m2 |
Remarks:
e The Goldstone bosons have acquired a mass.

e Squared masses ~ a.

e Quantum corrections lead to observables which are nonanalytic in
the symmetry breaking parameter a, e.g. aln(a) (so-called chiral
logarithms).

e Analogue of a in QCD: Quark masses.
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4.5 Spontaneous Symmetry Breaking in QCD
4.5.1 Indications from the Hadron Spectrum
Example: Hg, is isospin invariant, i.e.,

[Hstra 7—;] — 07 [Ea Tj]] — ieijka-

Hadrons can be classified as irreducible multiplets of isospin SU(2):

T=0: d

res (0) () ()

927 n |/’ K )’ K~
-

T=1: !
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e (): Where does this symmetry come from?
e A: Accidental global symmetry of QCD for m, = my.

Consider linear combinations (a = 1,---,8)

QaV — QaR + QaL 'i QaVa
QaA — QaR — QaL '£> _QCLA°

Fxercise: Commutation relations

[QaVy QbV] — ifabc@cVa [QaVa QbA] — ifachcA7 [QaA: QbA] — ifachcV-
(4.14)
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Hamilton operator of QCD in chiral limit has SU(3);, x SU(3) g symme-
try, 1.e.,

[H(OQCDa QaL] — [H(%CDv QOLR] =0,
or equivalently

[H(%CD: QaV] — [H(%CDa QGA] = 0.

Naive expectation: Parity doubling.
Assume |a, +) to be eigenstate of H%CD and parity

H(%CD‘@7+> — E&‘a7+>a
Pla, +) = +|a, +),

(e.g. member of the ground state baryon octet (in the chiral limit)).
Define |¢ua) = Qualo, +). [Hocp, Qual =0 =

HY el ban) = HoopQual, +) = QuaHSeplat, +) = EaQuale, +) = Euldua),
P|¢aoz> — PQ@AP_1P|047 —|_> — _QaA(‘HO‘a —|_>) - _‘¢aa>-
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Naively expand |¢.,) in terms of the members of the multiplet with
negative parity,

|¢a0z> — QaA|a7 +> — |67 _><57 _’QCLA‘OZ7 —|_> — taﬁoz|67 _>

Problem: Low-energy spectrum of baryons does not contain a degenerate
baryon octet of negative parity.

e (): What’s wrong?
e A: We have tacitly assumed that the ground state of QCD is anni-
hilated by Q..

bL .. operator creating quanta with quantum numbers of state |a, +).

bT

,_: creates degenerate quanta of opposite parity.

Expand
[Qas bls] = bl _tapa.
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Usual chain of arguments

QaA|&7+> — QaAblL)z+|O>

= ([Qua,bls] + bl Qua)10)
— 0
= tagabl;_|0). (4.15)

However: Not true if ground state is not annihilated by Q..

e Coleman theorem [S. Coleman, J. Math. Phys. 7, 787 (1966)):
The symmetry of the ground state determines the symmetry of the

spectrum (reverse argument: infer symmetry of the ground state
from the symmetry of the spectrum).

Qav]0) = Qv|0) = 0. (4.16)
= SU(3),, multiplets + baryon number classification.
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1 ° °
K0(498) K+ (494)
7~ (140) 70(135) 7 (140)
0 ° @ °
n(549)
-1 Y N
K~ (494) K0(498)
1 11/2 0 1/2 T

I3

Figure 4.1: Pseudoscalar meson octet in an (I3, S) diagram. Baryon number B = 0. Masses in MeV.

e Fxamples: Figs. 4.1 and 4.2.

e Goldstone theorem [J. Goldstone, Nuovo Cim. 19, 154 (1961); J. Gold-
stone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962)]:
To each generator that does not annihilate the ground state exists a
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A

-2 [ J [ J

=-(1321) =0(1315)
> (1197) 0(1193) > +(1189)
-1 ° O] °
A(1116)

0 [ J [ J

n(940) p(938)
1 11/2 0 1/2 1

I3

Figure 4.2: Baryon octet (J = 1) in an (I3, S) diagram. Masses in MeV. Baryon number B = 1.

massless Goldstone boson.

Qaal0) # 0. (4.17)
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Symmetry properties of Goldstone boson fields are tightly connected to
the generator in question:

Parity:
¢Cl(t7 f) 'i _¢a(t7 _f)7 (418)

(pseudoscalars).
Transform under subgroup H = SU(3),, leaving vacuum invariant as an
octet [see Eq. (4.14)]:

Qav, &5(x)] = i fapede(T). (4.19)

e Here
— Hp invariant under G' = SU(3) x SU(3),
— |0) invariant under
H={V,V)}=SU@)y (favor SU(3))
— idealized: 8 massless Goldstone bosons 7, K, n (see Fig. 4.1).
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4.5.2 The Scalar Singlet Quark Condensate

Reference:

e G. Colangelo, J. Gasser, and H. Leutwyler, Phys. Rev. Lett. 86, 5008
(2001)

Claim: A non-vanishing scalar quark condensate in the chiral limit is
a sufficient (but not a necessary) condition for a spontaneous symmetry
breaking in QCD.

Outline of proof:

Recall definition

Sa(y) — Q(y))‘CLQ(y>7 a = 07 e 787
P.(y) = iq(y)sraqly), a=0,---,8.

(

(
We need ETCR of two quark operators of the form A;(z) = ¢f(z) Aig(z)
(see Eq. (3.46)):

(ALt T), Ao(t, 7)) = 6°(F — 7)q"(2)[Ar, AdJg (). (4.22)
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Recall definition

)\CL —
Qurlt) = [ gt 7)Falt.7)
Make use of
A A A A
M) = =900 — Y0ho—= = Yol=, Aol =0
[)%770 0] 2%() 70 o2 70[2, o] 3
[?aaf}/o)\b] — ’VOifabc)\m

+ integration of Eq. (4.22) over Z:

Quv(t),5(y)] =0, a=1,---.8

[QaV _ZZfabc a,bzl,---
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+ analogous results for pseudoscalar quark densities (Exercise).
Make use of

8
Z fabcfabd — 350(1

a,b=1
=
;8
Saly) = 3 D Farel@u(t), Se(y)): (4.25)
b,c=1
Compare with
i i
L3 = —5([51,$2] — |l2, 1)) = —563@[52‘,%]-

Equation (4.25) is the analogue of Eq. (4.10) in discussion of Goldstone

theorem.
Without proof [see C. Vafa and E. Witten, Nucl. Phys. B234, 173

(1984)]:
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In the chiral limit the ground state is necessarily invariant under SU(3),,,
1.e., QaV‘O> =0. =

Eq(4.25)
<O|Sa<y>‘0> — <O’Sa(0>’0> = <Sa> — 0, a=1,---,8 (4'26>
Intermediate result: Octet components of the scalar quark conden-
sate must vanish in the chiral limit.

Equation (4.26) for a = 3:

1
)\32 0 — = SgZ’L_L—CZd = <ﬂu>—<dd>:(),
0

O = O
o O O

and for a = &

Ag =

LW | —
o O =
o = O
O O© O
T

£l

g

~—

_|_

T

QL

S|

~~—"

|

DO

P

W

VA

~~—"

I

\.C)
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Le. (Gu) = (dd) = (3s).

Similar argument does not work for the singlet condensate: 0=0.

Assumption:

0 # (qq) = (uu + dd + 5s) = 3{uu) = 3(dd) = 3(5s).

Make use of (no summation implied)

and

A

(1) 5=, Y05 ha) = Ao

2

A==

A2 = X2
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_— O O O O O
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1[Qaa(t), Puly)] =

000
Ne=X=1010 |,
001
1(100
A§:§ 010
004
( uu + dd, a=1,2,3
uu + S8, a=4,5
) dd + 3s, a=20,7
| s(au + dd + 45s), a =38

(y dependence suppressed on rhs)
Evaluate Eq. (4.28) between SU(3),-invariant ground state:

(01¢|Qaa(t), Fa(w)]|0) =

Eq. (4.27) 2
3
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(translational invariance).

[nsert complete set of states into commutator. Note (gq) # 0. Chain of
arguments now as in Sec. 4.2 (Goldstone theorem): Both pseudoscalar
density P,(y) and axial charge operator (),4 must have non-vanishing
matrix element between vacuum and massless one-particle states |¢g)!
Lorentz covariance

(01 AL (0)[@s(p)) = ip" Fodas, (4.30)

Foy =~ 93 MeV: “decay” constant of Goldstone bosons in chiral limit.
Remarks:

e Assume QQ,4]0) # 0. Fy # 0 is a necessary and sufficient criterion
for spontaneous chiral symmetry breaking.

e (qq) is a sufficient (but not a necessary) condition for a spontaneous
symmetry breakdown in QQCD.
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Summary of patterns of spontaneous symmetry breaking

Sec. 3.3 O(N) linear sigma model QCD
Symmetry group G of L O(3) O(N) SU(3); x SU(3)p
Number of 3 N(N —-1)/2 16
generators ng
Symmetry group H of |0) O(2) O(N —1) SU(3)y
Number of 1 (N —1)(N —2)/2 8
generators ny
Number of 2 N -1 8
Goldstone bosons
ng —Ng
Multiplet of (D1(x), Da(x)) | (Pr(x), -+, Py_1(x)) 1q() V5 aq ()
Goldstone boson fields
Vacuum expectation v = (P3) v = (Dy) v = {(qq)

value
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Chapter 5

Chiral Perturbation Theory for Mesons

5.1 Transformation Properties of the Goldstone Bosons

References:
e 5. Weinberg, Phys. Rev. 166, 1568 (1968)
e S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239 (1969)

e C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev.
177, 2247 (1969)
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e A. P. Balachandran, GG. Marmo, B. S. Skagerstam, and A. Stern,
Classical Topology and Quantum States (World Scientific, Singa-
pore, 1991) Chap. 12.2

e H. Leutwyler, in Perspectives in the Standard Model, Proceed-
ings of the 1991 Advanced Theoretical Study Institute in Elemen-
tary Particle Physics, Boulder, Colorado, 2 - 28 June, 1991, edited by
R. K. Ellis, C. T. Hill, and J. D. Lykken (World Scientific, Singapore,
1992)

Purpose of this section: Transformation properties of field variables de-
scribing Goldstone bosons.
New concept: Nonlinear realization of a group.

5.1.1 General Considerations

Consider physical system with Hamilton operator H which is invariant
under a compact Lie group G.
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Assumption: Ground state |0) is invariant under subgroup H of G =
n = ng — ny Goldstone bosons.

Describe each Goldstone boson by independent field ¢, (smooth real
function on Minkowski space M?).

Collect fields in n-component vector ® and define vector space

M, = {®: M* = R"|¢, : M* — R smooth}. (5.1)
Aim: Find mapping ¢ : G x M; — M, with the following properties:

ple,d) =0V & € M, e identity of G, (5.2)
p(g1,0(g2, ) = (9192, P) ¥V g1, 92 € G, VP € My.  (5.3)

e Nomenclature: ¢ defines operation of G on Mj.
e Eq. (5.3): Group-homomorphism property.

e o will in general, not define a representation of G, because (g, A®) #
Ap(g, ).
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Construction:
e ® =0: “Origin” of My, corresponds to ground state configuration.
e he H= ph,0)=0, H is so-called little group of & = 0.

e Histablish connection between Goldstone boson fields and set of all
left cosets {gH |g € G} (so-called quotient G/ H).

e Flements of quotient are sets of group elements.
e Cosets either completely overlap or are completely disjoint.

e [llustration:

Symmetry group Cy of a square with directed sides:

N
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G =C, = {e,a,a®,a’}, arotation by 90°, a* =e,
H = {e,a*}.

eH = {e,a’}, aH = {a,a’}, a’H = {e,a*}, a’H = {a,a’}.
G/H ={gH|g € G} = {{e,a’},{a,a’} }.

e Under all elements of a given coset gH the origin is mapped onto
the same vector in R™:

p(gh,0) = p(g,(h,0)) = p(g,0) ¥V h € H.

e  is injective with respect to elements of G/H.

