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The rôle of symmetry in Physics

Symmetry (invariance) ↔ conservation laws (Noether
theorem, 1918)

Quantum mechanics and quantum field theory:
symmetry groups ↔ classification of particle spectra

Gauge principle ⇒ generation of interactions/dynamics

Symmetry and asymmetry/symmetry breaking as
distinguishing features of dynamics
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Group

Definition

A group G is a non-empty set of elements {a, b, . . .} with a law of
composition (multiplication) (a, b)→ c = ab ∈ G satisfying the
following conditions:

1 (associative law) a(bc) = (ab)c ∀ a, b, c ∈ G

2 (unit element) G contains an element, the identity element,
denoted by e, such that for all a ∈ G

ea = ae = a

3 (existence of inverse) For all a ∈ G there is an element,
denoted by a−1, such that

aa−1 = a−1a = e

4 (Abelian group) If ab = ba for all a, b ∈ G the group is
called Abelian
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Examples of groups 1

Example 1: Permutations of n objects

Illustration for n = 3: How can one (re-)distribute 3 different
objects in 3 different positions?

A B C → A B C : e = P1 =

(
1 2 3
1 2 3

)
,

A B C → B A C : P2 =

(
1 2 3
2 1 3

)
,

. . . . . . . . .

A B C → B C A : P6 =

(
1 2 3
3 1 2

)
.

1 Number of group elements: n! ⇒ finite group

2 n = 3: 3! = 3 · 2 · 1 = 6

3 n = 26: 26! = 403291461126605635584000000 ≈ 4 · 1026
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Examples for groups 2

Example 2: Z = {. . . ,−2,−1, 0, 2, 1, . . .} with addition

1 3 + (−2 + 4) = 3 + 2 = 5 = 1 + 4 = (3 + (−2)) + 4

2 0 + 3 = 3 + 0 = 3

3 5 + (−5) = (−5) + 5 = 0

4 3 + 5 = 8 = 5 + 3

5 countably infinite group
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Examples of groups 3

Examples for uncountably infinite continuous groups

1 U(1): Gauge group of quantum electrodynamics

U(1) = {z ∈ C||z | = 1} = {exp(iϕ) | 0 ≤ ϕ < 2π}

with multiplication, Abelian

2 Translations

-�
�
�
���

��
��
��

��
��

��
��1

�
�
�
���

-

��
��

��
��

��
��

��1

Abelian (order of composition does not matter)
Not compact (parameters of a translation may be arbitrarily
large)
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Examples of groups 4

3 Orthogonal group in three dimensions O(3) (rotations and
rotatory reflections):

O(3) := {R|real 3× 3 matrix, RTR = 1} = SO(3) ∪· PSO(3)

SO(3): rotations, P: parity
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Not Abelian (order of composition matters)
Compact
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Examples of groups 5

4 Unitary group U(2):

U(2) := {U|complex 2× 2 matrix,U†U = UU† = 1}

with matrix multiplication as composition

5 Special unitary group SU(2): Spin/isospin
Additional requirement: det(U)=1

6 Analogous U(n) and SU(n): Quark model, QCD, etc.
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Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 1

Definition

Let M = {m} and G be a non-empty set and a group, respectively.
A mapping A, which associates with each pair (g ,m) ∈ G ×M a
unique element A(g ,m) ∈ M, defines an action of the group G on
M, if the following conditions are satisfied:

1 A(e,m) = m ∀ m ∈ M,

2 A(g1,A(g2,m)) = A(g1g2,m) ∀ g1, g2 ∈ G , ∀ m ∈ M.

Applications in Physics

1 M: states, dynamical variables, fields, . . .

2 M vector space ⇒ representation of a group

3 Nonlinear realization (spontaneous symmetry breaking)

4 Symmetry ↔ group invariants

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 2

Example from classical physics

The Hamiltonian of a particle in a central potential,

H(~p, ~x) =
~p 2

2m
+ V (|~x |),

is invariant under

xi 7→
3∑

j=1

Rijxj ,

pi 7→
3∑

j=1

Rijpj ,

where R ∈ O(3). ⇒

The angular momentum is a conserved quantity.
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Action of a group 3

Example from quantum mechanics

| ↑〉 =

(
1
0

)
: electron polarized in positive z direction

Sz =
~
2

(
1 0
0 −1

)
=

~
2
σz , σz | ↑〉 = ~σ · êz | ↑〉 = | ↑〉.

