Theoretical Elementary Particle Physics Exercise 1

5 November 2018

$1 \mathrm{SU}(3)_{C}$ group (60 points)

1.1 $\mathrm{SU}(\mathrm{n})$ group (5 points)

Special unitary group of order n is a group of $n \times n$ unitary matrices with determinant 1 . Show that the dimension of $\mathrm{SU}(\mathrm{n})$ group is equal to $n^{2}-1$.

1.2 Properties of Gell-Mann matrices (5 points)

The λ matrices are normalized such that $\operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b}$ (for more properties see Appendix A).
(a) Check this for three combinations of matrices λ_{a} and λ_{b}.
(b) Calculate the structure constants $f_{156}, f_{345}, f_{458}$.
(c) Use $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ to show that $\operatorname{Tr}\left(\lambda_{c}\left[\lambda_{a}, \lambda_{b}\right]\right)=4 i f_{a b c}$ and, by changing the order of the λ, that the structure constants $f_{a b c}$ are antisymmetric in the exchange of two indices.

1.3 Color singlet hadrons (10 points)

Show that for quarks $q_{a}(a=1,2,3=r, g, b)$ in the fundamental representation of color $\mathrm{SU}(3)_{C}$, the combinations $\bar{q}_{a} q_{a}$ (mesons) and $\varepsilon_{a b c} q_{a} q_{b} q_{c}$ (baryons) are color singlets, i.e. invariant under $\operatorname{SU}(3)_{C}$ transformations: $q_{a} \rightarrow U_{a b} q_{b}, \bar{q}_{b} \rightarrow \bar{q}_{b} U_{b a}^{\dagger}$.

1.4 1-gluon exchange potential between different quark states (40 points)

We consider the interaction of 2 quarks due to exchange of one gluon. In QCD, the 8 gluons form a color octet:

$$
\begin{array}{ll}
g_{1}=r \bar{g}, & g_{2}=r \bar{b}, \\
g_{4}=g \bar{b}, & g_{3}=g \bar{r}, \\
g_{7}=b \bar{r}, & g_{6}=b \bar{g}, \\
g_{7} & (r \bar{r}-g \bar{g}), \tag{1}\\
g_{8}=\frac{1}{\sqrt{6}}(r \bar{r}+g \bar{g}-2 b \bar{b})
\end{array}
$$

(a) (10 points) Show that the color factor due to 1-gluon exchange between 2 quarks of the same color, as shown in Fig. 1, is given by $+2 / 3$. Show this explicitly for a blue and a red quarks.

Figure 1: 1-gluon exchange potential between 2 quarks

Figure 2: 1-gluon exchange potential between a quark and an antiquark
(b) (10 points) Calculate next the color factor arising from 1-gluon exchange between a quark and an anti-quark in a color singlet state:

$$
\begin{equation*}
|q \bar{q}\rangle_{\text {singlet }}=\frac{1}{\sqrt{3}}(r \bar{r}+g \bar{g}+b \bar{b}) \tag{2}
\end{equation*}
$$

as shown in Fig. 2. Show, that this color factor is given by $-8 / 3$, yielding an attractive interaction. Note that an antiquark has opposite color charge as a quark.
(c) (10 points) Likewise, show that the color factor arising from 1-gluon exchange between a quark and an antiquark in a color octet state is given by $+1 / 3$, yielding a repulsive interaction (choose one state, it is not necessary to show for all 8 of them).
(d) (10 points) Show that the color factor due to 1 -gluon exchange in the color singlet 3 -quark state

$$
\begin{equation*}
|q q q\rangle_{\text {singlet }}=\frac{1}{\sqrt{6}}(r g b+g b r+b r g-r b g-g r b-b g r) \tag{3}
\end{equation*}
$$

is given by -4 , also giving rise to strong attraction. Hint: consider one initial state, for instance $r g b$, and at the end multiply result by 6 .