Consider g, ¢ € G with ¢’ & gH. Need to show ©(g,0) # ©(g',0).
Assume ¢(g,0) = p(g", 0):
0=(e,0) = (g'9,0) = (g™, ¢(9,0)) = (g™, ¢(g',0)) = ©(g~'d, 0).
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Implies ¢~'¢' € H or ¢ € gH in contradiction to assumption. =
©(g,0) = p(¢',0) cannot be true. = Mapping can be inverted on
the image of (g, 0).

e Conclusion: There exists isomorphic mapping between quotient
G/H and Goldstone boson fields (given by image of 0 under all

9).
Transformation behavior of Goldstone boson fields under arbitrary g €
(G in terms of above mapping:

e To each ® corresponds coset gH with appropriate g. Let f = gh €
gH denote representative of this coset such that

b = o (f,0) = p(3h, 0).
Apply mapping ¢(g) to P:
o(g,®) = w(g,0(gh,0)) = ©(ggh,0) = ¢(f,0) =", f € g(gH).
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o 5
Lot
gH % ggH
Procedure uniquely determines transformation behavior of Goldstone

bosons up to appropriate choice of variables parameterizing elements
of quotient G/H.

5.1.2 Application to QCD

Groups relevant to application in QCD:
G = SU(N) x SU(N) ={(L,R)|L € SU(N),R € SU(N)},
H = {(V,V)|V e SUN)} = SU(N).
Let § = (L, R) € G. Characterize left coset
GH = {(LV,RV)|V € SU(N)}
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through SU(N) matrix U = RL':

(LV,RV) = (LV,RL'LV) = (1, RL") (LV, LV, i.e.gH = (1, RL"H,
e H

with convention that representative of coset is chosen such that the unit

matrix stands in its first argument.

U is isomorphic to a ®.

Transformation behavior of U under ¢ = (L, R) € G is obtained by
multiplication in left coset:

ggH = (L,RRL"YH = (1, RRL'L")(L,L)H = (1, R(RL" LN H,

1.e.
U=RL'+— U =R(RL"L'= RUL'". (5.4)
Introduce x dependence (transition to fields) so that
U(z) — RU(x)L. (5.5)
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Physically relevant cases of N =2 and N = 3. Define

A = {CID:M4—>R3\¢Z-:M4—>]Rsm00th} for N = 2,
P {d s M* = R3¢ - M* — R smooth} for N = 3.

H(N): Set of all Hermitian and traceless N x N matrices,
H(N) = {A € gl(N,C)|A"T = A ATr(A) = 0},
(real vector space under addition of matrices). Define

My = {¢: M* — H(N)|¢ smooth}, entries are smooth functions.
Relation between My and Ms for N = 2

3
b =it _ [ 0 Vor
#e) = ;W(‘”’j)(qx T "o )= (e ).

7;: usual Pauli matrices and ¢;(z) = %Tr[T@(x)]
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Analogously for N = 3 (Exercise),

8 ¢3 + %@3 P1— 12 P4 — 1Q3
b(x) =D Mgalz) = | S1+id —¢s+ 55 b6 —idr
=1 Gy +ids P+ 17 —%%
'+ V2t V2K
Vor— —m0+ %77 V2K :
V2K~ V2K© —%77

Ao: Gell-Mann matrices and ¢,(z) = $Tr[A,d(x)].
Define

My = {U - M* = SUN)|U () = exp (Z¢JT(’:§>) € Mg} |

M5 does not define a vector space. E.g. det(AU) # 1.
Definition of nonlinear realization of SU(N) x SU(NN) on Ms:
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Homomorphism
w: G x Ms— My with ¢[(L,R),U)(z) = RU(z)L",
defines operation of GG on M3, because
1. RULT € M3, since U € M3 and R, LT € SU(N).
2. 0[(1,1),U](x) = 1U(x)1 = U(x).
3. Let g; = (L;, R;) € G and thus g195 = (L1Lo, R1Ry) € G.

olgr, vl Ull(z) = o1, (R2UL;)]($> = RlR2U($)L£LJ{>
olgrg2, Ul(z) = RiRoU(x)(L1Lo)t = RyRoU () LILT.

@ is called a nonlinear realization, because M3 is not a vector space.
The origin ¢(x) = 0, i.e. Uy = 1, denotes ground state of system.
Q: What does ¢ do to ground state?
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A:

1. Ground state remains invariant under subgroup H = {(V, V)|V €
SU(N)} (corresponding to rotating both left- and right-handed quark
fields in QCD by the same V'):

olg=V,V), U] = VU VI =VVI =1 =U,.

2. Under “axial transformations” (rotating the left-handed quarks by
A and the right-handed quarks by A'") ground state does not remain
invariant,

plg = (A, AN, U] = AT, AT = ATAT £ U,

Consistent with the assumed spontaneous symmetry breakdown!
Transformation behavior of ¢(z) under subgroup H = {(V, V)|V €
SU(N)}? Expand
o &
Fy 2F
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= Realization restricted to the subgroup H,

OO v P gyt YOV VeViVe
T 2F2 "F, 2F2 L, 2
(56)

defines a linear representation on My 3 ¢ — VoV € Ms, because
(Vv =VovT, Tu(VeVT) = Ti(g) =0,
Vi(VepVi )V = (ViVa)g(ViVa)'.
Example: N =3
1. Parameterize V' = exp (—z@g%) and compare both sides of Eq.
(5.6),

h e SU(S) A

"Vevt = ¢ —i0V [2 ¢bAb]

gbb?ffabc
= O+ fue® DA+ -+ (57)

¢ = Ny
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Corresponds to adjoint representation.
In SU(3) the fields ¢, transform as an octet. Consistent with trans-
formation behavior quoted in Eq. (4.19):

-@V a _'@V a AV
OV \ype OV = Ny, +iOY Ny [QF, Bp] 4 - -

ifabc¢c
= ¢+ fabc@ggbbkc + - (5.8)

2. For group elements (A, A") of G proceed analogously. = Fields ¢,
do not have simple transformation behavior. Commutation relations
of fields with axial charges are complicated nonlinear functions of

fields.
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5.2 The Lowest-Order Effective Lagrangian

References:

e J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984)
e J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985)

o H. Georgi, Weak Interactions and Modern Particle Theory (Ben-
jamin/Cummings, Menlo Park, 1984)

Goal: Construction of the most general theory describing the dynam-
ics of the Goldstone bosons associated with the spontaneous symmetry

breakdown in QCD.

Requirements:
1. In chiral limit Leg is invariant under SU(3); x SU(3) 5 x U(1),,.

2. Theory contains exactly eight pseudoscalar degrees of freedom trans-
forming as octet under subgroup H = SU(3),,.
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3. Because of ssb, ground state is only invariant under SU(3),, x U(1),,.
Sec. 5.1.2 = Collect dynamical variables in SU(3) matrix U(z),

Ulz) = exp (ﬂbg)) |

g 7V + %77 Vort V2K
o) = Z Aaba(T) = V2r— -7+ %n V2K | . (5.9)
p— VIK-  VIRD -y

Most general, chirally invariant, effective Lagrangian density with mini-
mal number of derivatives:

F2
Lo = ZOTr (8,U0"UT), (5.10)
Fy =~ 93 MeV is free parameter (related to pion decay 7™ — pv),).

o L.g is invariant under global SU(3); x SU(3) transformations:
U — RUL'"
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0,U — 0,(RULYY = 9,RUL'+ RO,UL" + RU9,L" = RO,ULT,
Rl R
Ul — LU'R',
0,U" — LO,U'RT,

because

Fy tr onrrtpty £ o ot urr
Eeff —> ZTT(RaMU,LlL,a U'R ) — ZTT<&1,B(?NU8 U ) — L:eff.
. trace property Tr(AB) = Tr(BA).

e Global U(1),, invariance is trivially satisfied: Goldstone bosons have
baryon number zero = ¢ — ¢ under U(1),, = U — U.

e Consider substitution ¢,(t, ) — —@.(t, T) or, equivalently, U (¢, T)
U'(t, Z): Test whether expression is of so-called even or odd intrin-
sic parity, i.e., even or odd in the number of Goldstone boson fields.
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Leg of Eq. (5.10) is even (Exercise).

Note: Goldstone bosons are pseudoscalars = true parity transfor-
mation given by ¢,(t,T) — —@.(t, —) or, equivalently, U(t, Z) +
Ut(t, —7).

e Purpose of multiplicative constant F;/4: Generates standard form
of kinetic term %aﬂ%aﬂ%. Expand exponential U = 14+i¢/Fy+- - -,
oU=1i0,0/Fp+ -+, =

2 . -
Lo — &Tr [zﬁmﬁ (_23 ¢>] 4= iTr<>\aau¢a)\baM¢b> T

4 Fy Fy
1 1
T4 100" Oy Tr( N Ap) + -+ - = 2 1Pa0" o + Ling-
25@6

No other terms containing only two fields = eight fields ¢, describe
eight independent massless particles.

e What about other structures?
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— Tr(UUT) is a constant.

— Total derivatives have no dynamical significance. Thus
Tr[(0,0"U)UT] = 9,[Te(0"UUT)] — Te(8"Ud,UM).

— Product of two invariant traces is excluded at lowest order, be-
cause Tr(0,UUT) = 0 (Exercise).

e Discussion of vector and axial-vector currents associated with global
SU(3); x SU(3) 5 symmetry.

Parameterize infinitesimal transformations as

Aa

L = 1—1'657, (5.11)
Aa

R = 1— et

s (5.12)
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Construction of J',: Set €2 = 0 and choose €. = €&(z). =
Ag
U U=RUL =U <1+¢e§?> ,

Ul — U = (1—% A—) Ut

@9
, A A
U — 0,U =0,U 1—|—ze Y —I—Uzae g
: " 1 : L Aa st
OU" = 0,UT = (1—iek ) O,U" —id,e; —U
=
F? 7 Aa Ay
6Lot = 40 Tr [U@(‘? el —aﬂUT +0,U (—z’é‘“ecf?m)]
F2

_ —25’ el Ty [ 2a(aMUT U — UTa“U)]

250



* F02' L Pyt
= ZZQMEQTI’ (\O"U'D) .

« UlU =1 = 9/UU) =0 = g"UTU = —UTo"U.

Left currents

Jh = g‘;f;f = iFZO?Tr (AO"UTU) .
Right currents (Exercise)
Jh, = ggfg% - —iFZOQTr (AU U .
Vector and axial-vector currents
Jy, = J+J = —iFZOQTr (Aa[U, (WLUT]) :
be

Joa = Jap— Jup = =i (AU, 0"U™}) .
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Leg is invariant under SU(3); x SU(3), = left and right currents
are conserved = vector and axial-vector currents are conserved.

Q: What happens under ¢ — —¢?

A:
1.

_ )

gu 9 i UTA(UT0 T — 00U
F2
= —z'ZOTr[)\a(—(‘?’“‘UTU +UOMUN = JY,
1.e. even in the number of Goldstone bosons.

2.

B 2
o P9 —z’%Tr[)\a(UTc‘?”U s

F2
= i TA('UTU + UOUT) = — T,
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i.e. odd in the number of Goldstone bosons.

Expand J", in fields,

Ey A"
JC’ILLA:—'];ZOTI' (Aa{l—i_,_’t bF¢b+}) :_F08M¢a+"'
0

= axial-vector current has non-vanishing matrix element when eval-
uated between vacuum and one-Goldstone-boson state [see Eq. (4.30)]:

(01 Jia(@)|dp(p)) = (O] = Fod"¢u()|¢n(p))
= — 0" exp(—ip - ©)0qp, = ip" Fyexp(—ip - )0y

e So far: Perfect SU(3), x SU(3), symmetry.

Now: Include explicit symmetry breaking due quark-mass term of
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QCD,

m, 0 0
Ly = —qrMqr — (jL./\/lTC]R, M = 0 myg O : (5.18)
0 0 mq

Argument due to Georgi: Although M is in reality just constant
matrix and does not transform along with quark fields, £ of Eq.
(5.18) would be invariant if M transformed as

M = RML. (5.19)
Construct most general Lagrangian £(U, M) invariant under
U+ RUL', M+ RML,

and expand in powers of M. At lowest order in M

F2B,

Loy = Te(MUT + UMD, (5.20)

s.b. = symmetry breaking.
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e Interpretation of new parameter B.

Consider energy density of ground state (U = Uy = 1),
<7‘[eff>mm = —F()QB()(TTLU +myg + ms). (5.21)

Justification of Eq. (5.21):
Construct Hamilton density corresponding to £ of Eq. (5.10) and

(5.20).

Dynamical fields ¢,; conjugate momenta

2 f
0L R (0UL 00
0 4 \ 00, 8%

We need

. F? 6’U oU
ToPa = 40 Ir <¢a gb ¢ &b)
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Make use of

[ i <b¢+<b<b .
F 2F? ’

U _ida Mb+ N
b, 2F? ’
U ¢ ¢¢+¢¢ e
%aqga ~'F 2F? =V,
CoUt .
gbaaU. = U,

0Pq

= Hamilton density
H = Tty — L
FO2 SIS
= ZTr(UU +UU") - L
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F2 ... F2 oo F2B
= Z“Tr(UUT)JrZOTr(VU-VUT)— Ul

A\ . 7\

Te(MUT +UM).