Electron polarized in arbitrary direction

n̂ = sin(θ) cos(φ)êx + sin(θ) sin(φ)êy + cos(θ)êz

U(φ, êz)U(θ, êy )| ↑〉 =

(
e−i

φ
2 cos

(
θ
2

)
−e−i φ2 sin

(
θ
2

)
e i

φ
2 sin

(
θ
2

)
e i

φ
2 cos

(
θ
2

) )(1
0

)

=

(
cos
(
θ
2

)
e−i

φ
2

sin
(
θ
2

)
e i

φ
2

)
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(
e−i

φ
2 cos

(
θ
2

)
−e−i φ2 sin

(
θ
2

)
e i

φ
2 sin

(
θ
2

)
e i

φ
2 cos

(
θ
2

) )(1
0

)

=

(
cos
(
θ
2

)
e−i

φ
2

sin
(
θ
2

)
e i

φ
2

)

Stefan Scherer Symmetries in Physics: Introduction and Overview



Action of a group 3

Example from quantum mechanics

| ↑〉 =

(
1
0

)
: electron polarized in positive z direction

Sz =
~
2

(
1 0
0 −1

)
=

~
2
σz , σz | ↑〉 = ~σ · êz | ↑〉 = | ↑〉.
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Action of a group 4

Example from field theory

G = O(2) = SO(2) ∪· S1SO(2),

S1 =

(
1 0
0 −1

)
: reflection over the 1-axis.

Each g ∈ G can be written either as

R(ϕ) =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
, det(R(ϕ)) = 1,

or as

S1R(ϕ) =

(
cos(ϕ) − sin(ϕ)
− sin(ϕ) − cos(ϕ)

)
, det(S1R(ϕ)) = −1,

where 0 ≤ ϕ < 2π.
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Action of a group 5

Lagrange density

L(Φ1,Φ2, ∂µΦ1, ∂µΦ2) =
1

2

2∑
i=1

(
∂µΦi∂

µΦi −m2
i Φ2

i

)
− V(Φ1,Φ2)

of two real scalar fields Φi (t, ~x), Φi ∈ C 2(M4), i = 1, 2,
M4: Minkowski space.

Define the action of the group G on M = {(Φ1,Φ2)},(
Φ′1
Φ′2

)
:= A(R(ϕ), (Φ1,Φ2))

:=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
Φ1

Φ2

)
∈ M,

for R(ϕ) ∈ SO(2) and analogously for S1R(ϕ) ∈ S1SO(2).
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Action of a group 6

Note

A(R(0), (Φ1,Φ2)) =

(
1 0
0 1

)(
Φ1

Φ2

)
=

(
Φ1

Φ2

)
,

A(g1,A(g2, (Φ1,Φ2))) = A(g1g2, (Φ1,Φ2)).

(The product of two O(2) matrices is an O(2) matrix.)

The Lagrange density L is a so-called group invariant, i. e.

L(Φ1,Φ2, ∂µΦ1, ∂µΦ2) = L(Φ′1,Φ
′
2, ∂µΦ′1, ∂µΦ′2),

iff

m1 = m2

and

V is a function of Φ2
1 + Φ2

2.
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Action of a group 7

Remarks

1 Since U(1) ∼= SO(2), the invariant Lagrange density may be
used to describe a pair of oppositely charged (pseudo-)scalar
particles. The coupling to the electromagnetic field is
generated in terms of the gauge principle.

