Symmetries in Physics: Introduction and Overview

Stefan Scherer
Institute for Nuclear Physics, JGU, Mainz

WS 2018/2019, October 2018

The rôle of symmetry in Physics

- Symmetry (invariance) \leftrightarrow conservation laws (Noether theorem, 1918)

The rôle of symmetry in Physics

- Symmetry (invariance) \leftrightarrow conservation laws (Noether theorem, 1918)
- Quantum mechanics and quantum field theory: symmetry groups \leftrightarrow classification of particle spectra

The rôle of symmetry in Physics

- Symmetry (invariance) \leftrightarrow conservation laws (Noether theorem, 1918)
- Quantum mechanics and quantum field theory: symmetry groups \leftrightarrow classification of particle spectra
- Gauge principle \Rightarrow generation of interactions/dynamics

The rôle of symmetry in Physics

- Symmetry (invariance) \leftrightarrow conservation laws (Noether theorem, 1918)
- Quantum mechanics and quantum field theory: symmetry groups \leftrightarrow classification of particle spectra
- Gauge principle \Rightarrow generation of interactions/dynamics
- Symmetry and asymmetry/symmetry breaking as distinguishing features of dynamics

Group

Definition

A group G is a non-empty set of elements $\{a, b, \ldots\}$ with a law of composition (multiplication) $(a, b) \rightarrow c=a b \in G$ satisfying the following conditions:

Group

Definition

A group G is a non-empty set of elements $\{a, b, \ldots\}$ with a law of composition (multiplication) $(a, b) \rightarrow c=a b \in G$ satisfying the following conditions:
(1) (associative law) $a(b c)=(a b) c \forall a, b, c \in G$

Group

Definition

A group G is a non-empty set of elements $\{a, b, \ldots\}$ with a law of composition (multiplication) $(a, b) \rightarrow c=a b \in G$ satisfying the following conditions:
(1) (associative law) $a(b c)=(a b) c \forall a, b, c \in G$
(2) (unit element) G contains an element, the identity element, denoted by e, such that for all $a \in G$

$$
e a=a e=a
$$

Group

Definition

A group G is a non-empty set of elements $\{a, b, \ldots\}$ with a law of composition (multiplication) $(a, b) \rightarrow c=a b \in G$ satisfying the following conditions:
(1) (associative law) $a(b c)=(a b) c \forall a, b, c \in G$
(2) (unit element) G contains an element, the identity element, denoted by e, such that for all $a \in G$

$$
e a=a e=a
$$

(3) (existence of inverse) For all $a \in G$ there is an element, denoted by a^{-1}, such that

$$
a a^{-1}=a^{-1} a=e
$$

Group

Definition

A group G is a non-empty set of elements $\{a, b, \ldots\}$ with a law of composition (multiplication) $(a, b) \rightarrow c=a b \in G$ satisfying the following conditions:
(1) (associative law) $a(b c)=(a b) c \forall a, b, c \in G$
(2) (unit element) G contains an element, the identity element, denoted by e, such that for all $a \in G$

$$
e a=a e=a
$$

(3) (existence of inverse) For all $a \in G$ there is an element, denoted by a^{-1}, such that

$$
a a^{-1}=a^{-1} a=e
$$

(a) (Abelian group) If $a b=b a$ for all $a, b \in G$ the group is called Abelian

Examples of groups 1

Example 1: Permutations of n objects

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),
$$

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
& \begin{array}{l|l|l}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~B} & \mathrm{~A} & \mathrm{C}
\end{array}: \quad \mathrm{P}_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text {, }
\end{aligned}
$$

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array} \rightarrow \mathrm{~B}|\mathrm{~A}| \mathrm{C}: \quad P_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text {, } \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array} \rightarrow \mathrm{~B}|\mathrm{C}| \mathrm{A}: \quad P_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~B} & \mathrm{~A} & \mathrm{C} \\
\hline
\end{array} \quad: \quad P_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text {, } \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array} \rightarrow \mathrm{~B}|\mathrm{C}| \mathrm{A}: \quad P_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

(1) Number of group elements: $n!\Rightarrow$ finite group

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~B} & \mathrm{~A} & \mathrm{C} \\
\hline
\end{array} \quad: \quad P_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text {, } \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array} \rightarrow \mathrm{~B}|\mathrm{C}| \mathrm{A}: \quad P_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

(1) Number of group elements: $n!\Rightarrow$ finite group
(2) $n=3: 3!=3 \cdot 2 \cdot 1=6$

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{array}{|l|l|l}
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C}
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \\
\begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C}
\end{array} \rightarrow \begin{array}{|l|l|l}
\mathrm{B} & \mathrm{~A} & \mathrm{C}
\end{array} & : & P_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \\
\hline
\end{array} \begin{array}{|l|l|l|l|l}
\hline \mathrm{B} & \mathrm{C} & \mathrm{~A} & \ldots & P_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{array}
$$

(1) Number of group elements: $n!\Rightarrow$ finite group
(2) $n=3: 3!=3 \cdot 2 \cdot 1=6$
(3) $n=26$:

Examples of groups 1

Example 1: Permutations of n objects

Illustration for $n=3$: How can one (re-)distribute 3 different objects in 3 different positions?