“/”

> () V
Hamilton density is minimized by constant and uniform fields. De-
termine minimum of last term:
oV 0 F¢ By

Opa Oy [ 2

Make use of

Te(MUT+UM) = 2Tr [M (1—¢—2+ ¢ —|->]

Te(MUT + U/\/l)] = 0.

2F2 24

Consider

J, | P* ot

T 1 — .
90, | ( 2F2 o4t ¢
[ Aa® 4+ dNa  Aa@® + OO + PN + PPN,
— T _ N
LM ( oF2 AT "
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Parameterize

M = mo)\o + mg)\g + mg)\g,

where
- My, + Mg + My
0 — 9
V6
My, — My
ms = ,
2
m mu;md — M
8 p—
V3
Ansatz for solution:
b= do+ s+ s +
— 0 F02 2 Fél 4 .

Organize in powers of 1/Fg. Write ¢g = Ayog. Terms proportional
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to 1/F¢ (factor —1/2 omitted):
Tr[M (Ao + PoAa)] = TrM( Aads + ANy )P0

%&Lb +§dabc)\c
4
— <§(5ab(mu + mg + my) + dmgdys + 4m8dabg) oOop = 0.
8 equations (a = 1,---,8) in 8 unknowns ¢g,. Example a = 1:
4
g(mu + mg + mg)do1 + 4mg dips Pos + 4ms dig, 1 ®ob
0 d1180p1 = %5171

2

2 (m + g + M) dor + 4 —me 1
= —(Mmy + mg + mg
3 d 01 /3 /3 01
— 2(mu + md)QbOl =0. = qu — (.
Proceed analogously for remaining cases. = For non-vanishing quark
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111 aSSES

o =0, b=1,---,8.

Now consider 1/F terms:

1
TI{M[()‘aqu + ¢2)\a) T Eg)\aqbg T ¢0)\a€bg + ¢8Aa¢0 + ¢8)\al]} = 0.
0, because ¢y =0

Calculation for ¢y as for ¢y above. = ¢9 = 0. And so on. In total
we obtain

¢ =0
as the configuration minimizing H and thus Eq. (5.21).

¢ = 0 is indeed minimum. Verified by taking second derivative of V
and showing

0*V
agbaaqbb $=0
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Compare derivative of Eq. (5.21) with respect to m, with correspond-
ing quantity in QCD (make use of Hellmann-Feynman theorem, Fx-
ercise),

9(0|Hqcp|0)

om,

1 1
— —{0ldal0Ve = =(3q)n.
3<MMM 3@@0

my=mg=ms=0

(Gq)o: scalar singlet quark condensate in chiral limit |see Eq. (4.27)].
=

e Remarks

1. Tr(M) is not invariant,.

2. Tr(MUT — UM?) has wrong behavior under parity ¢(t, &) —
_¢<t7 _5)7
T MUt 7) — Ut BIMT S T MU, —3) — U, —2) M
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ME MU —7) - Ut —DM ),

3. Because of M = M1, L} contains only terms even in ¢ (Ixer-
cise).

e Masses of Goldstone bosons.

[dentify terms of second order in fields in Lgy,

Loy = —%Tr(gbz/\/l) TR (5.23)

Exercise

Tr(¢p* M) = 2(my + mg)ntm™ + 2(my + mg) KK~ + 2(mg + my) K'K°
2 u dm
+(my + mg) T + —=(my, — ma)7'n + M T mgd i)

V3

[sospin-symmetric limit m, = mq = m = 7’1 term vanishes i.e. no
7'-n mixing.
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M? = 2Bym, (5.24)

M3 = Byl +my), (5.25)
2 .

M; = gBo (1 + 2my) . (5.26)

In combination with By = —(gq)o/(3F¢) referred to as Gell-Mann,

Oakes, and Renner relations.
Also: Gell-Mann-Okubo relation (FExercise)

AMj; = ABy(r+my) = 2By(m+2m,)+2Bym = 3M;+M?2 (5.27)

independent of value of By.

Values of quark masses m and mg cannot be extracted from Egs.

(5.24) - (5.26).

Why? Rescaling By — ABy A m, — m,/ )\ leaves relations invari-
ant.
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But: Ratios of quark masses. Using M, = 135 MeV, My = 496
MeV, and M, = 547 MeV = (Exercise)

2 N
Mg m+my N Mg

— = = 25.9
M? 2m m ’
M?2  2m.+m m
n s s
— = = 24.3. 5.28
M? 3m m (5.28)

e Remark on (gq)o

(@q)o # 0 sufficient but not necessary condition for ssb in QCD.

L1, = shift of vacuum energy but also finite Goldstone boson
masses. Both effects proportional to By. Tr(M) term would have
decoupled vacuum energy shift from Goldstone boson masses. How-

ever, forbidden by symmetry argument.

Analogy
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Heisenberg ferromagnet QCD
Symmetry of H O(3) SU(3); x SU(3)p
Symmetry of |0) O(2) SU(3),
VEV (M) ()0
Explicit s. b. | external magnetic field quark masses
interaction —(M)-H (Heer) of Eq. (5.21)

In principle: By could vanish or be rather small. = Quadratic
masses of Goldstone bosons might be dominated by terms which are
nonlinear in quark masses, i.e., by higher-order terms in expansion
of LU, M). = Generalized chiral perturbation theory.

Analogue would be antiferromagnet which shows ssb with (M) = 0.
Analysis of recent data on K — w7~ eT 1, in terms of the isoscalar
s-wave scattering length af (Colangelo, Gasser, Leutwyler) = {(qq)o
is indeed leading order parameter of spontaneously broken chiral
symimetry.

—
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5.3 Effective Lagrangians and Weinberg’s
Power Counting Scheme

Reference:
e 5. Weinberg, Physica A 96, 327 (1979).

Perturbative calculations in effective field theory require two main
ingredients:

1. Knowledge of the most general effective Lagrangian.
2. Consistent expansion scheme for observables.

Mesonic chiral perturbation theory:
L. organized as string of terms

Lg=Lo+Ls+Ls+ -, <5.29)

subscripts refer to order in momentum and quark-mass expansion.
Index 2: T'wo derivatives or one quark-mass term.
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Index 4: Four derivatives, two derivatives and one quark-mass term, two
quark-mass terms.

Feynman rules: Derivatives generate four-momenta.

Quark-mass term ~ two derivatives because of Egs. (5.24) - (5.26), M?* ~
m,, and on-shell condition p? = M?.

Mesonic sector: Chiral orders are always even [O(¢?*), k > 1] because
Lorentz indices of derivatives always have to be contracted and quark-
mass terms count as O(g?).

Weinberg’s power counting scheme
Q: How do different diagrams compare?
Analyze given diagram under
1. linear rescaling of all external momenta, p; — tp;,

2. quadratic rescaling of light quark masses, m, — t*m, (corresponds
to M? — t>M?).
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Chiral dimension D:
M(tp;, t*my) = t" M(pi, m,) = O(¢"). (5.30)

For small enough momenta (and masses) contributions with increasing
D become less important.

D = nNy—2N;+ Y 2kNy, (5.31)
k=1
= 2+ (n—2)Np+ Y 2(k — 1)Noy (5.32)
k=1

> 2 1n 4 dimensions.
e n: Number of space-time dimensions.
e N;: Number of independent loops.

e N;: Number of internal Goldstone boson lines.
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e No.: Number of vertices from L.
e Loops suppressed by (n — 2)Ny.
e Relation between the momentum and loop expansion:

1. O(¢*): No loops.

2. O(q*): No loops and 1 loop.

3. O(q%): No loops, 1 loop, and 2 loops.
4. etc.

e Perturbative scheme in terms of external momenta and quark
masses (— meson masses®) which are small compared to some scale

lhere: 4 Fy = O (1 GeV)).

Examples (n = 4 dimensions):

269



D=4.2-2.342-2=6
=24+2-24+(2-2)-2

/—5\
4 \
\ /

~ R

D=4-2-2-3+1-2+1-4=28
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7 \
/ \
4 \ 1
RN 7\
\——/ '
\
\ /
7
S .

D=4-4—-2-5+2-2=10
Proof: Start from Feynman rules for evaluating S-matrix element.

e Internal lines:

1 M? — 2 M2 1
4 4
IR el K e v
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k

tl 2 4 1
t d”l :
/ 12 — M? + qe

e Vertices with 2k derivatives or k quark-mass terms:
5 (q)g™ — "5 (q)g™,

— since p — tp if g is an external momentum,

—and k = tl if ¢ is an internal momentum (see above).

e These are rules to calculate S ~ §*(P)M.
Add 4 to compensate for overall momentum-conserving delta func-
tion.

e Scaling behavior of the contribution to M of a given diagram:

D =4+2N;+ Y  Nop(2k —4).
k=1
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e Relation between # of independent loops, # of internal lines, and
total # of vertices Ny = >~ Nog:

N = N; — (Ny — 1).

Remark: Product of Ny momentum-conserving 0 functions contains
overall momentum conservation. = Ny — 1 rather than Ny restric-
tions on internal momenta.

e Apply to
—4) " Ny = —4Ny = 4(Np — Ny — 1),
k=1

= Eq. (5.31):

D = 4N; — 2N + Z 2k Noy..
k=1
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e Apply to

_4ZN2k = _QZN%"_Q(NL_NI_ 1).
k=1 k=1
= Eq. (5.32):
D=2+ 2(k—1)Ny, + 2N >2.
k=1

In particular, diagrams containing loops are suppressed due to the
term 2Ny,

e Remark: Minimal £ > 0 important.
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\ / \ 7
\\\ /’/ \\\ /’/
AN i’/ AN //’—~\\\ s
/// AN /// \\\‘—’// AN
,/ N 7 AN
,/ A 7 N
0 for £ =0, 0 for £ =0,
D=0-0tk=k=1{, """ D_4—2-2+2-k_2k_{4f0rk:2.

Loop diagram is only suppressed if k., > 0.
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5.4 Construction of the Effective Lagrangian

References:

e J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985)
e H. W. Fearing and S. Scherer, Phys. Rev. D 53, 315 (1996)
e J. Bijnens, G. Colangelo, and G. Ecker, JHEP 9902, 020 (1999)

o T'. Ebertshauser, Mesonic Chiral Perturbation Theory: Odd In-
trinsic Parity Sector, PhD thesis, Johannes Gutenberg-Universitat,
Mainz, Germany, 2001, http://archimed.uni-mainz.de/

o T'. Ebertshauser, H. W. Fearing, and S. Scherer, Phys. Rev. D 65,
054033 (2002)

e J. Bijnens, L. Girlanda, and P. Talavera, Eur. Phys. J. C 23, 539
(2002)
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So far: Lowest-order effective Lagrangian for global SU(3); x SU(3),
symimetry.

Sec. 3.4: Ward identities of QCD are obtained from locally invariant
generating functional involving a coupling to external fields.

Follow Gasser and Leutwyler: Promote global symmetry of effective
Lagrangian to a local one,

L — VL<SIS>, R — VR<SC>,

and introduce coupling to the same external fields v, a, s, and p as in
QCD [see Eq. (3.59)].

Collect Goldstone bosons in special unitary matrix

U(x) = exp (i%’?) |

277




Transformation behavior under G' = SU(3); x SU(3)p, parity P, and
charge conjugation C":

U S VUV,

Uz, t) v Ul(—7,1),

U S Ut (Exercise).
Let object A transform as VRAVLJr . Define covariant derivative D, A as
(Exercise)

DA = 0,A—ir,A+iAl,
— Va(0,A —ir, A+ iAL)V! = V(D AV} (5.33)

Defining property: Covariant derivative should transform as object it

acts on.
In particular

DU = 8,U — ir,U + iUl (5.34)
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Introduce field strength tensors

fy = a/ﬂnz/ — al/ru — i[rm Tu] '§> Vi ﬁvg, (535)
fE = 8y — O, — il L) Vi fh v (5.36)

Field strength tensors are traceless,
Tr(fiy) = Tr( 5/) =0,

because Tr(l,,) = Tr(r,) = 0 and trace of any commutator vanishes.

Introduce linear combination xy = 2By(s + ip).
E.g., pure QCD: x = 2Bydiag(m, mg, ms).