2 S1 may be regarded as the charge conjugation transformation.

3 Noether-Theorem ⇒ conservation laws.

Outlook

The Lagrangian of the Standard Model of Particle Physics is a
group invariant with G =SU(3)×SU(2)×U(1). The construction
requires the (local) operation of the group G on the set of the
quarks, leptons (matter fields) and the gauge bosons and the Higgs
fields.
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SU(N) and quarks 1

Aim: Classification of composite states

1 Atoms: Atomic nucleus and electron shell

2 Nuclei: Protons and neutrons (Collective term: Nucleons ⊂
baryons ⊂ hadrons)

3 Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))

6) James Joyce, Finnegan’s Wake:
”
three quarks for Muster Mark“
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SU(N) and quarks 2

Physical motivation

1 Evidence for substructure of hadrons

Extension (form factors, e.g., root-mean-square charge radius
of the proton rpE = (0.8751± 0.0061) fm)
Excitation spectrum
Deep inelastic scattering (pointlike partons)

2 Interpretation: Hadrons are (complicated) bound states of
fundamental degrees of freedom

3 Fundamental Theory: Quantum chromodynamics (QCD)
QCD is a non-Abelian gauge theory with gauge group
G = SU(3)c (c for color)

4 Matter fields of QCD (quarks) are fermions with spin 1/2,
which show up in six different flavors
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of the proton rpE = (0.8751± 0.0061) fm)
Excitation spectrum
Deep inelastic scattering (pointlike partons)

2 Interpretation: Hadrons are (complicated) bound states of
fundamental degrees of freedom

3 Fundamental Theory: Quantum chromodynamics (QCD)
QCD is a non-Abelian gauge theory with gauge group
G = SU(3)c (c for color)

4 Matter fields of QCD (quarks) are fermions with spin 1/2,
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SU(N) and quarks 3

Light quarks

flavor u d s

masse [MeV] 2.2+0.6
−0.4 4.7+0.5

−0.4 96+8
−4

charge [e > 0] 2
3 −1

3 −1
3

I3 + 1
2 −1

2 0

strangeness:−1
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SU(N) and quarks 4

Heavy quarks

flavor c b t

mass [GeV] 1.28± 0.03 4.18+0.04
−0.03 173.1± 0.6

charge [e > 0] 2
3 −1

3
2
3

I3 0 0 0

charm: +1 bottom: −1 top: +1

See http://pdg.lbl.gov
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SU(N) and quarks 5

5 Each quark flavor comes with three colors

Motivation

∆++(Sz =
3

2
) = u ↑ u ↑ u ↑

Contradiction to Pauli principle
Solution: Slater determinant

1√
6

∣∣∣∣∣∣
r1 g1 b1

r2 g2 b2

r3 g3 b3

∣∣∣∣∣∣
General Nc :

1√
Nc !

εi1...iNc
χi1 ⊗ . . .⊗ χiNc
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SU(N) and quarks 6

6 To each quark q there exists an antiquark q̄ with

spin 1/2
the same mass, mu = mū, etc.
opposite charge, Qū = −2/3, etc.
opposite internal quantum numbers, I3 = −1/2 for ū, etc.,
S = +1 for s̄, etc.
opposite color quantum numbers, r vs. r̄ , etc.

