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Lecture 1

Originally the concept of a field as physi-
cal reality was introduced in the 19th cen-
tury by Michael Faraday in his description
of electricity and magnetism. It did not
receive much attention until the works of
J. C. Maxwell on laws of electromagnetism,
now known as “Maxwell equations”.

In contemporary physics the concept of
a field is used not only to describe electro-
magnetism but basically everything that “lives” in spacetime — particles of matter, forces
between them, collective excitations, even the vacuum.

1.1 The field concept

A field is a generic physical entity that “lives” in space ~x and time t, can carry momentum ~p

and energy E, and, possibly, has intrinsic degrees of freedom such as spin. Mathematically,
a field is a function of space and time coordinates:

ϕ = ϕk(~x, t). (1-1)

The index k runs over the intrinsic degrees of freedom, e.g., spin polarizations.
Since we are going to deal with relativistic theories, where the time are space are treated

equally, we adopt the four-vector notation for the space-time coordinates:

xµ = (c t, ~x) , µ = 0, 1, 2, 3. (1-2)

3
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and assume that the fields live in flat Minkowski space-time with metric:

gµν =


1

−1

−1

−1

 (1-3)

a scalar product,

x · y = gµνx
µyν = xµyµ = xµy

µ = x0y0 − x1y1 − x2y2 − x3y3 . (1-4)

and an infinitesimal interval:
dx2 = c2dt2 − d~x 2. (1-5)

A field is then simply written as ϕk(x), and can be classified according to how it trans-
forms under Lorentz transformations. The most notable examples of relativistic fields are
the electromagnetic and gravitational fields, denoted as Aµ(x) and gµν(x). They are, respec-
tively, a Lorentz vector and a rank-2 tensor.

1.2 Analogies with classical mechanics

The dynamics, the evolution of field’s energy, momentum and intrinsic degrees of freedom,
can be described by a Hamiltonian — a functional of the field and its conjugate momentum
π(x):

H = H[ϕ(x), π(x)]. (1-6)

An expression for the Hamiltonian is all we need to specify a particular field theory (FT).
Recall that in classical mechanics (CM) the Hamiltonian is a functional of coordinates

and momenta of the system: H = H[q(t), p(t)]. Much can be taken over from CM to FT by
replacing

q(t) −→ ϕ(x), (1-7)

p(t) −→ π(x). (1-8)

Similarly,
dq(t)

dt
≡ q̇(t) −→ ∂ϕ(x)

∂xµ
≡ ∂µϕ(x). (1-9)

In analogy one can also introduce the Lagrangian,

L[ϕ, ∂µϕ] =

∫
d~x π(x) ∂0ϕ(x)−H, (1-10)
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and give a definition to the conjugate momentum:

π(x) =
δL

δ ∂0ϕ(x)
. (1-11)

Furthermore, the minimal action principle, the Euler-Lagrange equations, Noether theorem,
and so on can be taken over in a similar way. However, before considering these topics in
detail, we need first to understand the properties of fields under coordinate transformations.

1.3 The concept of path-integral quantization

Around the year of 1933 Paul Dirac conjectured that a quantum-mechanical transition of a
system from position a to position b, can be expressed in terms of the action of the corre-
sponding classical system:

K(a→ b) ∼ e(i/~)S[q
(class.)
a→b ], (1-12)

where q(class.)
a→b is classical trajectory, or the path, the system undergoes from a to b.

Richard Feynman derived the exact formula in 1948. Schematically, it can be written as:

K(a→ b) =
∑

all paths qa→b

e(i/~)S[qa→b]. (1-13)

The difference with Dirac’s formula is obvious: the
answer is formed as a superposition of all possible
paths, not just the classical one. It’s quite amaz-
ing though, that in some cases the Dirac’s and Feyn-
man’s formulas yield identical results.

The path-integral formulation of quantum me-
chanics proved to be a valuable alternative to
Heisenberg’s and Schrödinger’s formulation. This
method can readily be taken over to QFT, using, as we discussed earlier, the transition
from the classical mechanics to classical field theory (i.e., replacing trajectories with fields,
q(t) → ϕ(x), etc.). As the result we will obtain a very powerful and concise formulation of
QFT.

1.4 Path-integral formulation of quantum mechanics: a 1-dimensional system

In classical mechanics we operate with trajectories q(t); they describe how the coordinates
of particles (or, ‘material points’) evolve with time. In quantum mechanics we deal with
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wave functions Ψ(q, t), which give the probability, P = |Ψ(q, t)|2, of finding the system at
position q and time t.

In the limit of vanishing Planck’s constant (~ → 0), the quantum-mechanical picture
should reduce to the classical description. Note ~ is not dimensionless, it’s value is 6.58211899(16)×10−16

eV·s. To define a quasi-classical regime we need identify a quantity would characterize the
dynamics of the system and have the same dimension as ~. Such quantity is the classical
action:

S =

∫ tf

ti

dt L[q(t), q̇(t)] =

∫ tf

ti

dt
(
p(t) q̇(t)−H[p(t), q(t)]

)
(1-14)

Indeed, the Lagrangian, or momentum×velocity, or Hamiltonian, all have the dimension of
energy, while the integration over time gives the dimension of time. The classical regime is
then ~� S, or

~
S
� 1. (1-15)

In this regime, the two pictures (classical and quantum) should reconcile. To see this, it
would be good to formulate the quantum-mechanical probabilities in terms of the classical
action. This is precisely what the path-integral formulation does. Let us see how it can all be
derived using the concepts of quantum mechanics.

The key concept in the path-integral formulation is the amplitude of transition from one
position state to another in some interval of time:

K(qf , qi; tf − ti) . (1-16)

In Dirac’s ‘bra’–‘ket’ notation for the position state |q〉, this amplitude can be written as:

K(qf , qi; tf − ti) = 〈qf |e−(i/~)Ĥ(tf−ti)|qi〉 (1-17)

where the Hamiltonian operator Ĥ = H(p̂, q̂), consists of operators of momentum p and
position q, which satisfy the commutation relation: [p̂, q̂] = i~. One can also introduce the
time-dependent states as

|qt〉 = e(i/~)Ĥt|q〉 (1-18)

and then simply write:
K(qf , qi; tf − ti) = 〈qf tf |qiti〉 . (1-19)

Now, note that, due the completeness of the position state basis,

∞∫
−∞

dq |qt〉〈qt| =
∞∫

−∞

dq |q〉〈q| = 1 (1-20)
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and hence the transition amplitude propagates the system from the initial to final state in the
following way:

|qf tf〉 =

∞∫
−∞

dqiK(qf , qi; tf − ti) |qiti〉 (1-21)

Let us now slice the time interval into a large number N of infinitesimal intervals of size
∆t, i.e., tf − ti = N ∆t. The system evolves then through positions qk = q(tk) in time steps
tk = ti + k∆t, where k = 0, . . . , N , and hence t0 = ti, tN = tf .

Since,

|qk+1tk+1〉 =

∞∫
−∞

dqkK(qk+1, qk; ∆t) |qktk〉 (1-22)

we can write

|qN tN〉 =

∞∫
−∞

dqN−1K(qf , qN−1; ∆t) . . .