2 Quantization of the scalar field (40 points)

Consider the quantum field theory of a real scalar field governed by the Lagrangian,

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} . \tag{4}
\end{equation*}
$$

(a) (30 points) Evaluate the generating functional $\mathrm{Z}[\mathrm{J}]$ perturbatively, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$ as follows. First, show that $Z[J]$ can be written in the following form,

$$
\begin{equation*}
Z[J]=\mathcal{N}\left[1-\frac{i \lambda}{4!} \int d^{4} y\left(\frac{1}{i} \frac{\delta}{\delta J(y)}\right)^{4}+\mathcal{O}\left(\lambda^{2}\right)\right] \exp \left\{-\frac{i}{2} \int d^{4} x_{1} d^{4} x_{2} J\left(x_{1}\right) \Delta_{F}\left(x_{1}-x_{2}\right) J\left(x_{2}\right)\right\} \tag{5}
\end{equation*}
$$

where \mathcal{N} is the J-independent constant. Then, carry out the functional derivatives with respect to J, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$. Using the result just obtained for $Z[J]$, obtain an expression for the generating functional for the connected Green functions, $\mathrm{W}[J]$, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$.
(b) (10 points) Using the result of part (a) for $\mathrm{W}[\mathrm{J}]$, compute the four-point connected Green function.

Appendix A Structure Constants and Color Matrices

The $3 \times 3 \mathrm{SU}(3)$ generators, t_{a}, satisfy

$$
\begin{equation*}
\left[t_{a}, t_{b}\right]=i f_{a b c} t_{c} \tag{6}
\end{equation*}
$$

where $f_{a b c}$ are the antisymmetric $\mathrm{SU}(3)$ structure constants with non-zero values given by

$$
\begin{equation*}
f_{123}=1, \quad f_{147}=\frac{1}{2}, \quad f_{246}=\frac{1}{2}, \quad f_{257}=\frac{1}{2}, \quad f_{367}=-\frac{1}{2}, \quad f_{678}=\frac{\sqrt{3}}{2} \tag{7}
\end{equation*}
$$

and $f_{156}, f_{345}, f_{458}$, can be found in Problem 1.2(b).
A convenient representation of the $t_{a}=\lambda_{a} / 2$ matrices is the one introduced by Gell-Mann in which

$$
\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) . \tag{8}
\end{array}
$$

The structure constants $d_{a b c}$ are defined according to

$$
\begin{equation*}
\left\{t_{a}, t_{b}\right\}=\frac{1}{3} \delta_{a b}+d_{a b c} t_{c} \tag{9}
\end{equation*}
$$

The t_{a} matrices satisfy

$$
\begin{align*}
t_{a} t_{b} & =\frac{1}{2}\left[\frac{1}{3} \delta_{a b}+\left(d_{a b c}+i f_{a b c}\right) t_{c}\right] \\
t_{a}^{i j} t_{a}^{k l} & =\frac{1}{2}\left[\delta_{i l} \delta_{j k}-\frac{1}{3} \delta_{i j} \delta_{k l}\right] \\
\operatorname{Tr}\left(t_{a}\right) & =0 \\
\operatorname{Tr}\left(t_{a} t_{b}\right) & =\frac{1}{2} \delta_{a b} \\
\operatorname{Tr}\left(t_{a} t_{b} t_{c}\right) & =\frac{1}{4}\left(d_{a b c}+i f_{a b c}\right) \\
\operatorname{Tr}\left(t_{a} t_{b} t_{a} t_{c}\right) & =-\frac{1}{12} \delta_{b c} \tag{10}
\end{align*}
$$

The structure constants satisfy the following Jacobi identities

$$
\begin{align*}
& f_{a b e} f_{e c d}+f_{c b e} f_{a e d}+f_{d b e} f_{\text {ace }}=0, \\
& f_{a b e} d_{e c d}+f_{c b e} d_{c e d}+f_{d b e} d_{a c e}=0 . \tag{11}
\end{align*}
$$

In addition,

$$
\begin{equation*}
f_{a b c} f_{c d e}=\frac{2}{3}\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right)+\left(d_{a c e} d_{b d e}-d_{b c e} d_{a d e}\right) . \tag{12}
\end{equation*}
$$