Construct effective Lagrangian in terms of U, U7, v, x', fw Af,/ and
covariant derivatives of these objects.

Construction of invariants

Suppose we have matrices A, B, C, ..., all of which transform as

A S VRAV],
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B % ViBV],

Form invariants by “multiplying” in the following way:

Tr(ABY) & Tr(VRAV/ Vi BIV]) = Tr(ViVRABY) = Tr(ABD),

1

e Generalization to more terms is obvious.
e Product of invariant traces is invariant,

Tr(AB'CDY), Tr(ABNTr(CDY),

List of (selected) ingredients

e Assign (chiral) orders:

(5.37)



T,LMZ,LL = O(Q)a
fHr = 0(g?),
X = O(g).

e Fach covariant derivative produces power of q.
e Identify terms which can be related by total derivatives.

e List of objects A up to and including order ¢ which transform as

A = VzAV]:
U, DU, D,DU, x, UfL, fF

e Construction of chirally invariant expressions (to order ¢?):
O(¢") : Tr (UUT) = Tr(1) = const.
O(q) : Tr (D,UUY) =0, (Exercise)
important: excludes terms of the
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type Tr[O(q)] x Tr(....) ,

O(¢*) : Tr (D D, UU " = —Tv [D,U(D,U)' (Exercise),
U)
)

ik
D D U)'] = —Tr [D,U(D,U)'| (Exercise),

(Ufr)UT] =T (ff) =0,
R

e Lorentz invariance: Indices have to be contracted.
e Candidates:

Tr [D,U(D"U)] ,
Tr (XUT + UXT) :
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e Parity:
L(Z, 1) % L(—7,1).
Tr(xUT — Ux') has wrong parity.
e Charge conjugation [no additional constraint at O(g?)] (Exercise).

Lowest—order Lagrangian L,

F? F?
Ly = Te [DU(DU)T] + = Tr (xU' + Ux') (5.38)

At O(g*) two parameters:
Fy ~93MeV, 3F;By= —{0|gq|0)o
e [, has predictive power! 7 scattering ete. (Exercise).

Lowest-order equation of motion

Essentially as in Assignment 1, 3.
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Consider small variations of SU(3) matrix:

U'(z) = U(z) + 6U () <1+ZZA ) 2),  (5.39)

Ay(x): Real functions. Matrix U’ satisfies both conditions
UUT=1, det(U) =1, (5.40)

up to and including terms linear in A,,.
Apply principle of stationary action. Variation of action

2 () _
§S = &/ dt/d%Tr D, 0U(D"U)" + D,U(D"§U)" + x6U" + §U ']

2
= ZO/ dt/d?’xTr —5U(DMD“U)T—DMD“U5UT+X5UT+5UXT}

2
= z%/ dt/dgchAa(m)
t1 a=1
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< Tr {\,[D,D'UUT — U(D,D"U)" — xU" + Ux']} . (5.41)

x: partial integration + standard boundary conditions A,(t1,T) =
Agy(t2, %) = 0 + divergence theorem + definition of covariant deriva-

tive of Eq. (5.33).
Example:

Te[D,0U(D"U)Y| = Tx[(0,6U — ir,6U +idUL,)(D"U)T]
= 0, Tr[oU (D'U)T]
~Tr{oU[0,(D"U)! 4 i(D*U)r,, — il ,(D*U)1}
= tot. der. — Tr[oU(D,D'U)T].

sx: OUT = —UTSUUT + invariance of trace with respect to cyclic per-

mutations.
Functions A,(x) may be chosen arbitrarily = eight Euler-Lagrange
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equations

Tr {\[DUUT — U(D*U)' — xU'+ Ux']} =0, a=1,---,8.
(5.42)
Any 3 x 3 matrix A can be written as

1 1
= aglsxs + Z aiki, ag=3Tr(A), a;=;Tr(NA).  (5.43)

= Compact matrix form

1
Opou(U) = DQUUT—U(DQU)T—XUWUXWgTr(XUT—UXT> =

(5.44)
Remark: Tr[D?UUT — U(D?U)'| = 0 (Exercise).
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5.5 Applications at Lowest Order

Eq. (5.32): D =2+ 2N, + > -, 2(k — 1) Ny Lowest order: D = 2,
i.e. tree-level diagrams with vertices from Ls.

5.5.1 Pion Decay 7" — pty,

Diagrammatic representation in terms of d.o.f. of Standard Model:

u v,

d w' it

e Interaction of massive charged weak bosons V\/i W1, FiWs,)/ V2 V2
with leptons

Lo = _W W, 04" (1 =)+ W, iy (1 = 5)v] -
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CC: Charged current.
Fermi constant is related to gauge coupling g and W mass as

2

Gp=v2—L = 1.16637(1) x 1077 GeV 2.
M,

e Coupling of W bosons to quarks

L9 = — T OWHV.ur (1 — 35)d + Vs (1 — 5)s] + hec.}

2v/2

Vgl = 0.97377 £0.00027, | Vis| = 0.2257 £ 0.0021.

e Eixpress in terms of QQCD Lagrangian with coupling to external fields.
Set
_ 9

V2
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in Ley [see Eq. (3.59)], where

0 Vud Vus
T.=(0 0 0
0 0 O

e Coupling of W bosons to Goldstone bosons.
Insert covariant derivative

D, U =0,U+:Ul,
into Lo and identity terms ~ W o:

F? ton——onpty P
T [D,U(D"U) e i T, 'UTU) + -
HUT=—ioke ) Fyt-  F
=0 ?OTraMaﬂgb) TR
- F
Live = —\%30 ({WIT, + W, T )99,
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Evaluate

Tr(T 0" )
_ ) Vud Vus 7T0_‘_%77 \/§7T+ \/§K+
= Tr ({00 0 o] Ver -7+ 2n V2K'
0 0 O V2K~ V2K —%77
= VoaV20"1™ 4+ VoV 20MK ™,
Tr(T_0"¢)
i 0 00 7TO—|—%77 \/§7TJr \/?[(Jr
= Tr || V00 |0"| V2r -7+ V2K
Vi 00 V2K~ V2K —%77 |
= V,aV20"1" + Vo V20 KT

(Vg and Vs real.)
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= Interaction Lagrangian

F
Liws = —970[W,j(Vudauw—+vusauK—>+W;(vudaﬂwuvusaﬂw)].

(5.45)
e [ixpand Feynman propagator for W bosons
ik
—q,, + By
k% — MG, Mz, My"
e Neglect terms of higher order in (momentum /My )?.
e Feynman rule for invariant amplitude for weak pion decay
— igpa . FO - o
M = ’ 2\[1@#7 (1 - 75) ]J VE i [_g?‘/&d(_?/p )]/
leptonlc vertex W propagator hadronic vertex

= —GFVudFQﬂVM]/(l — 75>UM+,
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p: four-momentum of pion.

e Decay rate (Fxercise)

L GV m2\’
_ YRl Vud 2 2 0
; = 47‘_ FO Mﬂm,u (1 — W) .

e [): pion-decay constant in the chiral limit. Measures strength of
matrix element of axial-vector current between one-Goldstone boson
state and vacuum.

e Degeneracy of a single coupling constant Fy removed at O(qg*).

e Empirical numbers:

F,. = 92.4MeV,
FK = 113 MeV.
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5.5.2 Pion-Pion Scattering

References:

e 5. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
e J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984)

e M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading,
MA, 1962)

e J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio,
Phys. Lett. B 374, 210 (1996)

e G. Colangelo, J. Gasser, and H. Leutwyler, Phys. Rev. Lett. 86, 5008
(2001)

e G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys. B603, 125
(2001)
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Consider L9 with r, = [, = 0,
F? F*
Lr=—Tr (8,U0"U") + T (xU"+ Ux")
in the SU(2) sector with
m 0
X =25 (o m)

N——
M

¢ 3 0 \/§+
UZGXp(ZF), Qb—;ﬂqm—(\/gﬂ_ _77_:0 )

Remark on chiral limit:

and

e In the SU(2) sector it is common to express quantities in the chiral
limit without index 0, e. g., F' and B. By this one means the SU(2)
chiral limit, i. e. m,, = my = 0 but my at its physical value.
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e In the SU(3) sector the quantities Fyy and By denote the chiral limit
for all three quarks: m, = my = m, = 0.

Substitution U <> UT. = L, contains even powers of ¢ only:
Lo=LY+L°+--.

e L5 does not produce a vertex with 3 Goldstone bosons. = At D = 2,
no s-, u-, and t-channel pole diagrams.

e At D = 2, mr scattering is generated by a 4 Goldstone boson inter-

action term.
Expand
b 1¢* it 1 ¢t
U—=1+i-_->2 __ .
TR TG o

and identify £57 as (Exercise)

Te((¢, 9,0, 0"¢]) + 2BTr(Mg")] .
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Remark: Substituting F' — Fy, B — By and the relevant expressions
for ¢ and the quark mass matrix M the corresponding formula for SU(3)
looks identical.

Insert ¢ = 7;¢;. Make use of

[¢7 H¢] — 2262]k¢z M¢]Tk7
Tr(17) = 20k,

€iik€imk — 5zl5]m — 5im5jl7

O = Pigi.
—
LY = 6117262]/{@ 0, P€1mkP10" Oy + 24F2¢z¢z¢y¢y
M?
— 6F2(¢’8%2 M¢J¢J ¢z¢z‘au¢jau¢j> 24F2¢Z¢Z¢J¢J’

where M? = 2Bm.
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Pa, Q Pe; €

Feynman rule for Cartesian isospin indices a, b, ¢, and d from “L".
Example

(Pe, € pa, d|$i0" 60,995 |Pas a; py, b)
24 combinations of combining 4 fields with 4 quanta. E.g.

(pe, & pay d| i 0" (%Mﬂﬁf a; pbl, b)
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= 5icip55id5ja(_ipb,u)5jb — Pd " Pb 5cd5ab~
Complete result

M = i | g (2 Budea(~ipa — i) - i + i)
+0acOpd(—1Dq + iPc) - (—1Dp + 1pg)
+0aadbe(—1Pa + ipa) - (—ipy + ipc))

—4{0a0cd [(—ipa) - (—1py) + (ipe) - (1pa)]
+0acOpa[(—pa) - (ipe) + (—ipy) - (ipa)]
+0adObe[(—ipa) - (ipa) + (—ips) - (ipc)|})

8<5ab50d + 6@056d -+ (Sadébc)

2
o
i
= 57 19a0ed](Pa + o)’ + 2Pa - Py + 2pc - pa+ M
+00c0pal(Pa — Pe)? — 2P0 Pe — 2Py - pa+ M
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+0ua0pe[(Pa — Pa)* — 2pa - pa — 2py - pe + M7}
;
~ 312 [5ab5cd<33 — pi - pg - p? - p?[ + M2>
+8ac0a(3t — P2 — p2 — py — pg + M?)

—i_(sad(sbc(Su _ pg o p?l o Pg _ pg T MZ)}

s — M? t — M? u— M?
= 1 5ab50d 2 + 5ac(sbd 2 5ad(sbc 2
—é <(5ab(scd + 5ac5bd + 5ad5bc> (Aa + Ab + AC + Ad) 7(546>

where Ay, = p? — M?.
Mandelstam variables

s = (pa+p)* = (e + pa)’,

t=(p.—p)* = (pa— )’
u= (pu — pa)* = (pc — m1)",
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and
L 2 2
2Dq - P = S — Dy — Db
_2pa'pc:t_p3_pga
2Py - Pg = u — P2 — P2,

2. - pa =8 — P> — D3,
—2py - pa=1t— pi — pa,
—2py - pe = u — P} — p-.

The last line of the Feynman rule disappears, if the external lines satisty

on-mass-shell conditions.

Scattering process m,(pa) + mp(py) — Te(pe) + Ta(pa) at O(q?):

(¢T = M). We replaced

F — F,,
M? — M?,

because difference is of O(q?) in T.

t— M? u — M?

F7T — F[l + O<q2>]7
M; =

M1+ O(q")],



Consider (theoretical) limit M?2, s, t, u — 0:
T — 0.
e Goldstone bosons interact “weakly” at low energies.
[sospin symmetry. = Most general parametrization
T = 6ap0caA(S,t,u) + 0ae0paA(t, s, 1) + daqlpeAlu, t, )
with A(s,t,u) = A(s,u,t).