7 8 gluons (spin 1, massless) mediate the interaction

8 The interaction is flavor independent

9 Free quarks and gluons have not been observed (⇒
color-confinement hypothesis)

10 Baryons: qqq states; color neutral via Slater determinant

11 Mesons: qq̄ (quark-antiquark) states; color neutral via
1√
3

(r r̄ + gḡ + bb̄)
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opposite internal quantum numbers, I3 = −1/2 for ū, etc.,
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SU(N) and quarks 7

Quark model

1 Building blocks (quarks and antiquarks as basis states)
Goal: Classification of so-called irreducible representations of
SU(N)

2 Method: Construction in terms of direct products from quarks
and antiquarks (in technical terms: from the fundamental
representation and its complex conjugate representation)

3 Application: Mesons and baryons (hadrons)

Properties of the building blocks (quarks)

1 Spin 1/2 with two projections (SU(2))

| ↑〉, | ↓〉
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SU(N) und quarks 8

2 Quark triplet (flavor-SU(3) symmetry for light quarks)

Y = B + S

|u〉
|d〉
|s〉

-
I3

6
Ysd s u

s s
−1

2
1
2

1
3

−2
3

3 Antiquark triplet

|ū〉
|d̄〉
|s̄〉

-
I3

6
Y

sū s d̄

s s̄

−1
2

1
2

2
3

−1
3
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SU(N) and quarks 9

Transformation properties

1 Quarks transform under the fundamental representation of
SU(3):

q =

ψu

ψd

ψs

 , q 7→ q′ = Uq with U ∈ SU(3).

2 Antiquarks transform under the complex conjugate
representation:

q̄ =

ψū

ψd̄

ψs̄

 , q̄ 7→ U∗q̄.
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SU(N) and quarks 10

SU(6)

Assume a Hamiltonian, where the interaction between quarks does
not depend on spin and flavor.
Combine properties: |1〉 = |u ↑〉, |2〉 = |u ↓〉, . . ., |6〉 = |s ↓〉

Composite states

Description in terms of tensor product

X ⊗ X ⊗ X for baryons

X ⊗ X ∗ for mesons
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SU(N) and quarks 11

Graphical method, spin

J = 0

J = 1
2

J = 1

J = 3
2

-

r
r r

r r r
r r r r

J3−3
2 −1 −1

2 0 1
2 1 3

2
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SU(N) and quarks 12

Sequential coupling

Eigenvalues of J3 = J3(1) + J3(2) are additive

1

2
⊗ 1

2
= r r ⊗ r r

= r rr rr r

= r r rr
= 1⊕ 0
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SU(N) and quarks 13

Symmetry properties

H = H 1
2
⊗H 1

2
= H1 ⊕H0

1 Basis of H1

|1, 1〉 := | ↑, ↑〉,

|1, 0〉 :=
1√
2

(| ↑, ↓〉+ | ↓, ↑〉),

|1,−1〉 := | ↓, ↓〉

states are symmetric under exchange 1↔ 2

2 Basis of H0

|0, 0〉 :=
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

state is antisymmetric under exchange 1↔ 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 13

Symmetry properties

H = H 1
2
⊗H 1

2
= H1 ⊕H0

1 Basis of H1

|1, 1〉 := | ↑, ↑〉,

|1, 0〉 :=
1√
2

(| ↑, ↓〉+ | ↓, ↑〉),

|1,−1〉 := | ↓, ↓〉

states are symmetric under exchange 1↔ 2

2 Basis of H0

|0, 0〉 :=
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

state is antisymmetric under exchange 1↔ 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 13

Symmetry properties

H = H 1
2
⊗H 1

2
= H1 ⊕H0

1 Basis of H1

|1, 1〉 := | ↑, ↑〉,

|1, 0〉 :=
1√
2

(| ↑, ↓〉+ | ↓, ↑〉),

|1,−1〉 := | ↓, ↓〉

states are symmetric under exchange 1↔ 2

2 Basis of H0

|0, 0〉 :=
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

state is antisymmetric under exchange 1↔ 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 13

Symmetry properties

H = H 1
2
⊗H 1

2
= H1 ⊕H0

1 Basis of H1

|1, 1〉 := | ↑, ↑〉,

|1, 0〉 :=
1√
2

(| ↑, ↓〉+ | ↓, ↑〉),

|1,−1〉 := | ↓, ↓〉

states are symmetric under exchange 1↔ 2

2 Basis of H0

|0, 0〉 :=
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

state is antisymmetric under exchange 1↔ 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 13