∞∫
−∞

dq0K(q1, q0; ∆t) |q0t0〉 . (1-23)

Looking back at Eq. (1-21) we can see that the full transition amplitude is a superposition of
infinitesimal ones:

K(qf , qi; tf − ti) =

∞∫
−∞

N−1∏
k=1

dqk

N−1∏
k=0

K(qk+1, qk; ∆t). (1-24)

The evolution of the system in an infinitesimal amount of time ∆t from position qk to position
qk+1, according to the time-dependent Schrödinger equation, proceeds as follows:

K(qk+1, qk; ∆t) =
〈
qk+1|e−(i/~)Ĥ ∆t|qk

〉
(1-25)

where Ĥ = H(p̂, q̂) is the Hamiltonian, and the initial and final states are the eigenstates of
the position operator:

q̂|qk〉 = qk|qk〉 , (1-26)

that satisfy the orthogonality and completeness conditions:

〈q′|q〉 = δ(q − q′),
∞∫

−∞

dq |q〉 〈q| = 1. (1-27)

In the momentum representation:

|p〉 =
1√
2π~

∞∫
−∞

dq e(i/~)pq|q
〉

(1-28)
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these states are the eigenstates of the momentum operators,

p̂|pk〉 = pk|pk〉 , (1-29)

and are also orthogonal and complete:

〈p′|p〉 = δ(p− p′),
∞∫

−∞

dp |p〉 〈p| = 1. (1-30)

as can easily be shown by using the integral representation of the delta-function:

δ(q′ − q) =
1

2π

∞∫
−∞

dp eip(q
′−q) . (1-31)

Let us insert a complete set of momentum pk eigenstates into Eq. (1-25) so that it becomes

K(qk+1, qk; ∆t) =

∞∫
−∞

dpk 〈qk+1|pk〉
〈
pk|e−(i/~)Ĥ ∆t|qk

〉
. (1-32)

Since the Hamiltonian is function of p and q operators only we can write1〈
pk|e−(i/~)Ĥ ∆t|qk

〉
= 〈pk|qk〉 e−(i/~)H(pk,qk) ∆t (1-33)

where H is a function, not an operator. It is the classical Hamiltonian of the system.
Using Eq. (1-28) and the orthogonality condition one sees that

〈pk|qk〉 =
1√
2π~

e−(i/~)pkqk , 〈qk+1|pk〉 =
1√
2π~

e(i/~)pkqk+1 (1-34)

and substituting these in the previous two equations we find

K(qk+1, qk; ∆t) =

∞∫
−∞

dpk
2π~

exp{ i~ [(qk+1 − qk)pk −H(pk, qk) ∆t]}. (1-35)

This is the expression we substitute in eq. (1-24) to find that in the limit N → ∞, or,
equivalently, ∆t→ 0, the transition amplitude is given by

1In doing this step we have ignored the operator-ordering problem, see P. Ramond, Field Theory, Chapter 2.
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K(qf , qi; tf − ti) = lim
N→∞

∞∫
−∞

N−1∏
k=1

dqk

N−1∏
k=0

dpk
2π~

× exp

{
i

~

N−1∑
k=0

[
qk+1 − qk

∆t
pk −H(pk, qk)

]
∆t

}

=

∫
DqDp exp

{ i
~

∫ tf

ti

dt [pq̇ −H(p, q)]
}
, (1-36)

where in the last step we have used the usual definitions of a derivative and an integral:

lim
∆t→0

qk+1 − qk
∆t

= q̇k (1-37)

lim
∆t→0

N−1∑
k=0

f(tk) ∆t =

∫ tN

t0

dt f(t) , (1-38)

as well as introduced the following definition for continual measures:

Dq(t) = lim
N→∞

N−1∏
k=1

dq(tk), Dp(t) = lim
N→∞

N−1∏
k=0

dp(tk)

2π~
. (1-39)

Note that in the exponent of Eq. (1-36) we have
the classical action of the system, written in terms of
the Hamiltonian, — the Hamiltonian action:

S =

∫ tf

ti

dt [pq̇ −H(p, q)]. (1-40)

Thus, we have derived the following simple formula for the probability amplitude of the
quantum-mechanical transition from position qi to qf during the time tf − ti:

K(qf , qi; tf − ti) =

∫
DqDp e(i/~)S (1-41)

It is a functional (continual) integral over all possible trajectories in the phase space of the
system weighed with an exponent of the classical Hamiltonian action.

1.4.1 Path-integral in terms of the Lagrangian action

In many cases the Hamiltonian can be written as

H(p, q) =
p2

2m
+ V (q), (1-42)
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such that

L(q, q̇) =
mq̇2

2
− V (q) (1-43)

is the Lagrangian. Substituting this Hamiltonian into the path-intagral formula, we can per-
form the Gaussian integral (cf. Appendix A) over pk, as follows:

1

2π~

∞∫
−∞

dpk e
i
~(− p2k

2m
+pk q̇k)∆t =

( m

2πi~∆t

)1/2

e
i
~

m
2
q̇2k∆t (1-44)

and thus obtain

K(qf , qi; tf − ti) = lim
N→∞

( m

2πi~∆t

)N/2 ∞∫
−∞

N−1∏
k=1

dqk exp

{
i

~

N−1∑
k=0

L(qk, q̇k) ∆t

}

=

∫
D̃q exp

{ i
~

∫ tf

ti

dt L(q, q̇)
}

=

∫
D̃q e(i/~)S (1-45)

where the continual measure is defined now as

D̃q = lim
N→∞

( m

2πi~∆t

)N/2 N−1∏
k=1

dqk , (1-46)

and the action S is written in terms of the Lagrangian.
In the absence of interactions and external forces, V (q) = 0, we have

the free-particle amplitude:

K0(qf , qi; tf − ti) = lim
N→∞

( m

2πi~∆t

)N/2 ∞∫
−∞

N−1∏
k=1

dqk exp

{
i

~

N−1∑
k=0

m(qk+1 − qk)2

2∆t

}
.

(1-47)
The integrals here are, again, of the Gaussian type. One integral after another we encounter

∞∫
−∞

dqk exp

{
im

2~∆t

[
(qk+1 − qk)2 +

1

k
(qk − q0)2

]}

=

[
2iπ~∆t

(1 + 1/k)m

]1/2

exp

{
im

2~∆t

(qk+1 − q0)2

k + 1

}
, (1-48)

until finally (after N − 1 integrations) obtain,

K0(qf , qi; tf − ti) = lim
N→∞

( m

2πi~∆t

)1/2
N−1∏
k=1

1√
1 + 1/k

exp

{
im

2~
(qf − qi)2

N ∆t

}
. (1-49)
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It is not difficult to prove by induction that
N−1∏
k=1

1√
1 + 1/k

=
1√
N

(1-50)

Therefore, recalling that N∆t = tf − ti, we arrive at the following result:

K0(qf , qi; tf − ti) =

(
m

2πi~(tf − ti)

)1/2

exp

{
im

2~
(qf − qi)2

tf − ti

}
(1-51)

Let’s examine this expression. First of all, let us observe that this is exactly the Dirac’s
formula, Eq. (1-12), for the free-particle case. Indeed the classical trajectory of a free particle
is:

q
(class.)
i→f (t) = qi +

qf − qi
tf − ti

t, (1-52)

and hence the action is

S[q
(class.)
i→f (t)] =

m

2

(qf − qi)2

tf − ti
. (1-53)

The prefactor of the exponent can be obtained from the superposition principle
∞∫

−∞

dq K0(qf , q; 1
2T )K0(q, qi; 1

2T ) = K(qf , qi;T ). (1-54)

Despite the close connection to the trajectory of a classical particle, the transition ampli-
tude tells us that the quantum-mechanical particle behaves in a qualitatively different way.
The amplitude is oscillating, as if the particle is a wave. The wavelength λ of these oscila-
tions can be computed from the periodicity condition,

2π =
m

2~

[
(X + λ)2

T
− X2

T

]
, (1-55)

where X = qf − qi, T = tf − ti. The result is

λ =
√
X2 + 4π~T/m−X. (1-56)

This looks strange, but for sufficiently large distance X ,
we have

λ =
2π~T
mX

=
2π~
p

, (1-57)

where p = mX/T is the momentum. We have thus ob-
tained the De Broglie relation.

