Theoretical Elementary Particle Physics Exercise 2

12 November 2018

1 Quantization of the scalar field (15 points)

The generating functional for $V=0$ is defined as $G_{0}(j)=Z_{0}(j) / Z_{0}(0)$. Derive the following result:

$$
\begin{equation*}
G_{0}(j)=\exp \left\{-\frac{i}{2 \hbar} \int d^{4} x d^{4} y j(x) \Delta(x-y) j(y)\right\} \tag{1}
\end{equation*}
$$

2 Path integral for fermions (85 points)

2.1 Grassmann algebra (15 points)

The Grassmann algebra can be implemented using anti-commuting matrices. Derive the matrix representation for the case of $n=2$ generators. Hint: first, show that it is not possible to construct a 2×2 matrix representation.

What is the dimension of matrices for the case of n generators?

2.2 Berezin integral (50 points)

Consider the Gaussian integral over Grassmann variables. It can be shown, that

$$
\begin{equation*}
\left(\int \prod_{i=1}^{N} d \bar{\theta}_{i} d \theta_{i}\right) \exp \left(-\bar{\theta}_{i} A_{i j} \theta_{j}\right)=\operatorname{det} A \tag{2}
\end{equation*}
$$

where $A_{i j}$ is $N \times N$ Hermitian matrix. This result was obtained on the lecture by expanding the exponential function in a power series.
(a) (10 points) Perform the expansion of $\exp \left(-\bar{\theta}_{i} A_{i j} \theta_{j}\right)$ explicitly for $N=2$.
(b) (20 points) Derive (2) by performing a change of variables which diagonalizes A.
(c) (20 points) Show that

$$
\begin{equation*}
\left(\int \prod_{i=1}^{N} d \bar{\theta}_{i} d \theta_{i}\right) \theta_{k} \bar{\theta}_{l} \exp \left(-\bar{\theta}_{i} A_{i j} \theta_{j}\right)=(\operatorname{det} A) \times\left(A^{-1}\right)_{k l} \tag{3}
\end{equation*}
$$

2.3 Fermionic expectation value (20 points)

Show for the fermionic expectation value of two point function that

$$
\begin{equation*}
\left\langle\theta_{i} \bar{\theta}_{j}\right\rangle=\left(A^{-1}\right)_{i j} \tag{4}
\end{equation*}
$$