Symmetry properties

H = H 1
2
⊗H 1

2
= H1 ⊕H0

1 Basis of H1

|1, 1〉 := | ↑, ↑〉,

|1, 0〉 :=
1√
2

(| ↑, ↓〉+ | ↓, ↑〉),

|1,−1〉 := | ↓, ↓〉

states are symmetric under exchange 1↔ 2

2 Basis of H0

|0, 0〉 :=
1√
2

(| ↑, ↓〉 − | ↓, ↑〉)

state is antisymmetric under exchange 1↔ 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 14

1⊗ 1

2
= r r r ⊗ r r

= r r rr rr rr r

= r r r rr r
=

3

2
⊕ 1

2
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SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2

Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 15

H1 ⊗H 1
2

= H 3
2
,S ⊕H 1

2
,MS

States of H 3
2
,S are completely symmetric

States of H 1
2
,MS are

symmetric under 1↔ 2 (S)
without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

H0 ⊗H 1
2

= H 1
2
,MA

states of H 1
2
,MA are

antisymmetric under 1↔ 2 (A)

without well-defined symmetry under 1↔ 3, 2↔ 3 (M)

Number of states

2 · 2 · 2 = 4 + 2 + 2
Stefan Scherer Symmetries in Physics: Introduction and Overview



SU(N) and quarks 16

Coupling in SU(3) analogous

3⊗ 3 = 6⊕ 3̄
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SU(N) and quarks 17

6⊗ 3 = 10⊕ 8
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SU(N) and quarks 18

3̄⊗ 3 = 8⊕ 1

Dimensions of the vector spaces

3 · 3 · 3 = 10 + 8 + 8 + 1
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SU(N) and quarks 19

Baryon octet

1

-1

Y
pn

Λ

Σ
+

Ξ
0

(1321)Ξ
-

Y=B+S, B=1

-1 1 I
3

Σ
-

Σ(1197)

(940)

0
(1193)

(1116)

(938)

(1189)

(1315)

baryon octet with J = 1
2
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SU(N) and quarks 20

Baryon decuplet

Y

I3

Ω

∆ ∆ ∆

ΞΞ* *

Σ

1672

* Σ* Σ*

∆
- 0 + ++

+0-

-

-

1

-1 1

Y=B+S, B=1

0

1232

1385

1530

baryon decuplet with J = 3
2
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SU(N) and quarks 21

Mathematical procedure

1 Decompose the tensor product into a direct sum

Z = X ⊗ X ⊗ X =
M⊕
j=1

Pj(Z )

Each of the linear subspaces Pj(Z ) is irreducible with respect
to the product representation (states of different subspaces do
not mix under transformations)

2 Key words: Young diagrams and Young operators

3 Example SU(6)

⊗ ⊗ = ⊕ ⊕ ⊕

6⊗ 6⊗ 6 = 56︸︷︷︸
S

⊕ 70︸︷︷︸
M,S

⊕ 70︸︷︷︸
M,A

⊕ 20︸︷︷︸
A
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SU(N) and quarks 22

4 Physical interpretation

56 = 10︸︷︷︸
SU(3) decuplet

· 4︸︷︷︸
spin 3/2

+ 8︸︷︷︸
SU(3) octet

· 2︸︷︷︸
spin 1/2

5 Pauli principle: The state must be completely antisymmetric
under the exchange of any two (spin-1/2) constituents

6 Contradiction: 56 is completely symmetric!

7 Solution (Greenberg 1964, Han and Nambu 1965)

8 Color degree of freedom

red, green, blue

Confinement: Physical states are color singlets
Realization for 3q baryons in terms of color Slater determinant
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Gauge theories 1