- R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, chapptes 1, 2 ,
and 3.
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2

Lecture 2

2.1 Quantization of a scalar field

In this case, we can quite straight-forwardly replace trajectory q(t) with the field φ(x). The
Lagrangian action is replaced by (in c = 1 units):

S =

∫
d4x

[
1
2∂µφ ∂

µφ− 1
2m

2φ2 − V (φ)
]
. (2-1)

Note that in 0+1 dimension this is the action of a one-dimensional harmonic oscillator. The
conjugate momentum can be defined as

π(x) ≡ δL

δφ̇(x)
= φ̇(x), (2-2)

with the fundamental Poisson bracket is defined for equal time as:

{φ(x), π(x′)}P |x′0=x0 = −{π(x′), φ(x)}P |x′0=x0 = δ(~x ′ − ~x) (2-3)

The Hamiltonian density is given by

H (π, φ) = π(x)φ̇(x)−L = 1
2

[
π2(x) + (~∇φ)2 +m2φ2

]
, (2-4)

and the Hamiltonian is:
H(π, φ) =

∫
d3xH (π, φ). (2-5)

To define the path-integral we discretize not only the time t = x0 but also the space ~x,
and thus obtain a 4-dimensional lattice of size L and spacing a. In each of the 4 dimensions
the number of sites is N = L/a. The lattice sites are labeled by a set (x0

τ , x
1
i , x

2
j , x

3
k), with

indices τ, i, j, k taking values from 1 to N . At each site the field is given by (a real number)

φ(x0
τ , x

1
i , x

2
j , x

3
k) = φijk(tτ ) = φK(tτ ), (2-6)

13
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where by K we will denote a composite index K = (i, j, k), which runs through the N3

combinations.
At each value of t = x0 (or τ ) we have a three-dimensional box with a given set of field

values, called field configuration, which we denote as

q̄τ = (φ1(tτ ), . . . , φK(tτ )). (2-7)

In a similar way we introduce the configuration of conjugate momenta:

p̄τ = (π1(tτ ), . . . , πK(tτ )). (2-8)

Now, the transition amplitude of from a field configuration at ti to a field configuration at
tf can, in full analogy with quantum mechanics, be written as

〈q̄f , tf | q̄i, ti〉 = 〈q̄f | e−(i/~)Ĥ(tf−ti) |q̄i〉

= lim
N→∞

∞∫
−∞

N3∏
K=1

( f−1∏
τ=i+1

dφK(tτ )

f−1∏
τ=i

dπK(tτ )

2π~

)
(2-9)

× exp
{ i
~

f−1∑
τ=i

N3∑
K=1

[φK(tτ+1)− φK(tτ )

a
πK(tτ )−H

(
πK(tτ ), φK(tτ )

)]
a4
}

≡
∫

Dφ(x)Dπ(x) exp
{ i
~

∫ tf

ti

dt

∫
d3x [φ̇π −H (π, φ)]

}
(2-10)

Unfortunately, since the time is treated here in such a special way, the Lorentz invariance
is lost. For most of the applications, it suffices to consider

Z = lim
ti→−∞
tf→+∞

〈q̄f , tf | q̄i, ti〉 =

∫
Dφ(x)Dπ(x) exp

{ i
~

∫
d4x [φ̇π −H (π, φ)]

}
, (2-11)

which has a chance to be a Lorentz-invariant quantity.
Substituting the Hamiltonian, we can perform the Gaussian integral over the momenta,

to find the expression in terms of the Lagrangian action:

Z = N
∫

Dφ(x) exp
{ i
~

∫
d4xL (φ, ∂µφ)

}
, (2-12)

where the normalization factor is:

N =

∫
Dπ e−(i/~) 12

∫
d4xπ2(x). (2-13)

The field configuration at infinite times is called ground state or vacuum. Therefore Z is
the vacuum-to-vacuum transition amplitude, often denoted as

〈0, +∞|0, −∞〉, out〈0|0〉in, . . . (2-14)
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It has a straightforward analogy with the partition function in statistical mechanics, and there-
fore sometimes referred to as the partition function.

2.2 Green’s functions and their generating functional

In the formalism of canonical quantization, the fields are created an annihilated by field oper-
ators acting on the vacuum state. The dynamics of quantum fields can fully be described by
Green’s functions, defined as time-ordered products of field operators between the vacuum
states:

G(n)(x1, . . . , xn) = 〈0|T ( φ̂(xn) . . . φ̂(x1) ) |0〉 (2-15)

It is convenient to introduce a generating functional:

G[j] = 〈0|T e(i/~)
∫
d4xj(x)φ̂(x)|0〉

=
∞∑
n=0

in

n! ~n

∫
d4x1 . . . d

4xnG
(n)(x1, . . . , xn) j(x1) . . . j(xn) (2-16)

such that

G(n)(x1, . . . , xn) = (−i~)n
δnG[j]

δj(xn) . . . δj(x1)

∣∣∣
j=0

(2-17)

In the path-integral formulation the generating functional for Green’s functions is given
by

G[j] =
Z[j]

Z[0]
(2-18)

where Z is the vacuum-to-vacuum transition amplitude in the presence of classical sources.
For instance, introducing a source field j(x) for the scalar field, we have:

Z[j] = N
∫

Dφ(x) exp
{ i
~

∫
d4x

[
L (φ, ∂µφ) + φ(x)j(x)

]}
. (2-19)

The use of sources is already apparent from classical field theory. For the scalar field, the
Euler-Lagrange equation yields the following field equation:

(∂2 +m2)φ(x) + V ′(φ) = 0, (2-20)

where V ′(φ) = ∂V (φ)/∂φ. In the presence of the source it becomes:

(∂2 +m2)φ(x) + V ′(φ) = j(x). (2-21)
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For the free field, V = 0, the equation is easily solved by substituting the Fourier transform:

φ(x) =

∫
d4p

(2π)4
φ(p) eip·x, (2-22)

j(x) =

∫
d4p

(2π)4
j(p) eip·x. (2-23)

(2-24)

The solution is

φ(p) = − 1

p2 −m2
j(p) (2-25)

φ(x) = −
∫
d4y∆(x− y)j(y), with ∆(x− y) =

∫
d4p

(2π)4

eip·(x−y)

p2 −m2 + iε
.(2-26)

The function ∆ is the Green’s function, or in this particular case, a propagator of the field.
Indeed, it describes the propagation of the field from its source at y to an arbitrary point x.
The meaning of the “iε” in the expression for ∆ will be discussed later. Let us just note that
it is important to add to the action a term 1

2iεφ
2, that leads to a factor

e−ε/2~
∫
d4xφ2 (2-27)

in the path-integral expression for Z, which for ε > 0 will ensure the convergence of the
integral.

Let us now consider the partition function Z[j] for the same situation: V = 0, the free
field. The integral over φ is Gaussian, and we find

G0[j] = Z0[j]/Z0[0] = exp
{
− i

2~

∫
d4x

∫
d4y j(x) ∆(x− y) j(y)

}
(2-28)

Expanding the exponent,

G0[j] = 1− i

2~

∫
d4x

∫
d4y j(x) ∆(x− y) j(y)

− 1

8~2

[ ∫
d4x

∫
d4y j(x) ∆(x− y) j(y)

]2

+ . . . (2-29)

it is easy to see that

G
(2)
0 (x2, x1) ≡ (−i~)2 δ2G0[j]

δj(x2)δj(x1)

∣∣∣
j=0

= i~∆(x2 − x1)

G
(4)
0 (x4, x3, x2, x1) ≡ (−i~)4 δ4G0[j]

δj(x4)δj(x3)δj(x2)δj(x1)

∣∣∣
j=0

=
~2

2

{
∆(x2 − x1)∆(x4 − x3) + ∆(x3 − x1)∆(x4 − x2)

+ ∆(x4 − x1)∆(x3 − x2)
}
, (2-30)



2.3 Interactions. Perturbative expansion 17

and so on, while for odd n, G(n)
0 = 0.

2.3 Interactions. Perturbative expansion

Now, we switch on the interaction, V (φ) 6= 0. A generic example would be:

V (φ) =
λ

n!
m4−nφn(x), (2-31)

where n is an integer, and λ is a real constant, called the coupling constant. The mass factor
is introduced to make λ dimensionless. The cases n = 3 and n = 4 are the most well-known.
They are called respectively, “the φ cube” and “the φ to the 4th” theory.