[sospin channels:

T'=0 = 3A(s,t,u) + A(t,u, s) + A(u, s, ),

T'=t = A(t,u,s) — A(u, s, t),

T'=2 = A(t,u,s) + Alu, s, t).
s-wave 77 scattering lengths (Convention in ChPT differs by a factor
(—M) from the usual definition of a scattering length in the effective
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range expansion. )

=0 0
T | = 32may,
=2 2
Lower index 0: s wave; upper index: Isospin. (7=, vanishes because
of Bose symmetry.)

_|_

o 7t scattering described by 7772,

e Other physical reactions may be determined using the appropriate
Clebsch-Gordan coefficients.

Prediction at O(q?):

At threshold



and thus
302
F2

™

A<Sthr7 tthra uthr) —

e /| = (: Consider linear combination

[3"4(37 ta ’LL) + A(ta u, S) + A(u, S, t)]thr
= 2A(s,t,u) + A(s,t,u) + A(t,u, s) + A(u, s, )]t
6M?  [s+t+u—3M,
P2 P2
7M?
P

e [ = 2: Consider linear combination

[A(t,u, s) + A(u, s, 1) |t
= [A(t,u,s) + A(u, s,t) + A(s, t,u) — A(s,t, u)]|in
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M2 3M?
F?  F?
202

_Fﬁ'

e = Famous results of current algebra for the scattering lengths (S. Wein-
berg, Phys. Rev. Lett. 17, 616 (1966)):

TM? M?
0 s 2 ™
= = 0.156 = — = —0.045.
"0 3212 - 167 F?

(with F, = 93.2 MeV and M, = 139.57 MeV)

e Absolute prediction of chiral symmetry! Once we know F; (from
pion decay) we can predict the scattering lengths.

e Different from Wigner-Eckart theorem which predicts relations among
processes of the same type.
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Experimental data
mEp — 75t af = 0.204 & 0.014 (stat) & 0.008 (syst),
Kt — 7rn etv.:? ag = 0.216 £ 0.013 (stat) 4= 0.002 (syst)
40.002 (theor),
7~ atom lifetime:? |a) — al| = 0.26415052,
K* — 75707%4 @ — a2 = 0.268 & 0.010 (stat) & 0.004 (syst)
+0.013 (ext),
ai = —0.041 £ 0.022 (stat) £ 0.014 (syst).

Predictions for the s-wave scattering lengths at O(q%)?

O(g®) Olq"): +28%  O(¢"): +8.5% total

0 L /'/\\ ~ ~ ™
ag = 0.156 +0.03940.005 +0.013 +0.003 + 0.00T = .217,
L anal. k; L anal.

M. Kermani et al. [CHAOS Collaboration], Phys. Rev. C 58, 3431 (1998)

2S. Pislak et al., Phys. Rev. D 67, 072004 (2003)

3B. Adeva et al. [DIRAC Collaboration], Phys. Lett. B 619, 50 (2005)

4J. R. Batley et al. [NA48/2 Collaboration], Phys. Lett. B 633, 173 (2006)

5J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Phys. Lett. B 374, 210 (1996)
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O(¢*) O(g"): +21% O(q%): +6.6% total

ag—ao = 0201+OO36+O 006 +0 012+O 003+, 007 = 258
L anal L anal.

e O(q")

— chiral logarithms of one-loop diagrams (L)
— analytic contributions from one-loop diagrams + tree graphs from
L4 (anal.)
» O(q")

— loop corrections involving double chiral logarithms (k;)
— loop corrections with chiral logarithms (L)
— analytic contributions (anal.)
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5.6 Dimensional Regularization: Basics

References:

e G. 't Hooft and M. J. Veltman, Nucl. Phys. B44, 189 (1972)
e G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975)
e G. 't Hooft and M. J. Veltman, Nucl. Phys. B153, 365 (1979)

o T P. Cheng and L. F. Li, Gauge Theory of Elementary Particle
Physics (Clarendon, Oxford, 1984), chapter 2

e J. C. Collins, Renormalization (Cambridge University Press, Cam-
bridge, 1984), chapter 4

e M. J. Veltman, Diagrammatica. The Path to Feynman Rules
(Cambridge University Press, Cambridge, 1994)

e Any modern book on quantum field theory
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D > 4: We need to discuss loops!

Simple example

Consider integral

Introduce

1_/ d*k i
) @r)tk?— M2 40t

az\/E2+M2>O
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so that
K2 — M? 400" = k2 — k> — M2 +i0*
= ki —a*+i0"
= ki — (a —i0™")?
= lko+ (a — 7;0*)][/@0 — (a — i0+)].
Define !
ko) = .
f(ko) ko + (a — i07)][ko — (a — i07)]
Determine [~ dkof(ko) as part of the calculation of I.
Consider f in the complex ky plane and make use of Cauchy’s theorem

7{ dzf(z) =0 (5.48)
C

for functions which are differentiable in every point inside the closed
contour C'.
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Choose contour as

. \%
N2
“(@i0t) Y1
——————————————————————————— —»——————————;\
® &0+
| Re(ko)
L
y4 » |
4
0= /dzf(z)
i=1 v i



Make use of

A flz)dz = / bfh(lf)h’(t)dt

to obtain for individual integrals:
W)=t () =1 a= oo, b=oo: [ fe)dz= [ s
N —00

= Re", Yh(t) =iRe", a=0, b= g :

/ z)dz = lim / f(Re")iRe"dt = 0, because lim Rf(Re") =0,
Y R—o0 R—o0 N vl 7
~R

v3(t) =it, 3(t) =4, a =400, b= —00: / f(z2)dz = /_ f(it)idt,
73 50



/ f(2)dz = 0 analogous to 7s.

Combine with Eq. (5.48) = so-called Wick rotation

/ F(t) z/ Oodtf(z't):z'/_z‘;dtf(it). (5.49)

Intermediate result
1 o0 '
I — 47;/ dko/d3k -
2m)* J o (iko)? — k2 — M2 + {0+
1

_/ d*
) @em)rR+ M2 —i0t

[* = [ + 15+ 15 + I3 denotes Euclidian scalar product. In this special
case: Integrand does not have a pole = we can omit the —i0™.

e [ diverges for large values of [ [ultraviolet (UV) divergence].
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UV degree of divergence can be estimated by simply counting powers of
momenta.
If the integral behaves asymptotically as

/ d*1/1% . diverges quadratically
/ d*1/1? . diverges linearly

/ d*1/1* . diverges logarithmically

I diverges quadratically:.

Various methods to regularize divergent integrals.

Here: Dimensional regularization, because it preserves algebraic rela-
tions among Green functions (Ward identities) if underlying symmetries
do not depend on # of space-time dimensions.
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Dimensional regularization: Generalize integral from 4 to n dimensions.
Introduce polar coordinates

[y = lcos(fy),
lo = Isin(6;) cos(6s),
I3 = [sin(6y)sin(6s) cos(63),

ln—1 = [sin(fy)sin(6y) - - - cos(0,-1),
l, = lsin(6y)sin(0y) - - -sin(6,,_1), (5.50)

where 0 <[, 0, € [0,7w],i=1,---,n—2, 0,1 € [0,27].
General integral is symbolically of the form

o0 27 T -
/dnl e — / ln—ldl/ d0,—1 / d6,,_osin(6,_5) - - / 46, Sinn_2(91) o
0 0 0 0

(5.51)
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If integrand does not depend on angles, angular integration can explicitly
be carried out. Make use of (Fxercise)

(shown by induction).

Result of angular integration

. o VATWVAT(3) VAT (%)
/O dgnl.../o dfy sin (Q1) = 27 F(%) F(Q) F(%)
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Check for n = 3:

Define integral for n dimensions (n integer) as

d"k (!
2m ) k2> — M? 40t

L(M2, ) = it / ( (5.53)

Scale p: Unit of mass, 't Hooft parameter, renormalization scale (inte-

gral has the same dimension for arbitrary n). [Integral of Eq. (5.53) is
convergent only for n = 1]

Wick rotation + angular integration = integral formally reads

) T 1 /oodl ln—l
F( )(27-‘-)71 0 l2—|‘M2.
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For later use, investigate (more general) integral

/OO a1 /O@ a1 A2 /OO t5-1dt
o (PP (M) Sy (L1 2 o (t+1)"

(5.54)

with substitution ¢ = [*/M?.

Beta function
o rlde ['z)'(y)
B(z,y) = = , 5.55
@y)té A+ T(z+y) (5.55)

integral converges for x > 0, y > 0 and diverges if x < 0 or y < 0.

Non-positive values of x or y: Use analytic continuation in terms of
Gamma function to define Beta function and thus integral of Eq. (5.54).

Recall: T'(2) is single valued and analytic over entire complex plane, save
for the points z = —n, n = 0,1, 2, - - -, where it possesses simple poles
with residue (—1)"/n!.
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r=n/2,x+y=aandy=a—n/2 =

ot 1 L. (BT (e—5)
— _ M2 g—O{ 2 2 5
/0 CESTEE [a) (5:56)
a=1=
I(M?, 12) = i 9 m? 1 1<M2>g—1r (%) i (1 — %)
(%) (2m)n2 I'(1)
~——— ~~
angular integration 1
_ ATy (1 - ﬁ) (5.57)
(47)2 2/ '

a”* = exp[ln(a)z], a € R* is an analytic function in C.
Making use of

Pt = (R, (MAET = MM, ()t = (4
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we define (as a function of a complex variable n)
M? ([ 4mpu? 232 n
I(M2, 2, n) = r(i-3).
( nuan) (47T)2(M2)

n — 4: Gamma function has a pole.
How is this pole is approached?
Important property: I'(z + 1) = zI'(2)

r(l_ﬁ)zlwl—g+n F(2—2+1) 1%.+%

1
) T T T 0-9e-9 “n(-
where e =4 — n.

Make use of a* = exp[ln(a)z] = 1 + In(a)z + O(z?).
Expand integral for small €

M? € 4 14?
I(M? p?,n) = T6n2 [1+§m ( IV ) +O<€2)]
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X (—2) [1 + ot O(EQ)} F\({Q%r’(l) +O(€%)

€ 2
M? 2 M?
= 5 | —I'(1) —1 —In(47) + In (F) + O(e)
 yp= 05772 _

vg: Euler’s constant.
Final result

M? M?
2 2 _ o _
I(M*, u ’n)_—167r2 [R+1D(M2>] + O(n —4), (5.58)
where )
_ !/
, E = —[In(4m) + I"(1)] —1. (5.59)
M5 NS




Using the same techniques = very useful expression for the more general
integral (Exercise)

d"k (k2P B
/ (2m)" (k2 — M? +i0+)1
(i 2p+%—qr(p+%)F(q—p_%>
i(—) (4%)%<M ) = (%) o  (5.60)

Remarks:

1. In the context of combining propagators by using Feynman'’s trick
= integrals with M? replaced by A — 0", A real number.

It is important to consistently deal with the boundary condition
—i0™.

Example: Consider In(A — i07).
Express 2z in its polar form z = |z| exp(ip), demand —7 < ¢ < 7.
e A>0:In(A—1i0")=1In(A).
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e A < 0: Infinitesimal imaginary part indicates that —| A| is reached
in the third quadrant from below the real axis, = we have to use
the —m.

Make use of In(ab) = In(a) + In(b) =

In(A —i0%) = In(|]A]) + In(e™"™) = In(|A4]) —im, A <O.
e Summarized in a single expression
In(A —i0") =In(|A|) —i7O(—A) for A € RR. (5.61)

Discussion is of importance for consistently determining imagi-
nary parts of loop integrals.

2. In dim. reg. power-law divergences are set to 0.

3. Logarithmic UV divergences of one-loop integrals in dim. reg. show
up as single poles in € =4 — n.
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5.7 Chiral Lagrangian at Order O(q4)

Reference:

e J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985)

Most general Lagrangian at O(q?):

Ly =1y {TY[DMU<DMU>T]}2

+LoIr
+Ls'Ir
+L,Ir
+L5Tr

D,U(D,U)T Tx [D"U(D"U)]
D,U(D"U)'D,U(D"U)T]
D, U(DMU)] Tr (xUT + Ux')

D, U(D"U) (xU + Ux")]

+L [Tr (xUT + Ux')]”
+L7 [Tr (xUT = UxXD)]’
+LgTr (UXTUXT + XU‘LxUT)
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—iLgTv [ fo, D'"U(DYU)" + f,r,(D"U)' DU

+ Ly Tr (U fo, U f)

HHT (£ AR+ FL A1)

+HyTr (xx') . (5.62)

e Numerical values of low-energy coupling constants L; (LECs) are not
determined by chiral symmetry.

e In principle, determined in terms of (remaining) parameters of QCD,
namely, heavy-quark masses and QCD scale Aqcp (93).

e Sources of information on LECs:

— Fix by using empirical input.
— Estimate from QQCD-inspired models.
— Calculate from lattice QCD.
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S. Weinberg, The Quantum Theory of Fields, Vol. I, Chap. 12:

“... the cancellation of ultraviolet divergences does not really depend on
renormalizability; as long as we include every one of the infinite number
of interactions allowed by symmetries, the so-called non-renormalizable
theories are actually just as renormalizable as renormalizable theories.”