Gauge principle

1 Mathematical description of elementary particles in terms of
(matter-) fields: Ψ(x), x = (~x , t)

2 Define action of a group G on the set M of fields (group
theory):

Ψ(x) 7→ Ψ′(x) = A(g ,Ψ(x))
3 Construct (free) theory, which is invariant under the action of

all group elements (symmetry)

4 Postulate invariance under local transformations:

Ψ(x) 7→ A(g(x),Ψ(x))

5 Introduce additional, so-called gauge fields, in order to
guarantee invariance under local transformations

6 ⇒ interaction between gauge fields and elementary particles
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Gauge theories 2

Example: Quantum electrodynamics (QED, U(1), Abelian)

Lagrange density of a free electron:

L0(Ψ, ∂µΨ) = Ψ̄(i /∂ −m)Ψ,

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 ,

/∂ = γµ∂µ,

γ0 =

(
1 0
0 −1

)
,

~γ =

(
0 ~σ
−~σ 0

)
,

Ψ̄ = Ψ†γ0.
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Gauge theories 3

L0 is invariant under a global U(1) transformation:

Ψ(x) 7→ Ψ′(x) = e−iαΨ(x),

Ψ̄(x) 7→ Ψ̄′(x) = Ψ̄(x)e iα.

α ∈ [0, 2π[ does not depend on x :

Ψ̄Ψ 7→ Ψ̄ e iαe−iα︸ ︷︷ ︸
= 1

Ψ = Ψ̄Ψ,

Ψ̄γµ∂µΨ 7→ Ψ̄e iαγµ∂µe
−iαΨ = Ψ̄e iαe−iαγµ∂µΨ = Ψ̄γµ∂µΨ.

Remark

All components Ψi are multiplied by the same phase.
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Gauge theories 4

Transformation property

Convention: Electron has negative electric charge (qe = −1)

U(1) 3 e−iα 7→ e−iαqe = e iα

We make use of the following local transformation:

Ψ(x) 7→ e iα(x)Ψ(x).

Covariant derivative

Requirement

DµΨ(x) 7→ [DµΨ(x)]′ = D ′µΨ′(x)
!

= e iα(x)DµΨ(x)

Gauge potential Aµ(x)

Aµ(x) 7→ A′µ(x) = Aµ(x) +
1

e
∂µα(x), e > 0,
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Gauge theories 5

DµΨ(x) := [∂µ − ieAµ(x)]Ψ(x) 7→ D ′µΨ′(x)

= [∂µ − ieAµ(x)− i∂µα(x)]
[
e iα(x)Ψ(x)

]
= e iα(x)[∂µ + i∂µα(x)− ieAµ(x)− i∂µα(x)]Ψ(x)

= e iα(x)[∂µ − ieAµ(x)]Ψ(x).

New Lagrange density

L0(Ψ,DµΨ) = Ψ̄(i /D −m)Ψ = L0(Ψ, ∂µΨ) + eΨ̄γµΨAµ.

Invariant under so-called gauge transformation of the second kind:

Ψ(x) 7→ e iα(x)Ψ(x),

Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x).
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Ψ(x) 7→ e iα(x)Ψ(x),

Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x).
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Gauge theories 6

Lagrange density of QED

Interpret Aµ as a dynamical variable. Define field-strength tensor

Fµν = ∂µAν − ∂νAµ

and introduce a “kinetic” term:

LQED = Ψ̄iγµ(∂µ − ieAµ)Ψ−mΨ̄Ψ− 1

4
FµνFµν .

After quantization, the dynamical gauge field is identified with
the photon.