Let us observe that

−i~ δ

δj(y)
e(i/~)

∫
d4xφ(x)j(x)

∣∣∣
j=0

= φ(y), (2-32)

or, more generally, [
− i~ δ

δj(y)

]n
e(i/~)

∫
d4xφ(x)j(x)

∣∣∣
j=0

= φn(y) (2-33)

and hence
V
(

~
i

δ
δj(x)

)
e(i/~)

∫
d4xφ(x)j(x)

∣∣∣
j=0

= V (φ). (2-34)

Using this, the partition of the interacting field in the presence of sources can be written
as:

Z[j] = N
∫

Dφ(x) exp
{ i
~

∫
d4x

[
L0(φ, ∂µφ)− V (φ) + φ(x)j(x)

]}
= N exp [− (i/~)

∫
d4xV (~

i
δ

δj(x)
)]

∫
Dφ(x) exp

{ i
~

∫
d4x

[
L0(φ, ∂µφ) + φ(x)j(x)

]}
= exp [− (i/~)

∫
d4xV (~

i
δ

δj(x)
)]Z0[j] , (2-35)

where Z0 is the functional integral of the free field. Recall that

Z0[j] = Z0[0] exp
{
− i

2~

∫
d4x

∫
d4y j(x) ∆(x− y) j(y)

}
≡ Z0[0]G0[j]. (2-36)

The complete calculation ofZ[j] is still a formidable task, but we can make some progress
in perturbation theory, i.e. assuming V is small (e.g., assuming the dimensionless coupling
constant λ� 1). In this case, we can make a series expansion:

Z[j] = Z0[0]
∑
n=0

1

n!

(
− i
~

)n [∫
d4z V

(
~
i

δ
δj(z)

)]n
G0[j] (2-37)

= Z0[0]

{
1− i

~

∫
d4z V

(
~
i

δ
δj(z)

)
− 1

2~2

[∫
d4z V

(
~
i

δ
δj(z)

)]2

+ . . .

}
G0[j].
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All we need now is to compute the functional derivatives of the type[
~
i

δ

δj(z)

]n
exp

{
− i

2~

∫
d4x

∫
d4y j(x) ∆(x− y) j(y)

}
(2-38)

For example,

~
i

δ

δj(z)
G0[j] = −

∫
d4x∆(z − x) j(x)G0[j](

~
i

)2
δ2

δj(z)2
G0[j] =

[
i~∆(0) +

(∫
d4x∆(z − x) j(x)

)2
]
G0[j]

(
~
i

)3
δ3

δj(z)3
G0[j] = −

[
3i~∆(0) +

(∫
d4x∆(z − x) j(x)

)2
]

(2-39)

×
∫
d4x∆(z − x) j(x)G0[j](

~
i

)4
δ4

δj(z)4
G0[j] =

[
−3~2∆2(0) + 6i~∆(0)

(∫
d4x∆(z − x) j(x)

)2

+

(∫
d4x∆(z − x) j(x)

)4
]
G0[j]

Introducing a “sink” of the source j as

s(z) =

∫
d4x∆(z − x) j(x), (2-40)

and denoting the functional derivative as

G[n](z) = δn/δj(z)n, (2-41)

we observe the following identities:

G0[j] = exp
{
− i

2~

∫
d4y s(y) j(y)

}
, (2-42)

δ

δj(y)
s(z) = ∆(z − y) ≡ 1

i~
∆̃(z − y) (2-43)

G
[1]
0 (z) = − i

~
s(z)G0[j]. (2-44)

We can thus rewrite the above functional derivatives more economically:

−i~G[1]
0 (z) = − s(z)G0[j],

(−i~)2G
[2]
0 (z) =

[
∆̃(0) + s2(z)

]
G0[j]
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(−i~)3G
[3]
0 (z) = −

[
3∆̃(0) + s2(z)

]
s(z)G0[j] (2-45)

(−i~)4G
[4]
0 (z) =

[
3∆̃2(0) + 6∆̃(0) s2(z) + s4(z)

]
G0[j]

(−i~)5G
[5]
0 (z) = −

[
15∆̃2(0) + 10∆̃(0) s2(z) + s4(z)

]
s(z)G0[j]

(−i~)6G
[6]
0 (z) =

[
15∆̃3(0) + 45∆̃2(0) s2(z) + 15∆̃(0) s4(z) + s6(z)

]
G0[j]

In general, we have the following recurrent relation:

(−i~)n G
[n]
0 (z) = (n− 1)∆̃(0) (−i~)n−2G

[n−2]
0 (z)− s(z) (−i~)n−1G

[n−1]
0 (z), (2-46)

with G[0]
0 (z) = G0[j].

Thus, for example, the partition function of the φ3 theory (to the first order in V ) is given
by:

Zφ3 [j] = Z0[j]

(
1 +

i

~
λm

3!

∫
d4z

[
3i~∆(0) +

(∫
d4x∆(z − x) j(x)

)2
])

, (2-47)

while the partition function of φ4-theory is given by:

Zφ4 [j] = Z0[j]− i

~
λ

4!
Z0[j]

∫
d4z

[
−3~2∆(0)2 + 6i~∆(0)

(∫
d4x∆(z − x) j(x)

)2

+

(∫
d4x∆(z − x) j(x)

)4
]
. (2-48)

It can be seen that the contributions which do not contain sources (i.e., pure vacuum
contributions) cancel out of the generating functional for the Green’s functions, e.g.

Gφ4 [j] =
Zφ4 [j]

Zφ4 [0]
= G0[j]

{
1− i

~
λ

4!

∫
d4z

[
6i~∆(0) +

(∫
d4x∆(z − x) j(x)

)2
]

×
(∫

d4x∆(z − x) j(x)

)2
}
. (2-49)

From here we can easily obtain the Green’s functions, e.g.

G
(2)

φ4 (x1, x2) = (−i~)2 δ2Gφ4 [j]

δj(x1)δj(x2)

∣∣∣∣
j=0

= (−i~)2 δ2

δj(x1)δj(x2)

×

{
G0[j] +

λ

4
∆(0)

∫
d4z

(∫
d4x∆(z − x) j(x)

)2
}∣∣∣∣

j=0

= i~∆(x1 − x2) + (i~)2λ

2
∆(0)

∫
d4z∆(x2 − z) ∆(z − x1). (2-50)
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The latter expression can be interpreted in terms of Feynman diagrams:

G
(2)

φ4 (x1, x2) = i~
(

+

)
(2-51)

where each line denotes a propagator ∆, the vertex denotes the interaction at a point (here
z), while the factor 1/2 (the so-called “symmetry factor”) and the factor i~ are inferred by
the rules, see below.

It is convenient to go to the momentum space by means of

∆(x) =

∫
d4p

(2π)4

eip·x

p2 −m2 + iε
≡
∫

d4p

(2π)4
eip·x∆(p). (2-52)

where p is the four-momentum.
For the two-point Green’s function we, for instance, have:

G
(2)

φ4 (x1, x2) = i~
[∫

d4p

(2π)4

eip·(x2−x1)

p2 −m2 + iε
+ 1

2λi~
∫

d4k

(2π)4

1

k2 −m2 + iε

×
∫
d4z

∫
d4p1

(2π)4

d4p2

(2π)4

eip1·(x1−z)

p2
1 −m2 + iε

eip2·(x2−z)

p2
2 −m2 + iε

]
(2-53)

= i~
∫

d4p

(2π)4

eip·(x2−x1)

p2 −m2 + iε

[
1 + 1

2λ
1

p2 −m2 + iε
i~
∫

d4k

(2π)4

1

k2 −m2 + iε

]
This means that in the momentum space the Green’s function takes the following form:

G
(2)

φ4 (p) = i~∆(p)

[
1 + 1

2λ∆(p) i~
∫

d4k

(2π)4
∆(k)

]
(2-54)

G
(2)

φ4 (p) = i~
(

+

)
(2-55)

Feynman rules for φ4 theory:

- Propagator: ∆(x2 − x1) or ∆(p)

- Vertex: λ

- Loop: i~
∫

d4p
(2π)4

- Symmetry factors.