Weinberg’s power counting = (renormalized) one-loop graphs with ver-
tices from Ly are of O(g*). By construction Eq. (5.62) represents the
most general Lagrangian at O(q").

= Adjust (renormalize) parameters of L, to cancel one-loop divergences:

F.
L; = L' "R, i=1,---,10, 5.63
Z—i_SQATZ [ ( )
H = H+—R i=12, (5.64)

L3
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where

2
R:

n—4

— [In(47) — v + 1].

L; bare parameters vs. L} renormalized parameters.

Coefficient | Empirical Value| I
L} 04+03 %
L 1.35+0.3) =
L —35+11 0
L, —03+£05 1
L: 1.4 4+0.5 %
Lj —0.2£0.3 44
Lt —0.4402 0
L 0.940.3 %
Ly 6.9+07
o —5.540.7 —%

326

(5.65)



Renormalized low-energy coupling constants LY in units of 1072 at the
scale p = M,, see J. Bijnens, G. Ecker, and J. Gasser, The Second
DA®NE Physics Handbook, Vol. I, Chap. 3. Ay = —1/8, Ay =5/24.

e Fxcept for Lg and Ly, L; and H; are required in the renormalization
of one-loop graphs.

e /1, and H, contain only external fields, are of no physical relevance.

e Renormalized coefficients L depend on scale p introduced by di-
mensional regularization [see Eq. (5.58)].
Values at two different scales pq and ps are related by

, , I a1

Scale dependence of coefficients and of finite part of loop-diagrams
compensate each other. Physical observables are scale independent.
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5.8 Application at Order O(q'): Masses of the Goldstone Bosons

Reference:

e J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985)

Masses at O(q*) will allow us to illustrate various properties typical of

ChPT:

1. Relation between bare LECs L; and renormalized LECs Lf: Diver-
gences of one-loop diagrams are canceled.

2. Scale dependence of LI(u) and of finite contributions of one-loop
diagrams combine to scale-independent predictions for physical ob-
servables.

3. A perturbation expansion in the explicit symmetry breaking with re-
spect to a symmetry that is realized in the Nambu-Goldstone mode
generates corrections which are non-analytic in the symmetry break-
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ing parameter, here the quark masses [see L. F. Li and H. Pagels,
Phys. Rev. Lett. 26, 1204 (1971)].

e Recall [see, e.g., T. P. Cheng and L. F. Li, Gauge Theory of Ele-
mentary Particle Physics (Clarendon, Oxford, 1984), chapter 2]

Propagator of a (pseudo-) scalar field is defined as the Fourier transform
of the two-point Green function:

iA(p) = / dze™ 7 (0T [o(2)o(0)] |0). (5.67)

Index 0: Bare unrenormalized field (do not confuse with free field).
Recall propagator of free field with mass m (Assignment 3)

1A = :
F(p) p? —m?+ 007"
Full propagator in terms of the so-called proper self-energy insertions

—i(p*):

1
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—i3(p*) consists of one-particle-irreducible diagrams: Diagrams which
do not fall apart into two separate pieces when cutting an arbitrary

internal line.
Summation via a geometric series

1
Af) —

(} (4

+ —iX(p”

R VPR e v A
T
= : 14z +a*+--]
p? — MZ +i0* ¢ )

/(1= x)
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(
PP M§ = S(p?) +i0
Physical (or pole) mass (including interaction) is defined as the position
of the pole of Eq. (5.68),

(5.68)

M? — M2 — $(M?) = 0. (5.69)
Assume that Y(p?) can be expanded in a series around p? = \*:
R(p?) = D) + (0° = X)T(N) + 2(p?). (5.70)

(
Remainder Y(p?) depends on choice of A%, satisfies ¥(A\?) = /(%) = 0.
i .
iA(p) = ! _ — . (5.71)
P~ M3~ S0%) — (2~ A% — S(p?) + 10"
Take A* = M? in Eq. (5.71) 4 condition of Eq. (5.69) =
( 140

1A(p) = -

(p? — M2)[L = Z/(M?)] = S(p?) +i0* p? — M2 — Zg(p?) +i0+
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Wave function renormalization constant
1

Zp = .
T o(M?)

Introduce renormalized field as &z = ®y/+/Ze = renormalized propa-
gator

iAR(p) = / d'ze™ " (0| T[@r(x)DR(0)]]0)
i
p? — M2 — Zg¥(p?) + 0+
S(M?) = Y(M?) =0 = residue = 1.
In the vicinity of the pole, renormalized propagator behaves as a free
propagator with physical squared mass M?.
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At lowest order (D = 2), the propagator simply reads

1

[/ <p> p2—M3+ZO+7

(5.72)

with lowest-order squared masses M¢
M;, = 2By,
My = Bo(in +my),

2 .
M, = -Bo (1 + 2m) .

(Subscript 2 refers to chiral order 2. We assume isospin symimetry.)

Ly and L, (without external fields) generate vertices with an even num-
ber of Goldstone bosons only = self-energy contributions at D = 4:

333



\

\ /
—-—>—-@-——>—— --—»—@j—--»—-

We need
Line = L3+ L7, (5.73)
where
1
£° = 57 {Te([6: 0,0100"0) + ByTr(Mg*)} (5.74)
0

Q: Which terms of £4 contribute?
A:

e Terms ~ Lg, L1y, Hi, Hy do not, because they either contain field-
strength tensors or external fields only.

e 0,U = O(¢) = terms ~ Ly, Ly, Ly are O(¢*) = do not contribute.
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e Candidates: L4 - Lg
e Lixample:
LyTe(0,U0"UNTe(xU' + Ux') =
L4F302[8M778“77 + 0,70" 7" + 20,7t 0" + 20, KTO' K~
+20, K 0" K 4+ O(¢")|[4Bo (2 + my) + O(¢7)].
e Remaining terms as Fxercise.

We obtain for £3°

1
£Z¢ =3 (61,77772 + bnﬁunﬁun)

1

—3 (aﬂﬂowo —- bﬂaﬂoaﬂwo)
—a, T T — bWE?MWJF(?“W_

—CLKK+K_ — bK8HK+8“K_
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—ax K K" — b0, K'0" K", (5.75)
with constants ag and by

6482

= S3p (211 4 my) (h + 2my) L + 2( — m)* Ly + (1”4 2m?) Ls]
168 1
b, = — F20 [(zm + mg) Ly + g(m — Qms)L5] ,
0
6483 )
a, = FQO [(zm + mg)mLg + mQLg] :
0
168
by = ——— (20 + my) Ly + 1 Ls)
FO
3282
ax = F20 [(an + myg)(m + ms)Lg + =(m + m8)2L8] :
0
168 X L, .
b[{ = — F20 [(Qm + mS)L4 + 5(772 + m3>L5] . (576)
0
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Self energies at O(q*) are of the form
So(?) = Ao + Bop? (5.77)

Constants Ay and By receive a tree-level contribution from £4 and a
one-loop contribution with a vertex from L.

e Tree-level contribution of £4: Lagrangians of Eq. (5.75) contain ei-
ther exactly two derivatives of the fields or no derivatives at all.

Example 7. Feynman rule from L. 0,¢ generates —ip, (ip,) for
incoming (outgoing) line:
~—bree . 1 L. . .
—i%,(p") = 12 | =5ay = 5by(ipu) (=ip") | = —ilay + byp).
Factor of 2 takes account of two combinations of contracting the
fields with external lines.

e Argument for one-loop contribution: Lagrangian ,C;l(b contains either
two derivatives or no derivatives, symbolically ¢pdpO¢ or ¢*, re-
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spectively.

First term = M? if both ¢s are contracted with external lines, and
p? if both O¢s are contracted with external lines. “Mixed” situation
vanishes upon integration.

Second term = no momentum dependence.

Example: Pion-loop contribution to 7% self energy
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Apply Feynman rule of Eq. (5.46) fora = c=3,p, =p. =p,b=d = j,
and py, = pg = k:

.3
/ o 43F22{63]53] (p+k)*+2p-k+2p- k+Mf2]

7=1
+3%6[(p — p)* — 2p° — 2k + M2 )]

N——
— 3
37 <39 2 2 2
9% (p — k) —2p-k—2k°p+Mﬂ,z]}k2 V0
— 1 2
1 [ d*k i i
= Z —4p® — 4k* + 5M? 5.78
s i (M) e 67

Explanation of symmetry factor 1/2:

Feynman rule of Eq. (5.46) results from 4! = 24 distinct combinations
of contracting four field operators with four external lines. Two lines
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have to be selected as internal lines: = 6 possibilities to choose one pair
out of 4 field operators to form internal lines. For the two remaining
operators one has two possibilities of contracting them with external
lines. = 6 x 2 = 24/2 combinations.

Integral of Eq. (5.78) diverges = dimensional regularization. Besides [
we need

wn. [ A"k kK,
u z/ o R = ME 0T 9 C. (5.79)
Integral contains no external momenta, g, 1s the only symmetric second-
rank tensor.
Determination of C' (simplest example of Veltman-Passarino procedure).
Contract Eq. (5.79) with ¢" in n dimensions and add 0 = —M?* + M?
In numerator:

n 2 2 2
pony [ AR R MM,
( g gu L.

S O Ty = Ve
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Make use of

d"k
4—n
=0
a Z/ (27)"

in dimensional regularization which is “shown” as follows. Consider
(more general) integral

/ d"k(E*)?,
substitute k = Ak’ (A > 0), relabel k' = k
RO / (K. (5.80)

A > 0 arbitrary A for fixed p, the result is to hold for arbitrary n = 0 in
dimensional regularization. (Note: This has the character of a prescrip-
tion. Integral does not depend on any scale; its analytic continuation is
ill-defined in the sense that there is no dimension n where it is meaning-
ful. It is ultraviolet divergent for n + 2p > 0 and infrared divergent for
n+2p <0.)
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=

v (4 . — —QW,LL .
(2m)" k2 — M? 4407 n 2m)"k? — M? 4407

M2
— —gMV](MQ, ,u2, n),
n
1.e.
M2
C = —I(M? pu?n).
n

Pion-loop contribution to the 7" self energy

)
@(—4192 + M2 )I(M; 5, 1 n).
0

e Contribution indeed of the type A + Bp?.

e Diverges as n — 4.
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Systematic analysis of all loop contributions + tree-level contributions
=

Mz, 1 9 1 2 1 >
A’]T — FO2 {\_6[<M7T,2) o 6I<M77,2> R §[<MK,2>
loop contribution
:|—32[<2m + mS)BOL(; + mBOL8l }7

tree-level Egntribution
2I(MZ,) 11(Mg,) 168,

7

B, = 2 + m) Ly + L)
3 +3 72 72 [(2m 4+ mg) Ly + mLs]
Mpy 1 9 1 9 1 9

1
+32 (Zm -+ mS)BoLﬁ -+ §<m + ms>BOL8 }7
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_ }](M3,>+}I<M§2)+11<M?<,z)
I 7 R 7 F02

1

Mz, 1 1 1
>] # o FO) - S0 + 5104

M7, , )

7 [16M,; 5 Lg + 32(2m + my) By Lg]
0

128 B2 (. — m)*

3L L
I(M%,) 16 M2,
BT? — F02 — — F2 (Qm + ms)BoL4 — 8—=- F2 L5 (581)

(Dependence on p? and n in integrals I(M?, u*, n) suppressed.)
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e Integrals I and bare coefficients L; (with the exception of L) have
1/(n — 4) poles and finite pieces.

e Coefficients A, and B, are not finite as n — 4 (no observables!).