Interaction between the matter field and the gauge field

Lint = −(−e)Ψ̄γµΨAµ = −JµemAµ
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Gauge theories 7

Remarks

1 A mass term

1

2
M2AµAµ 7→

1

2
M2(AµAµ +

2

e
∂µαAµ +

1

e2
∂µα∂

µα)

6= 1

2
M2AµAµ

would destroy gauge invariance.
Gauge bosons are massless! (without spontaneous symmetry
breaking)
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Gauge theories 8

2 The coupling of the photon to the matter field is dictated by
the transformation property of the matter field under U(1).
Consider matter field Ψq for a particle with charge q

Ψq(x) 7→ e−iqαΨq(x),

⇒ so-called minimal substitution (∂µ 7→ ∂µ + ieqAµ)

DµΨq(x) = [∂µ + ieqAµ(x)]Ψq(x)

Electron: q = −1
Proton: q = +1
Neutron: q = 0
up quark: q = 2/3
etc.
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Gauge theories 9

3 The requirement of renormalizability of QED excludes further
gauge-invariant couplings such as the coupling to an
anomalous magnetic moment,

− eκ

4m
FµνΨ̄σµνΨ, σµν =

i

2
[γµ, γν ].

This is not a group-theoretical argument!

4 Due to the Abelian nature of U(1), photons do not directly
interact with each other.
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Gauge theories 9

Non-Abelian case

Quantum chromodynamics (QCD, SU(3))
Matter fields: Quark fields uA, dA, . . ., A = 1, 2, 3
Gauge fields: Gluons Aa, a = 1, . . . , 8

Gluon-quark interaction

New: Gluons interact with each other (because SU(3) is
non-Abelian)
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Spontaneous symmetry breaking 1

1 Illustration

A-heim B-burg

C-stadtD-dorf

• •

••

Goal: Find the shortest routes network connecting the four cities
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Spontaneous symmetry breaking 2

1 Illustration

A-heim B-burg

C-stadtD-dorf

• •

••

Total length: 4a (a side length of the square)
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Spontaneous symmetry breaking 3

1 Illustration

�
�
�
��@

@
@
@@

A-heim B-burg

C-stadtD-dorf

• •

••

Total length: 2
√

2 a < 4a
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Spontaneous symmetry breaking 4a

1 Illustration

�
��

A
AA �

��

A
AA

A-heim B-burg

C-stadtD-dorf

• •

••

Total length: (1 +
√

3)a < 2
√

2 a < 4a
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Spontaneous symmetry breaking 4b

1 Illustration

���

HHH���

HHH
A-heim B-burg

C-stadtD-dorf

• •

••

Total length: (1 +
√

3)a < 2
√

2 a < 4a
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Spontaneous symmetry breaking 5

1 Illustration

���

HHH���

HHH
A-heim B-burg

C-stadtD-dorf

• •

••

object cities Hamilton operator

symmetry D4 G

criterion shortes routes network ground state

symmetry of solution D2 subgroup H of G

2 Goldstone-Theorem (1961, 1962): For each generator of the
Lie group G which does not annihilate the ground state, one
obtains a massless Goldstone boson.
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���

HHH���
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A-heim B-burg
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• •

••

object cities Hamilton operator

symmetry D4 G

criterion shortes routes network ground state

symmetry of solution D2 subgroup H of G
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obtains a massless Goldstone boson.
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Chirality

< Greek cheir �hand�

right-handed (clockwise)
screw

mirror

left-handed (counterclock-
wise) screw
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Spontaneous symmetry breaking in QCD 1

Theoretical limit: mu = md = ms = 0

-
I3

6
Yrd r u
r s

-
I3

6
YrdL r uL
r sL

⊕ -
I3

6
YrdR r uR
r sR

H0 is invariant under G = SU(3)L × SU(3)R
Ground state is invariant under H = SU(3)V only
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Spontaneous symmetry breaking in QCD 2

8 (almost) massless Goldstone bosons: π, K , η

✲
I3

✻
Y

✉
K−(494)

✉K0(498)

✉π−(140) ✉π0(135) ❦
η(548)

✉π+(140)

✉
K̄0(498)

✉K+(494)

+1

−1

−1
2

+1
2

−1 +1

Physical masses result from explicit symmetry breaking:

mu = 2.2 MeV, md = 4.7 MeV, ms = 96 MeV.
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