Using these rules we can easily write down any contribution to the Green’s functions. The
rule for the loop in particular shows that the expansion in ~ is equivalent to the expansion in
the number of loops.
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2.3.1 Ultraviolet divergence, regularization and renormalization

Unfortunately, the typical loop contribution:

∆(0) =

∫
d4p

(2π)4

1

p2 −m2 + iε
(2-56)

is a divergent integral. This is a very common problem in QFT, the problem of ultraviolet
(UV) divergencies.1

It turns out that in many cases the UV divergencies can be renormalized away, such that
the physical quantities are not affected by them. Theories where this cannot be done are
called non-renormalizable. Gravity is the most famous example of a non-renormalizable
theory. The φ4 theory is renormalizable. Let us see how one get rids of the UV divergence
in our example.

The first step is to regularize the divergent integral,

J1(m2) ≡ i

∫
d4p

(2π)4

1

p2 −m2 + iε
(2-57)

There many ways to do that, here are the two most common ones:

1. Sharp cutoff: the integration is cut off at some large but finite number Λ:∫
d4p

(2π)4
= lim

Λ→∞

1

(2π)4

∫ Λ

−Λ
dp0dp1dp2dp3 (2-58)

2. Dimensional regularization: the integral is evaluated in D dimensions and the result is
expanded around d − 4 equal to 0. Introducing ε = 1

2(4 − D), and an arbitrary mass
scale µ: ∫

d4p

(2π)4
= lim

ε→0
µ4−D

∫
dDp

(2π)D
(2-59)

In the case of dimreg the evaluation of the integral goes as follows:

J1(m2) = iµ4−D
∫

dDp

(2π)D
1

p2 −m2 + iε
= iµ4−D

∫
dDp

(2π)D

∞∫
0

dz eiz(p
2−m2+iε)

= − µ4−D

(4πi)D/2

∞∫
0

dz z−D/2 eiz(−m
2+iε) =

µ4−D

(4π)D/2
(m2)D/2−1 Γ(1−D/2)

1These divergencies are called ultraviolet because they appear at large momenta, p → ∞. There also sometimes
divergencies at small momenta p → 0, called infrared divergencies.
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where

Γ(α) =

∞∫
0

dz zα−1 e−z . (2-60)

is the Gamma-function.
For small ε = 1

2(4−D), we obtain:

J1(m2) =
m2

(4π)2

[
−1

ε
+ γE − log 4π − 1 + log

m2

µ2
+O(ε)

]
(2-61)

with γE = −Γ ′(1) ' 0.5772, the Euler constant.
Now, the renormalization. Observe that

G
(2)

φ4 (p) = i~∆(p)

[
1 + 1

2λ∆(p) i~
∫

d4k

(2π)4
∆(k)

]
= i~

1

∆−1 − Σ
+O(λ2) (2-62)

where
Σ = 1

2~λ J1(m2) (2-63)

is called the self-energy. The two-point Green’s function described the propagation of the
scalar field in the presence of quantum fluctuations. The role of the latter is to renormalize
the mass of the scalar field:

m2
R = m2 + Σ (2-64)

such that
G

(2)

φ4 (p) = i~
1

p2 −m2
R + iε

+O(λ2) (2-65)

we can choose the renormalized mass to be the physical mass of field (the on-shell renormal-
ization scheme).

- C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, Singapore, 1988),
chapters 9-1, 9-2, 9-3 and 6-1-1.
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Lecture 3

3.1 Path integral in the presence of constraints

The path integral derived in the previous section can easily be generalized to the n-dimensional
case:

K(q̄f , q̄i; tf − ti) =

∫ n∏
i=1

Dqi Dpi e
(i/~)

∫ tf
ti
dt [p̄ ˙̄q−H(p̄,q̄)] , (3-1)

where q̄ = (q1, . . . , qn), p̄ = (p1, . . . , pn). These vectors span a 2n-dimensional phase space
Γ, and the path-integral is performed over all trajectories in Γ. There is an important class
of systems, called singular or constrained systems, where this integration procedure is not
correct.

The system is called constrained if

det

(
∂2L

∂q̇i∂q̇j

)
= 0.

In this case, the defining equation for the momentum

pi =
∂L

∂q̇i
(3-2)

does not give a relation between the momentum and velocity, pi ∼ q̇i, as it normally does,
but, at least for some i, it gives a relation between the momentum and coordinates: pi = f(q̄).
The latter relation is a constraint, since it constrains the allowed (or, physical) phase-space
of the system. In general, constraints are relations of the type ϕ(q̄, p̄) = 0.

Now, if the phase-space of the system Γ is constrained by 2m conditions

ϕa(p̄, q̄) = 0, a = 1, . . . , 2m (3-3)

23
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which define the constraint surface Φ ∈ Γ, all the trajectories will lie on the physical phase
space Γ∗ = Γ

⋂
Φ of dimension 2(n−m). Clearly, in the path integral we need to integrate

over the trajectories in Γ∗ only. The most straightforward way to do this would be to resolve
all the constraints in order to find the physical Q̄ and P̄ which span Γ∗, and then write the
path integral as

K(q̄f , q̄i; tf − ti) =

∫ n−m∏
l=1

DQl DPl e
(i/~)

∫ tf
ti
dt [P̄ ˙̄Q−H(P̄ ,Q̄)] . (3-4)

However, it is often easier and more desirable to work in terms of original variables q and p.
To be able to do this we need to understand how to transit from one set of variables to the
other.

A simple change of variables (Q,P ) → (q, p) would not work, since the number of
independent variables in these sets is not equal, unless we are on the constraint surface.
Let us therefore extend the physical set by introducing auxiliary variables Ωa, which vanish
on the constraint surface. The latter requirement means that the auxiliary variables can be
presented as linear combinations of constraints:

Ωa = uab ϕb , (3-5)

where (uab) is a constant non-singular matrix, and summation over repeating indices is un-
derstood. We may choose u’s such that Ω’s to be canonical variables, that is, to assume that
their Poisson bracket is normalized to one:

{Ωa(t),Ωb(t)}P = δab . (3-6)

So we have at hand a transformation from one set of canonical variables (Q,P,Ω) to an-
other set of canonical variables (q, p). According to the Leouville theorem, such a canonical
transformation leaves the volume of the phase space invariant. This of course is true as well
for an element of the phase-space volume, and therefore,

n−m∏
l=1

DQl DPl

2m∏
a=1

DΩa =
n∏
i=1

Dqi Dpi (3-7)

Next we multiply both sides with
∏2m

a=1 δ(Ωa), to eliminate the integration over the auxiliary
variables on the left-hand-side, leaving us with

n−m∏
l=1

DQl DPl =
n∏
i=1

Dqi Dpi

2m∏
a=1

δ(Ωa) . (3-8)



3.1 Path integral in the presence of constraints 25

The last step is to express the delta-function of auxiliary variables in terms of the constraints
by substituting Eq. (3-5):

δ(Ωa) = δ(uab ϕb) =
1

detu
δ(ϕa) , (3-9)

and use that the Poisson bracket of constraints is

{ϕa, ϕb}P = (u−1)aa′ (u
−1)bb′ {Ωa′ ,Ωb′}P = (u−2)ab, (3-10)

to rewrite det−1 u as det(u−1) = det1/2 u−2 = det1/2({ϕa, ϕb}P ).
Thus, we finally arrive at

n−m∏
l=1

DQl DPl =
n∏
i=1

Dqi Dpi
√

det({ϕa, ϕb}P )
2m∏
a=1

δ(ϕa) . (3-11)

This is something we wanted: we have expressed the measure of the reduced phase space
in terms of the measure of the original phase space with the constraints explicitly taken into
account.

The resulting path integral written in terms of original variables, in the presence of con-
straints, takes form

K(q̄f , q̄i; tf − ti) =

∫ n∏
i=1

Dqi Dpi
√

det({ϕa, ϕb}P )
2m∏
a=1

δ(ϕa) e
(i/~)

∫ tf
ti
dt [p̄ ˙̄q−H(p̄,q̄)] .