Determine masses at O(q*)

M? = Mj + % (M?) (5.82)
using predictions of Eq. (5.77) for self energies,
M2+ A
M? = M?+ A+ BM* = M? = 12 +B = M;(1+ B)+ A+ 0(¢°),

because A = O(q*) und B = O(q¢?). Express bare coefficients L; in
terms of renormalized coefficients by using Eq. (5.63) (Exercise) =

M? M? M? M?
MQ _ M2 1 T2 1 T2\ 7,2 1 1,2
ri = Mea{l+ 322 Fy n( W2 ) T 96mE\ 2
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16

F2 [(2m + my)By(2Lg — L}) + mBy(2LE — LE)) }, (5.83)
M, M?
2 1,2
MK,4 — MK2{1+4872F21 ( 142 )
16 T T 1 ~ T T
F2 (2m + mg)By(2Lg — LY) + §(m + ms)By(2Lg — LY) },
(5.84)
M? M? M? M?
M2, = M2y |1+ —— 2ol | —2 | — 22 In | —22
", 4 1672 F; 142 2412 F; 2

16 r r MT?Q r r
F2 —(2m + my)By(2Lg — L)) + 8—= 2 (2Lg — L)

M (M) M (M
967T2F 9672 F2 12 ) 32w 2
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M? M?
M m( )

482 Fy (2
128 B2(m — my)?
LB Blm 2m> (3L% + LY). (5.85)
9 F;
Remarks

e Physical masses are finite = bare coefficients L; must be infinite in
order to cancel infinities resulting from divergent loop integrals.

e Masses vanish if quark masses are sent to zero. [Self interaction in Lo
(in the absence of quark masses) does not generate Goldstone boson
masses at higher order.|

e Two types of quark-mass dependence

- 2
1. Analytic terms ~ mg x Lj.
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2. Non-analytic terms ~ mg In(m,)—so-called chiral logarithms—
which do not involve new parameters.

Li and Pagels: Perturbation theory around a symmetry which is
realized in Nambu-Goldstone mode results in both analytic as well
as non-analytic expressions in the perturbation.

e Scale dependence of L! is by construction such that it cancels the
scale dependence of chiral logarithms. Physical observables do not
depend on the scale !

From Eq. (5.66),

we obtain




Also
4y, (%> — oL ) — () = =2

dp \ p? dp 7
Example pion mass:
2 2 2 2
dMTFA _ M7T,2 {MWQ Mn,2<_2>
du 16m2uFy 6

+16[(2m + my) By(—206 4+ T'y) + mBy(—2Ts + 's)] }

2

167T2,LLF2{

2
— 2Bym + 9(m + 2m) By

11 5
+16 | (21 4+ my) By ( 2— + )+mBo( 2—

144 8

\ 7 \
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Chapter 6

Chiral Perturbation Theory for Baryons

e So far: Purely mesonic sector involving interaction of Goldstone
bosons with each other and with external fields.

e Now: Matrix elements with a single baryon in the initial and final
states.

6.1 Transformation Properties of the Fields

References:
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e S. Weinberg, Phys. Rev. 166, 1568 (1968)
e S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239 (1969)

e C. G. Callan, S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev.
177, 2247 (1969)

e H. Georgi, Weak Interactions and Modern Particle Theory (Ben-
jamin/Cummings, Menlo Park, 1984)

e J. Gasser, M. E. Sainio, and A. Svarc, Nucl. Phys. B307, 779 (1988)

Aim: Most general description of interaction of baryons with Goldstone
bosons and external fields at low energies.

Discussion for nucleons [SU(2) ChPT] and baryon octet [SU(3) ChPT].
Consider nucleon doublet and octet of %Jr baryons (see Fig. 4.2)

U = (g) (6.1)
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8 + p
AaBa \/_ \/_ 1 v0 1
a=1 =" = —2 A\
V6
e Flach entry is a Dirac field.

e B+ BI.

Representation of groups H = SU(2)y/SU(3)y on {V}/{B} [see also
Eq. (5.6)]:

U= VU, VeSUQ2)y, (6.3)
B — VBV VeSUu@B3)y. (6.4)
e U transforms under the fundamental representation of SU(2).

e B transforms under the adjoint representation of SU(3).

Realization of SU(N), x SU(N) (see textbook by Georgi for more de-
tails). Start with G = SU(2), x SU(2)p.
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Recall
U~ RUL'

defines nonlinear realization of G. Introduce u?(x) = U(x) and define
SU(2)-valued function K (L, R,U) by

uwru = VRUL = RuK ' (L,R,U), (6.5)
1.e. »
K(L,R,U)=u"'Ru=VRUL' RVU.
Claim:

w(g)r(g)H(g:)z(K([?(]]%f;])\p) (6.6)

defines operation of G on the set {(U, V)}.
Verification:

e [dentity leaves (U, V) invariant.
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e Homomorphism property
U RyUL!
_ RiRULIL!
K(Ly, Ry, RRUL)K (Lo, Ry, U)W

RiRyU(LyLy)!
K(L1Ly, RiRy, U)W

= »(9192) < g > -

We made use of (Exercise)
K(Ly, Ry, ReUL)K (La, Ro, U) = K((L1Ls), (RiRs), U).

Remarks:

e For general group element g = (L, R) the transformation behavior
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of ¥ depends on U!

e Special case of isospin transformation: R =L =V. =« = VuVT,
because

U =u?=VuVVuVT = ViV = VUV,
Compare with Eq. (6.5) = KXV, V,U)=Vior K(V,V,U)=V

= WV transforms linearly as isospin doublet under the isospin sub-
group SU(2),, of SU(2); x SU(2)p.

General feature: Transformation behavior under the subgroup which
leaves the ground state invariant is independent of U.

e Various realizations may be connected to each other using field re-
definitions.

Analogously: For G = SU(3); x SU(3) one uses nonlinear realization

#l9) (g) ~ <g> - (K(L,R, U?g?r@,}z, U)) - (69)
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where K is defined completely analogously to Eq. (6.5) after inserting
corresponding SU(3) matrices.

Generalization to other multipletts: Define transformation behavior un-
der subgroup H in terms of V (and VT). Replace V. — K (and
Vi KT).

6.2 Baryonic Effective Lagrangian at Lowest Order

References:

e J. Gasser, M. E. Sainio, and A. Svarc, Nucl. Phys. B307, 779 (1988)
e A. Krause, Helv. Phys. Acta 63, 3 (1990)
e E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991)

e V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meiiner, Nucl. Phys.
B388, 315 (1992)
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e H. Georgi, Weak Interactions and Modern Particle Theory (Ben-
jamin/Cummings, Menlo Park, 1984)

e B. Borasoy, Phys. Rev. D 59, 054021 (1999)

Aim: Construction of effective 7/N Lagrangian EE}K, assuming local
SU(2)z x SU(2)p x U(1),, symmetry.

Transformation behavior of external fields

ry = Ver, Vi +iVe0, Vi,
L, — VL VI +ivio,V],
vff) > vff) - 0,0,
s+ip — Vg(s+ z'p)VLT,
s—ip — V(s — z'p)V}];.
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Transformation behavior of nucleon doublet ?nd of U
U(z) Vir(z)U(z)V;(2)
(5601 ) = (it vhie v viopee ) ©9

Introduce covariant derivative D,V transforming as W:

! .
D, V(z) — [D,V(x)] = exp[—iO(2)| K [VL(x), Vr(z), U(x)|D,¥(x).
(6.9)
Since K depends on Vi, Vg, and U, we expect that covariant derivative
contains u, u', and their derivatives.

[ntroduce so-called chiral connection (note d,uu’ = —ud,u’),
1 . .
I, = 5 [u'(0, — ir,)u +u(d, —il,)u'], (6.10)
and define
D,V = (9, + T, — i)V (6.11)

Need to show
D'V = [9,+ T, —i(v}) — 9,0)] exp(—iO) KV
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= exp(—iO)K (9, + I, — i) V. (6.12)

Make use of product rule
0,lexp(—iO) K| = —i0,0 exp(—i0) K V+exp(—i0)0, K V+exp(—i0) K0, V,
multiply by exp(i©) = condition

9,K = KT, — T K.

Eq. (6.5),
K = u"Wpu = T4/ Viu = U "WVeu = o'Vy U ,V}];VR U= u'VLuT,
=

KT, = TK) = K [ul(@ = iru] = |10 — Var, Vi + Vad,Vih'| K

HR = Lyry = Lyu <> ul ' < u'h)
= uVR(Ou — ir,u) —uTou K
uTVau
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o/ T T
i WVar, Vil K —u"Vz0, V3 W K,
U Vieu

HR— Lyry — Lyu < ul ! < /)
= W "VRo,u — i "Vpru — u’Té‘Mu’u’i Veu

\ &

—ou"
i TWVer,u — o'l YRQMVAV@ u
~0,Vi
HR— Lyry — Lyu < ul < /)
= u"WVrdu + 0,/ Wru + 410, Vru
+(R— Lyu < ul o < u'h)
= 0,(uVru +u'Viu') = 20,K. /
At O(q): Another Hermitian building block, so-called chiral vielbein,
w, =14 [u'(0, — iry)u — u(8, —il,)ul] . (6.13)
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e Under parity transforms as axial vector

Uy, Ky u(0" — i — ul (0" — i u] = —u.
e Under SU(2); x SU(2), x U(1)y transforms as (Exercise)
U, KuMKT.

Structure of the most general effective 7 /N Lagrangian describing pro-
cesses with a single nucleon in initial and final states:

VOU.
O is operator acting in Dirac- and flavor space transforming under
SU(2), x SU(2), x U(1)y as KOK'. Lagrangian must be a Hermi-

tian Lorentz scalar which is even under the discrete symmetries C', P,
and T

Lagrangian with smallest number of derivatives

£7(T1]2, = (zlp —m + %47“75%) v, (6.14)
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‘Two parameters

e Chiral limit m of nucleon mass [physical nucleon mass: my = 939

MeV. Theoretical analysis: m = 883 MeV (for fixed mg # 0)].

e Chiral limit g, of axial-vector coupling constant g4. Physical value
determined from neutron beta decay: g4 = 1.2695 4= 0.0029.

Overall normalization: External field and pion fields — 0 = free La-
grangian with mass m.

Discussion of power counting

Consider chiral limit: There is no reason for nucleon mass to become
small = 9" acting on nucleon field does not produce “small” quantity
= new features of chiral power counting in baryonic sector.

Counting of bilinears W'
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Consider matrix elements of positive-energy plane-wave solutions to the
free Dirac equation in the Dirac representation:

(E t) exp(z’pzv-:vNEN+mN< i > (6.15)

EN+mN

e \ two-component Pauli spinor;

o phyv = (En,Dy) with Ey = /P + m3;

e Nonrelativistic limit: Lower (small) component suppressed with |py|/m
relative to upper (large) component.

Divide 16 4 x 4 matrices into

&=Ly 7o,
O = {7,y +", "},
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where



o

Odd matrices couple large with small components; do not couple large
with large components.
Even matrices couple large with large components; do not couple large
with small components.
0" produces phy = (my,0) + (Ey — my, Py ). First term O(q") and
second term O(q).

Summary of chiral power counting (of new elements):

U, ¥ =0(q"), DV =0(q"), (i) —m)¥ = O(q),

1y Vs V5%, 0 = O(q°), 15 = O(q). (6.16)
The given order is always the minimal one. For example, 7, has O(¢")
piece (79) and O(q) piece (7;).

Construction of SU(3); x SU(3) , Lagrangian similar. Consider building
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blocks transforming as K - -- KT. Take products, sandwich between B
and B and take trace.

Lowest-order Lagrangian

_ D_ F_ -
LE\?B =Tr |B (i) — M) B] —ETI” (By" 5 {wu, B})—QTI (By"ysluy, B]) -

(6.17)
e )M mass of baryon octet in chiral limit.
e Covariant derivative defined as
D,B=0,B+|l, B, (6.18)
with I', from Eq. (6.10) [for SU(3), x SU(3)z].

e Constants D and F from fit to semileptonic decays B — B'+e~ +1,
at tree level:
D =0.80, F =0.50. (6.19)
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Further values used in the literature: (D = 0.75, F = 0.50), (D =
0.804, F' = 0.463).

6.3 Pion Nucleon Scattering at Lowest Order

References:

e 5. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

e Y. Tomozawa, Nuovo Cim. 46 A, 707 (1966)

e M. Mojzis, Eur. Phys. J. C 2, 181 (1998)

e N. Fettes and U.-G. Meifiner, Nucl. Phys. A676, 311 (2000)
e T. Becher and H. Leutwyler, JHEP 0106, 017 (2001)

e R. Koch, Nucl. Phys. A448, 707 (1986)

e . Matsinos, Phys. Rev. C 56, 3014 (1997)
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e H. C. Schroder et al., Eur. Phys. J. C 21, 473 (2001)

Effective Lagrangian of Eq. (6.14) reproduces famous Weinberg-Tomozawa
predictions for s-wave scattering lengths.

General parameterization of invariant amplitude M = ¢T" for the pro-
cess m(q) + N(p) = 7'(¢') + N(p')

/ ) 1 . 1 G A—
T, q;p',q") = a(p'){ 5{Tb,fr YA (v, vp) + 5[7'[)77' | A~ (v, vp)
& ~ v H,—/
5ab — €4 TC
1 : cp—
+5(d +4) 0B (v,vp) — ieaeT B~ (v,vp)] }u(p).

(6.20)
Two independent scalar kinematical variables

—_— /. /. ,
L, _s—u_+r)-qg_(p+p) 7 (6.21)

Am 2my 2mpy
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¢ t—2M?
vp = L4 _ T (6.22)
2mN 4mN

with Mandelstam variables

s = (p+4q),

t = (' —p),

uw = (p—q),
s+t4+u = 2m3 +2M->.

Pion-crossing symmetry
T(p,q:p,¢) =T"(p, ~dp', —q).
(Exercise) =

AT (—v,vg) = AT (v,vg), A (—v,vp)=—A"(v,vp),
BT (—v,vg) = —B"(v,vg), B~ (—v,vg) = B (v,vp).
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[sospin decomposition
(I BIT|L, Iy = T'6181, 0,
Relation between the two sets

T>
T

T+ 427",
T —T". (6.23)

Nlcw DNl

e Evaluation of tree-level approximation to 7/NV scattering

obtained from L’S]i,

Consider chiral vielbein without external fields (FExercise)

u, = — F“¢ + O(¢%) (6.24)

and chiral connection (Exercise)

L2 Fx 0,6+ O, (6.25)

by = 4F
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lgy - ba b 1 - - 7 g
Lin = —§F‘I’7M%T 0,0V — m‘lwﬂ T ¢i< @mé v (6.26)
ecdeTCqﬁda,uqbe

e First term: Pseudovector pion-nucleon coupling.

e Sccond term: Weinberg-Tomozawa contact interaction.
Feynman rules

e for an incoming pion with four-momentum ¢ and Cartesian isospin
index a:

———¢’757'a, (627)

e for an incoming pion with ¢, @ and an outgoing pion with ¢, b:
/

- 1 ¢ ( sda seb db sea - ¢+¢ c
(4 (—m) ’)/MECdeT (5 0 ’Lq:jJ + ) <_7’q>ﬂ) = WGCL[MT .
(6.28)
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Calculation at lowest order: m — my, I' — F, and g, — g4, because
difference is O(q?).

Contact contribution

q,a q,b
-l
P p'

Mo = a2 ez - i3l 5+
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Remark: “Conventional” calculation (PS or PV couplings) does not
generate such a term.

s- and u-channel nucleon-pole diagrams

q,a q,b q,a q,b
\\ p: \\ //
« 7 i

—— e
ppt+qgyp p p—q p




— zg—Au(p')TbT“(—¢/) 1 - dvsu(p)

1F? [y
+z%u( />Ta7bq%¢/ — ql_ mN(_¢/>75U<P>. (6.30)

s- and u-channel contributions related via pion crossing a <+ b and
q <> —¢'. In the following: Explicitly calculate s-channel contribution,
obtain u-channel contribution through crossing.

Make use of Dirac equation and rewrite
drsulp) = (F +4 —my +my — p)ysulp)
= (i +d — mn)ysulp) + 2myvysu(p).

=

2
. ga b_a 1
M, = Z—4F2u(p)7 74— %)7535, T4 —my

U
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<[(¢f + ¢ —my) + 2my] y5u(p)
T IA b | () + (—%’)%ﬁ,_'_gﬂl_ mNQ’mN% u(p).

Repeat procedure

u(p)g s = ulp)[—2mnys — s(# + 4 — m)].

=
2
_ - 94 b_a
M, = Z@U<p)7 T((—4) +4mm5 yn ¢’ s +2mN] (p)-
PS Couphng
(6.31)
PS result using Goldberger-Treiman relation
A _ &N
F m

g Pion nucleon coupling constant in chiral limit.
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WP s q,l_ osulp)
- a(p)s (Z‘ff/fj;j Ry
DIrac ed. oo v q,?; =, 15uP)
_ —u(p') T q,q)i; — mgv“”(p)
momentum cons. (p,)%({)'iﬁq’; 7_;5;; u(p)
o ea sz(v1 — vp) _%U@IW .



1 2
M, = ;A u(p)rir [2’mN + (¢ +¢) (—1 _ N )] u(p).
2 V—Up
(6.32)
u-channel result through substitution a <+ b and ¢ <+ —¢’

M, = i2A a(p))rort lsz + %((j +q) (1 — )] u(p). (6.33)

No t-channel contribution, since 37 vertex does not exist.

ZmN

V+ VR

Combine s- and u-channel contributions using

1 1
o1t = 5{76, T} + 5

Lo )
1 4 1 _ 2VB

v—vg vH4vg Vvi-uvy

1 1
[7_b7 Ta]’ TaTb _ 5{7_197 Ta} . 5[7_5)7 Ta]’

and
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Summary of contributions to AT and B*:

amplitude\origin PS APV | contact
A+ 0 Gl
F2
T
A~ 0 0 0
p
Bt _9aq mpyv 0 0 gp4 mpyv
F? yQ—VJZB
B~ _émNVB . 9124 1 ga myvRB
F2 1/2—1/% 2F2 2F2
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e Scattering lengths

Consider threshold kinematics

M2
p'=p* =(mn,0), ¢ =¢"=(M:0), Vlw=M:, vBln= e
my
(6.34)
Using
ulp) > Vam () al) > vamy (o
= matrix elements at threshold
Tl = 2myx"t [0% (AT + MB") —ieqe (A~ + M:B7)],, X.
(6.35)

Using

2
" M, 1
[V2_V}29]thr:iw72<1__4)a h= A
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2 2
ab gAmN gA muy 1
Tlthr = QmNX”L [(5 ( FE + M, (_FE) Mwl B qu2)
. PS
ChPT = PV
o, 1 A g 1\ 1
—i€apeT M, (QF% —3r2 pE\3) T ) | x. (6.36)

. PS

ChPT

Discussion of s-wave scattering lengths.
Consider differential cross section in center of mass system

do |q"| 1 ’ 2
— = T“. 6.37
Q2 |q]| (87T\/5> o (6.37)
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At threshold
do 1 2 |
| = T1? . = lal?. 6.38
dQ . (87T(mN—|—M7T)) ‘ |thr ‘CLl ( )

Definition (via multipole decomposition)

+ o ].

1
TF e = T A"+ M.B*|, . (6.39)

0T Sa(my + M) Am
Index 04: 7N system is in s wave (I = 0) with total angular momentum
1/2=0+1/2.
Results of table =

_ M 91241#2 1 M 9
to+ 8m(1+ p)F? ( Ty 1 — MZQ 8m(1+ ,u)Fﬁ[ +Old)

(6.40)
M
; o = 0() (6.41)

oy = C16m(1+ p) F2q — i
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Linear combinations a% — aaL .+ 2a,, and a% = ag L g
1 M
7 — O(M?
= e T O,
3 M
2 = — O(M?
‘ 8m(1+ p)F? +OM),
satisfy Weinberg-Tomozawa relation
M 3
I T
= — II+1)—---2 6.42
because
1 1
R O O S
3% 3
[=—-: — ——— —2=1
2 2 2 A4

[The result, in principle, holds for a general target of isospin T (except
for the pion) after replacing 3/4 by T'(T + 1) and pu by M, /Mr.]
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Remarks:

e As in 7mm scattering, scattering lengths vanish in the chiral limit.
Interaction of Goldstone bosons with other hadrons vanishes in zero-
energy limit.

e PS coupling

—ag, ~ proportional my instead of ~ pM,. Contradiction to
requirements of chiral symmetry:.

— ay, 1s too large by a factor of g% in comparison with the two-pion
contact term of Eq. (6.29) (Weinberg-Tomozawa term) induced
by nonlinear realization of chiral symmetry:.

e PV coupling

— Totally wrong result for a,, , because it misses the two-pion con-
tact term of Eq. (6.29).
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scattering length ag, [MeV™! ag, [MeV™]
tree level result —6.80 x 107 +5.71 x 10~*
ChPT O(q) 0 +5.66 x 10~
HBChPT O(q*) [3] —1.3 x 1074 +5.5 x 1074
HBChPT O(q?) [3] (=74+9)x 10> | (+6.7+1.0) x 10~*
HBChPT O(q*) [1] [4] —6.9 x 107° +6.47 x 107
HBChPT O(q*) [11] [4] +3.2 x 107 +5.52 x 1071
HBChPT O(q*) [II1] [4] +1.9 x 107 +6.21 x 10~
RChPT O(q*) (a) [3] —6.0 x 107° +6.55 x 107
RChPT O(q*) (b) [5] —9.4 x 107° +6.55 x 10~
PS —1.23 x 1072 +9.14 x 10~
PV —6.80 x 107° +5.06 x 107°
empirical values [6] (—=741) x 107 (6.6 £0.1) x 1074

empirical values |7]

(2.04 £1.17) x 107

(5.71+£0.12) x 10~*
(5.924+0.11) x 10~*

experiment |§]

(—2.7£3,6) x 107°

(4+6.59 4 0.30) x 10~*
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6.4 Example for a Loop Diagram
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6.4.1 Power Counting

e Power counting: Associate chiral order D with a diagram

— Square of the lowest-order pion mass:
M?* = B(m, +my) ~ O(¢*)
— Nucleon mass in the chiral limit m ~ O(q")
— Loop integration in n dimensions ~ O(¢")
— Vertex from EST%) ~ O(g*)
— Vertex from E;?, ~ O(¢"
— Nucleon propagator ~ O(g 1)
— Pion propagator ~ O(q™?)

6.4.2 One-Loop Correction to the Nucleon Mass

e Example: Contribution to nucleon mass
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Goal: D=n-1-2-1-1-14+2-1=n-1

How this is achieved, see Assignment 13.

6.4.3 The Generation of Counterterms *

The renormalization of the effective field theory (of pions and nucleons) is performed by expressing
all the bare parameters and bare fields of the effective Lagrangian in terms of renormalized
quantities [see J. C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984)
for details]. In this process, one generates counterterms which are responsible for the absorption
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of all the divergences occurring in the calculation of loop diagrams. In order to illustrate the
procedure let us discuss Efrljzf and consider the free part in combination with the 7V interaction
term with the smallest number of pion fields,

= 1
/37(71]2, =V, (ifylﬁ“ — mg — _@,Yﬂ,ym_a@uﬂg) Uy 4 -+, (6.43)

2 F

given in terms of bare fields and parameters denoted by subscripts 0. Introducing renormalized
fields (we work in the isospin-symmetric limit) through

a
a T

— T = T = V=,
\/Z\IJ \/Z7T

we express the field redefinition constants v/Zy and +/Z,; and the bare quantities in terms of
renormalized parameters:

(6.44)

Zy = 1462y (m,gy4,9,V),
Z?T — 1+5Z7T(m7gAugi7V)7

moy = m(y)+5m(m7gAugi7V)7
gAO = gA(V) + 5gA (m7 g459i; I/) 3 (645)
where g;, i = 1,--- 00, collectively denote all the renormalized parameters which correspond to

bare parameters g;, of the full effective Lagrangian. The parameter v indicates the dependence
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on the choice of the renormalization prescription.! Substituting Eqgs. (6.44) and (6.45) into Eq.
(6.43), we obtain

ﬁgrlj)v = ﬁbasic + »Cct + - (646)
with the so-called basic and counterterm Lagrangians, respectively,?
T . I 1 g4 aq, _a
Ebasic =V Z%ta —m — 5?7#757- o' \117 (647)

Lo = 0ZgTin, 0"V — §{m} TV — %5 {%A} T, 570",
(6.48)
where we introduced the abbreviations
Mq{m} = Zgm+ Zydm,

a1l _ 84 840 84 84 _
5{F} = (5Z\IJF\/Z+Z\IJ(FO F)\/ZW+F(\/Z 1).

In Eq. (6.47), m, g4, and F denote the chiral limit of the physical nucleon mass, the axial-
vector coupling constant, and the pion-decay constant, respectively. Expanding the counterterm
Lagrangian of Eq. (6.48) in powers of the renormalized coupling constants generates an infinite
series, the individual terms of which are responsible for the subtraction of loop diagrams.

Note that our choice m(v) = m, where m is the nucleon pole mass in the chiral limit, is only one among an infinite number of
possibilities.
2Collins uses a slightly different convention which is obtained through the replacement (§Zgm + Zgdm) — dm.
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