(3-12)
This is clearly somewhat different from what one would naively write down, see Eq. (3-1).
The measure acquires an additional factor which depends solely on constraints and which
purpose is to ensure that the continual integration is constrained to the physical domain of
the phase space.

A classic example of constraint system in field theory is electromagnetism:

LMaxwell = − 1
4FµνF

µν , with Fµν = ∂µAν − ∂νAµ. (3-13)

Indeed, an explicit calculation gives

∂2LMaxwell

∂Ȧλ ∂Ȧσ
= −(gλσg00 − gλ0gσ0) =


0

1

1

1

 . (3-14)

The determinant of this diagonal matrix is, obviously, 0.
It is even simpler to demonstrate that Dirac’s theory is singular. In fact, all fields with

spin are constrained.
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3.2 Dirac-Bergmann algorithm

Suppose we have a singular system completely specified by a Lagrangian L(q̄, ˙̄q). As we
already discussed, at the stage of introducing the conjugate momenta

pi =
∂L

∂q̇i
, i = 1, . . . , n (3-15)

we might discover a few (let, for certainty, say m) relations of the type

ϕ(1)
a ≡ pa − fa(q) = 0, a = 1, . . . ,m. (3-16)

These are the relations among coordinates and momenta — constraints in the phase-space
of the system. Now, are these the only constraints in the system? Not necessarily. To find
out whether there are further constraints and determine all them we shall employ the Dirac-
Bergmann algorithm, which let us state in the following form:

1. the constraints ϕ(1)
a — the primary constraints — are added to the Hamiltonian H via

the Lagrange multipliers λ(1)
a to form the primary Hamiltonian:

H(1) = H +
m∑
a=1

λ(1)
a ϕ(1)

a . (3-17)

2. require that constraint do not change in time — the time-constancy requirement (TCR),
or in other words, the Poisson bracket of the constraint with the Hamiltonian must
vanish

TCR: {ϕ(1)
a , H(1)} !

= 0 (3-18)

At this stage, when computing the Poisson bracket explicitly, for a fixed index a, we
can obtain three different answers:
1) if {ϕ(1)

a , H(1)} = 0, then stop the iteration for this a;
2) if {ϕ(1)

a , H} 6= 0 and {ϕ(1)
a , ϕ

(1)
a′ } = 0, for all a′, then ϕ(2) = {ϕ(1)

a , H} is a sec-
ondary constraint;
3) if {ϕ(1)

a , H} 6= 0 and {ϕ(1)
a , ϕ

(1)
a′ } 6= 0, for some a′, then the TCR is an equation for

the Lagrange multiplier λ(1)
a′ .

3. Case 2) yields further constraints, ϕ(2)
b , which need to be added to the Hamiltonian via

the Lagrange multipliers λ(2)
b , to form the secondary Hamiltonian:

H(2) = H(1) +
∑
b

λ
(2)
b ϕ

(2)
b . (3-19)

Then we go back to step 2, thus imposing the TSR on the secondary constraints, and
so on.
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We repeat this iterative procedure until the case 2) in step 2 does not arise anymore. This
means there are no further constraints, we have determined all of them.

Finally, after all constraints are determined, it is important to verify that they fulfill the
TCR with the total Hamiltonian, the one that includes all the constraints. This last step may
yield more equations for the Lagrange multipliers.

3.3 Classification of constraints into first and second class

Once we determined all the constraints we do not need to pay attention to whether they are
primary, secondary, tertiary, or whatever. However, it is important to distinguish the two
classes of constraints, which can, for instance, be done according to the following

Definition:
constraints which Lagrangian multipliers can be determined are second class; con-
straints which Lagrangian multipliers cannot be determined are first class.

Any constraint will belong to one of the two classes. Let us label the first-class constraints as
ϕ

(I)
a with a = 1, . . . ,mI , and the second-class ones as ϕ(II)

b with b = 1, . . . ,mII . Then, from
the description of the Dirac-Bergmann algorithm and the definition of classes, it is clear that
the Poisson bracket of a first-class constraint with any constraint should vanish (at least on
the constraint surface):

{ϕ(I)
a , ϕ

(I)
a′ } = 0 = {ϕ(I)

a , ϕ
(II)
b }, (3-20)

for any a, a′, and b. In contrast, the Poisson bracket of second-class constraints, among
themselves, is not trivial:

{ϕ(II)
b , ϕ

(II)
b′ } = Cbb′ , (3-21)

where C is a not singular matrix: detC 6= 0, at the constraint surface.
The presence of first-class constraints is closely related to the gauge symmetries of the

system. We shall discuss this relation later in the context of field theories. One can demote
the first-class constraints into second class by introducing gauge-fixing

3.4 Degrees-of-freedom counting

We began describing the system by n coordinates and n momenta, so 2n degrees of freedom
to start with. Obviously, if there are constraints, the number of degrees of freedom is reduced.
By how much it is reduced is dependent on the class of the constraints: a second-class
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constraint removes one degree of freedom, while a first-class constraint removes two degrees
of freedom in the phase space of the system. Thus the reduced (or, physical) phase space has

#d.o.f. = 2n− 2mI −mII . (3-22)

3.5 Electromagnetism

We will now start applying the constraint considerations of the previous two lectures to
fields. Everything we said above will be true as well if we transit from classical paths q(t)
to classical fields which depend on the space-time coordinates x = (t, ~x). We thus immerse
into the 4-dimensional Minkowski space-time with the metric: diag(gµν) = (1,−1,−1,−1).

The Lagrangian density of the electromagnetic (EM) field Aµ(x) is given by

L = − 1
4FµνF

µν , Fµν = ∂µAν − ∂νAµ . (3-23)

To find the conjugate momenta, defined as

Eµ(x) =
∂L

∂Ȧµ(x)
, Ȧµ(x) ≡ ∂

∂x0

Aµ(x), (3-24)

let us write out the Lagrangian density in terms of the time and space components of the EM
field, i.e., A0 and Ai (i = 1, 2, 3):

L = 1
2F0iF0i − 1

4FijFij . (3-25)

In writing this the metric is taken into account, so hereafter no distinction between lower and
upper indices is made. We will use only lower indices.

We can now easily see that

E0 = 0 (3-26)

Ei = F0i = Ȧi − ∂iA0, (3-27)

where Ȧµ ≡ ∂
∂x0
Aµ. The second equation here gives us the relation between momenta1 Ei

and “velocities” Ȧi, while the first equation is the (primary) constraint:

ϕ(1)(x) = E0(x) . (3-28)

At this point we postulate the fundamental Poisson brackets (defined at equal times, x0 =

y0):

{A0(x), E0(y)} = δ(~x− ~y) = −{E0(x), A0(y)}
{Ai(x), Ej(y)} = δij δ(~x− ~y) = −{Ei(x), Aj(y)} (3-29)

{Aµ(x), Aν(y)} = {Eµ(x), Eν(y)} = 0.

1In this case Ei is equal to the electric field strength. This should explain our choice of notation for conjugate momenta.
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Next, we invoke the Dirac-Bergmann algorithm to find further constraints.
The primary Hamiltonian is

H(1) =

∫
d~x
[
E0Ȧ0 + EiȦi −L + λ(1)E0

]
=

∫
d~x
[
EiȦi − 1

2(Ȧi − ∂iA0)Ei + 1
2BiBi + λ(1)E0

]
=

∫
d~x
[
1
2Ei(Ei + ∂iA0) + 1

2(∂iA0)Ei + 1
2BiBi + λ(1)E0

]
(3-30)

=

∫
d~x
[
1
2(E2

i +B2
i ) + (∂iA0)Ei + λ(1)E0

]
(3-31)

where in the second line of this equation we have redefined the Lagrange multiplier: λ(1) →
λ(1) − Ȧ0 and introduced the vector of the magnetic field: Bi = 1

2εijkFjk. We also would
like to use the partial integration to write∫

d~x (∂iA0)Ei =

∫
d~x [∂i(A0Ei)− A0∂iEi]. (3-32)

and use the Gauss theorem to argue that the total-derivative term vanishes. Thus,

H(1) =

∫
d~x
[
1
2(E2

i +B2
i )− A0∂iEi + λ(1)E0

]
(3-33)

Using the fundamental Poisson brackets we can compute the Poisson bracket of the pri-
mary constraint with the Hamiltonian:

{E0(x), H(1)} =

∫
d~y [∂yi Ei(y)] δ(~x− ~y) = ∂xi Ei(x) , (3-34)

where we have written out ∂yi ≡ ∂
∂yi

.
Therefore, this Poisson bracket does not vanish and we do not have an equation for the

Lagrange multiplier. We thus have obtained a secondary constraint:

ϕ(2) = ∂iEi . (3-35)

The secondary Hamiltonian is

H(2) = H(1) + λ(2) ∂iEi . (3-36)

In computing the Poisson bracket, {∂iEi(x), H(2)}, we face the follwing calculation,∫
d~y {∂iEi(x), 1

2B
2
j (y)} =

∫
d~y Bj(y) ∂xi {Ei(x), Bj(y)}

=

∫
d~y Bj(y) ∂xi ∂

y
k εjkm{Ei(x), Am(y)} = −

∫
d~y εijk Bj(y) ∂xi ∂

y
kδ(~x− ~y)

=

∫
d~y εijk Bj(y) ∂xi ∂

x
kδ(~x− ~y) = 0 , (3-37)
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because εijk∂i ∂k = 0. We thus find

{∂iEi(x), H(2)} = 0 . (3-38)

Hence there are no further constraints.
The two constraints are first class, since their Lagrange multipliers cannot be determined.

Also, it is easy to verify that, all the Poisson brackets of these constraints vanish:

{E0(x), E0(y)} = 0 = {∂iEi(x), ∂jEj(y)} = {E0(x), ∂jEj(y)} . (3-39)

The degrees-of-freedom counting in this case refers to the spin degrees of freedom. The
vector field has 4 components and so does its conjugate momentum. Therefore, 8 degrees
of freedom to start with. The 2 first-class constraints reduce this number to 8 − 2 · 2 = 4.
These degrees of freedom are shared equally between the field and its conjugate momentum,
two independent components for each. This is precisely what is needed to describe the two
possible polarizations a massless particle with spin.

3.6 Free massive vector field (Proca model)

The electromagnetic Lagrangian, considered above, describes a massless spin-1 particle —
the photon. Let us briefly see what changes if this particle is given a massM . The Lagrangian
density will then be complemented by a mass term:

L = − 1
4FµνF

µν + 1
2M

2AµA
µ. (3-40)

The conjugate momenta and the primary constraint remain to be the same as for EM theory.
The Hamiltonian acquires the mass term, hence

H(1) = H
(1)
EM − 1

2M
2
(
A2

0 − A2
i

)
, (3-41)

where H(1)
EM is given above in Eq. (3-33). The secondary constraint now obviously changes:

{E0(x), H(1)} = ∂iEi(x) +M2A0(x) ≡ ϕ(2)(x) . (3-42)

We note that, unlike in EM case, ϕ(1) and ϕ(2) do not commute:

{ϕ(1)(x), ϕ(2)(y)} = {E0(x), [∂iEi(y) +M2A0(y)]} = −M2 δ(~x− ~y) . (3-43)

The secondary Hamiltonian is as usual, H(2) = H(1) + λ(2)ϕ(2). Applying TCR to the
secondary constraint, we obtain an equation for the Lagrange multiplier λ(1):

{ϕ(2)(x), H(2)} = −M2∂iAi(x) +M2λ(1)(x)
!

= 0 , (3-44)
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which is easily solved: λ(1) = ∂iAi.
The second Lagrange multiplier is determined form the TCR for the primary constraint:

{ϕ(1)(x), H(2)} = ϕ(2)(x) + λ(2)(x)

∫
d~y {ϕ(1)(x), ϕ(2)(y)} !

= 0 . (3-45)

We obtain λ(2) = 1
M2∂iEi + A0.

The degrees-of-freedom counting now goes as follows. The two constraints are second
class, so they remove 2 phase-space degrees of freedom. We have then 8−2 = 3+3 degrees
of freedom, 3 for the field and 3 for its conjugate momentum. This is precisely what’s needed
to describe the 2s+ 1 = 3 spin polarizations of a massive particle with spin 1.



32 3. Lecture 3



4

Lecture 4

4.1 Yang-Mills theory

We next perform a similar analysis of the Yang-Mills theory, specified by the Lagrangian
density:

LYM = − 1
4F

a
µνF

aµν , (4-1)

with
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (4-2)

and where a, b, c are the color indices, which run from 1 to N2
c − 1, with Nc the number of

colors; fabc are the SU(Nc) structure constants.
In the way similar to EM we find the conjugate momenta:

Ea
i = F a

0i, (4-3)

and N2
c − 1 primary constraints:

ϕ(1)a = Ea
0 . (4-4)

The only non-vanishing fundamental Poisson brackets are:

{Aa0(x), Eb
0(y)} = δab δ(~x− ~y) = −{Ea

0 (x), Ab0(y)}
{Aai (x), Eb

j (y)} = δab δij δ(~x− ~y) = −{Ea
i (x), Abj(y)} (4-5)

and the Hamiltonian is

H(1) =

∫
d~x
[
1
2(Ea

i E
a
i +Ba

i B
a
i )− Aa0∇ab

i E
b
i + λ(1)aEa

0

]
(4-6)

where Ba
i = 1

2εijkF
a
jk;∇ab

i = δab∂i − gfabcAci .

33
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The secondary constraints are

ϕ(2)a(x) = {Ea
0 (x), H(1)} = ∇ab

i E
b
i (x) . (4-7)

This constraint certainly commutes with the primary constraint, {Ea
0 ,∇ab

i E
b
i (y)} = 0. To

find out whether it commutes with the Hamiltonian,

H(2) = H(1) + λ(2)a∇ab
i E

b
i (x) . (4-8)

we compute first the following Poisson bracket (at x0 = y0)

{ϕ(2)a(x), ϕ(2)b(y)} = {∇ac
i E

c
i (x),∇bd

j E
d
j (y)}

= −gf bdeEd
j (y) ∂xi {Ea

i (x), Aej(y)} − gfaceEc
i (x) ∂yj {Aei (x), Eb

j (y)}
+ g2facef bdf{Ec

i (x)Aei (x), Ed
j (y)Afj (y)}

= gf bcaEc
i (y) ∂xi δ(~x− ~y)− gfacbEc

i (x) ∂yi δ(~x− ~y) (4-9)

+ g2
[
facdf bdf Ec

i (x)Afi (y)− facef bdcAei (x)Ed
i (y)

]
δ(~x− ~y)

= gfabc
[
∂yi E

c
i (y)− gf cdeEc

i (y)Aei (y)
]
δ(~x− ~y)

= gfabc(∇cd
i E

d
i ) δ(~x− ~y) ,

where in the last step we neglected the total-derivative terms, used the properties of the δ-
function:

∂yi δ(~x− ~y) = −∂xi δ(~x− ~y), f(~x) δ(~x− ~y) = f(~y) δ(~x− ~y) , (4-10)

as well as the Jacobi identity for the SU(Nc) structure constants:

facdf bde − fadef bcd = fabdfdec . (4-11)

Thus we observe that the Poisson brackets of secondary constraints obeys the SU(Nc) alge-
bra:

{ϕ(2)a(x), ϕ(2)b(y)} = gfabcϕ(2)c(x) δ(~x− ~y) . (4-12)

Another bracket we must compute here is∫
d~y {∇ac

i E
c
i (x), 1

2(Bb
j)

2(y)} =

∫
d~y {∇ac

i E
c
i (x), Bb

j(y)}Bb
j

=

∫
d~y {(∂xi Ea

i − gfacfEc
iA

f
i ), εjkl(∂

y
kA

b
l − 1

2gf
bdeAdlA

e
k)}

=

∫
d~y Bb

j(y) εjkl[−δabδil∂xi ∂
y
k + gfabfδilA

f
i ∂

y
k (4-13)

+ 1
2gf

bde(δadδilA
e
k + δaeδikA

d
l )∂

x
i − 1

2g
2facff bdeAfi (δ

cdδilA
e
k + δceδikA

d
l )] δ(~x− ~y)

=

∫
d~y Bb

j(y) εijk[gf
abc (Aci(x) ∂yk − A

c
k(y)∂xi )− g2facff bceAfiA

e
k] δ(~x− ~y)

= −g2facff bce εijk B
b
j(x)Afi (x)Aek(x) = 0 .
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Now it easy to see that {ϕ(2)a, H(2)} ∼ gabcϕ(2)c(x), so it vanishes at the constraint sur-
face — there are no further constraints, and the Lagrange multipliers cannot be determined.
This theory, therefore, has two ×(N2

c − 1) first-class constraints.

4.2 Faddeev-Popov ghosts in Yang-Mills theory

We would like now to quantize the YM theory, bearing in mind that constraints must be taken
into account. The path-integral in the presence of constraints that was considered in the first
lecture should be applicable to our situation, provided the usual changes in transiting from
paths to fields are made. We then obtain the functional integral of the theory in the form,

Z =

∫ ∏
µ, a

DAaµDE
a
µ

∏
a

δ(Ea
0 )δ(∇ab

i E
b
i ) det1/2({ϕ(r)a, ϕ(s)b}) ei

∫
d4x[Ea

i Ȧ
a
i−

1
2 (Ea

i )2− 1
2 (Ba

i )2]

(4-14)
The problem is that in deriving this functional integral we assumed that the matrix of

Poisson brackets of constraint is non-singular. In other, words we assumed that all the con-
straints are second class. In the YM system the constraints ϕ(r)a ( where r = 1, 2) are first
class.

We can deal with the first-class constraints by introducing the gauge-fixing conditions
χ(r)a such that

det({χ(r)a, ϕ(s)b}) 6= 0 , (4-15)

and
{χ(r)a, χ(s)b} = 0 (4-16)

for any values of the indices.
The gauge-fixing conditions are constraints themselves. After introducing them the first-

class constraints become second class.
Coming back to our analysis of the YM theory we supplement the first-class constraints

by the following gauge-fixing conditions:

χ(1)a = Aa0, χ(2)a = ∂iA
a
i (4-17)

These conditions define the Coulomb gauge. The functional integral, in this gauge, takes the
form,

Z =

∫ ∏
µ, a

DAaµDE
a
µ

∏
a

δ(Ea
0 ) δ(Aa0) δ(∇ab

i E
b
i ) δ(∂iA

a
i ) det1/2M

× exp i

∫
d4x[Ea

i Ȧ
a
i − 1

2(Ea
i )2 − 1

2(Ba
i )2] , (4-18)
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where the matrix M of Poisson brackets of constraints is now composed of four square
matrices:

M =

(
{(ϕ(r)a(x), ϕ(s)b(y)}) ({ϕ(r)a(x), χ(s)b(y)})
({χ(r)a(x), ϕ(s)b(y)}) ({χ(r)a(x), χ(s)b(y)})

)
(4-19)

Since the only non-vanishing elements are the brackets of the constraints with the gauge-
fixing conditions we have

det1/2M = det({χ(r)a(x), ϕ(s)b(y)}) = det

[(
δab 0

0 ∂xi ∇
y ba
i

)
δ(~x− ~y)

]
(4-20)

= − det[∇x ab
i ∂xi δ(~x− ~y)] .

We can perform the functional integral over the conjugate momenta E, using the rules of
Gaussian integration. The result is

Z =

∫ ∏
µ, a

DAaµ
∏
a

δ(Aa0) δ(∂iA
a
i ) det[∇x ab

i ∂xi δ(~x− ~y)] ei
∫
d4xLYM , (4-21)

For perturbative calculations of this functional integral, it is convenient to exponenti-
ate the determinant and the δ-functions, such that instead of appearing in the measure they
appear as new terms in the Lagrangian.

The determinant can be exponentiated by using the Grassmann (anti-commuting) fields,
ca(x). It can be shown in general that

detMab(x− y) =

∫ ∏
a

D c̄aDca exp

[
−
∫
dx

∫
dy c̄a(x)Mab(x− y) cb(y)

]
. (4-22)

In our case, up to an overall factor,

det[∇x ab
i ∂xi δ(~x− ~y)] =

∫ ∏
a

D c̄aDca exp

[
i

∫
d~x

∫
d~y c̄a(x)∇x ab

i ∂xi δ(~x− ~y) cb(y)

]
=

∫ ∏
a

D c̄aDca exp i

∫
d~x
[
−(∂ic̄

a)(∂ic
a) + gfabc(∂ic̄

a) cbAci
]

The functional integral can thus be written as

Z =

∫ ∏
a

∏
µ

DAaµD c̄
aDca δ(Aa0) δ(∂iA

a
i ) e

i
∫
d4xLYM+Lghost , (4-23)

where the new term in the Lagrangian is

Lghost = −(∂ic̄
a)(∂ic

a) + gfabc(∂ic̄
a) cbAci . (4-24)
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The new fields, ca(x), were introduced in this way by Faddeev and Popov, and are called
Faddeev-Popov ghosts.

The expression for the ghost Lagrangian depends on the gauge. There is a gauge, the
so-called unitary gauge, where the ghosts disappear. In any other gauge, however, ghosts are
present and give contributions at the loop level.

We will finally write down here the functional integral of the YM theory in a relativisti-
cally invariant gauge, called the Lorentz gauge:

Z =

∫ ∏
µ, a

DAaµ
∏
a

δ(∂µA
µa) det[∇ab

µ ∂
µ δ4(x− y)] ei

∫
d4xLYM , (4-25)

Or, writing the determinant in terms of ghosts,

Z =

∫ ∏
a

[∏
µ

DAaµ

]
D c̄aDca δ(∂µA

µa) ei
∫
d4xLYM+Lghost , (4-26)

with
Lghost = ∂µc̄

a ∂µca − gfabc(∂µc̄a) cbAµ c . (4-27)

Ghost contributions are necessary to maintain gauge invariance in YM theory at the quan-
tum level.

4.3 Literature

- P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964),
chapters 1 and 2.
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A

Gaussian integrals

∞∫
−∞

dx e−ax
2

=

√
π

a
, a > 0 (A-1)

∞∫
−∞

dx e−ax
2+2bx =

√
π

a
eb

2/a, a > 0 (A-2)

Similar formulae exists for complex coefficients, e.g.,
∞∫

−∞

dx eiax
2

=

√
iπ

a
, a ∈ R. (A-3)

This result can be proved by changing the variable, ax2 = y, for positive a, or ax2 = −y, for negative a. Let’s
consider a > 0:

∞∫
−∞

dx eiax
2

= 2

∞∫
0

dx eiax
2

=
1√
a

∞∫
0

dy y−1/2 eiy .

Next, choose the closed contour in the first quadrant of the complex y plane, over which, according to the
Cauchi theorem for analytic functions, the integral vanishes:(∫ ∞

0

+

∫ 0

i∞

)
dy y−1/2 eiy + lim

R→∞
iR1/2

∫ π/2

0

dϕ eiϕ/2eiRe
iϕ

= 0

The last term can, by partial integration (choosing u = −iR−1/2 exp(−iϕ/2), v = exp[iReiϕ]), be written as

i
√
R

∫ π/2

0

dϕ eiϕ/2eiRe
iϕ

=
1√
R

[
−i
(
e−Re−iπ/4 − eiR

)
+ 1

2

∫ π/2

0

dϕ e−iϕ/2eiRe
iϕ

]
,

which vanishes in the limit of R→∞. We thus have,∫ ∞
0

dy y−1/2 eiy =

∫ i∞

0

dy y−1/2 eiy
y=iz
= i1/2

∫ ∞
0

dz z−1/2 e−z =
√
iπ, qed.
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