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array}: \quad e=P_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \text {, } \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline \mathrm{~B} & \mathrm{~A} & \mathrm{C} \\
\hline
\end{array} \quad \quad P_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \text {, } \\
& \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline
\end{array} \rightarrow \mathrm{~B}|\mathrm{C}| \mathrm{A}: \quad P_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

(1) Number of group elements: $n!\Rightarrow$ finite group
(2) $n=3: 3!=3 \cdot 2 \cdot 1=6$
(3) $n=26: 26!=403291461126605635584000000 \approx 4 \cdot 10^{26}$

Examples for groups 2

Example 2: $\mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\}$ with addition

Examples for groups 2

> Example 2 : $\mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\}$ with addition
> (1) $3+(-2+4)=3+2=5=1+4=(3+(-2))+4$

Examples for groups 2

> Example $2: \mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\}$ with addition
> (1) $3+(-2+4)=3+2=5=1+4=(3+(-2))+4$
> (2) $0+3=3+0=3$

Examples for groups 2

$$
\begin{aligned}
& \text { Example } 2: \mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\} \text { with addition } \\
& \text { (1) } 3+(-2+4)=3+2=5=1+4=(3+(-2))+4 \\
& \text { (2) } 0+3=3+0=3 \\
& \text { (3) } 5+(-5)=(-5)+5=0
\end{aligned}
$$

Examples for groups 2

$$
\begin{aligned}
& \text { Example } 2: \mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\} \text { with addition } \\
& \text { (1) } 3+(-2+4)=3+2=5=1+4=(3+(-2))+4 \\
& \text { (2) } 0+3=3+0=3 \\
& \text { (3) } 5+(-5)=(-5)+5=0 \\
& \text { (1) } 3+5=8=5+3
\end{aligned}
$$

Examples for groups 2

$$
\begin{aligned}
& \text { Example } 2: \mathbb{Z}=\{\ldots,-2,-1,0,2,1, \ldots\} \text { with addition } \\
& \text { (1) } 3+(-2+4)=3+2=5=1+4=(3+(-2))+4 \\
& \text { (2) } 0+3=3+0=3 \\
& \text { (3) } 5+(-5)=(-5)+5=0 \\
& \text { (1) } 3+5=8=5+3 \\
& \text { () countably infinite group }
\end{aligned}
$$

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
U(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

Examples of groups 3

Examples for uncountably infinite continuous groups

(1) $\mathrm{U}(1)$: Gauge group of quantum electrodynamics

$$
\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}=\{\exp (i \varphi) \mid 0 \leq \varphi<2 \pi\}
$$

with multiplication, Abelian
(2) Translations

- Abelian (order of composition does not matter)
- Not compact (parameters of a translation may be arbitrarily large)

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{PO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{PO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{PO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

Examples of groups 4

(3) Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup P \mathrm{SO}(3)$
$\mathrm{SO}(3)$: rotations, P : parity

90°

Examples of groups 4

- Orthogonal group in three dimensions $\mathrm{O}(3)$ (rotations and rotatory reflections):
$\mathrm{O}(3):=\left\{R \mid\right.$ real 3×3 matrix, $\left.R^{T} R=\mathbb{1}\right\}=\mathrm{SO}(3) \cup \mathrm{PSO}(3)$
SO(3): rotations, P: parity

90°
- Not Abelian (order of composition matters)
- Compact

Examples of groups 5

- Unitary group $\mathrm{U}(2)$:

$$
U(2):=\left\{U \mid \text { complex } 2 \times 2 \text { matrix, } U^{\dagger} U=U U^{\dagger}=\mathbb{1}\right\}
$$

with matrix multiplication as composition

Examples of groups 5

(1) Unitary group $\mathrm{U}(2)$:

$$
U(2):=\left\{U \mid \text { complex } 2 \times 2 \text { matrix, } U^{\dagger} U=U U^{\dagger}=\mathbb{1}\right\}
$$

with matrix multiplication as composition

- Special unitary group $\operatorname{SU}(2)$: Spin/isospin Additional requirement: $\operatorname{det}(U)=1$

Examples of groups 5

(1) Unitary group $\mathrm{U}(2)$:

$$
U(2):=\left\{U \mid \text { complex } 2 \times 2 \text { matrix, } U^{\dagger} U=U U^{\dagger}=\mathbb{1}\right\}
$$

with matrix multiplication as composition

- Special unitary group $\operatorname{SU}(2)$: Spin/isospin Additional requirement: $\operatorname{det}(U)=1$
- Analogous $\mathrm{U}(n)$ and $\mathrm{SU}(n)$: Quark model, QCD, etc.

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Applications in Physics

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Applications in Physics

(1) M: states, dynamical variables, fields, \ldots

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Applications in Physics

(1) M: states, dynamical variables, fields, ...
(2) M vector space \Rightarrow representation of a group

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Applications in Physics

(1) M : states, dynamical variables, fields, ...
(2) M vector space \Rightarrow representation of a group
(3) Nonlinear realization (spontaneous symmetry breaking)

Action of a group 1

Definition

Let $M=\{m\}$ and G be a non-empty set and a group, respectively. A mapping A, which associates with each pair $(g, m) \in G \times M$ a unique element $A(g, m) \in M$, defines an action of the group G on M, if the following conditions are satisfied:
(1) $A(e, m)=m \forall m \in M$,
(2) $A\left(g_{1}, A\left(g_{2}, m\right)\right)=A\left(g_{1} g_{2}, m\right) \forall g_{1}, g_{2} \in G, \forall m \in M$.

Applications in Physics

(1) M: states, dynamical variables, fields, ...
(2) M vector space \Rightarrow representation of a group
(3) Nonlinear realization (spontaneous symmetry breaking)
(9) Symmetry \leftrightarrow group invariants

Action of a group 2

Example from classical physics

The Hamiltonian of a particle in a central potential,

$$
H(\vec{p}, \vec{x})=\frac{\vec{p}^{2}}{2 m}+V(|\vec{x}|)
$$

is invariant under

$$
\begin{aligned}
x_{i} & \mapsto \sum_{j=1}^{3} R_{i j} x_{j}, \\
p_{i} & \mapsto \sum_{j=1}^{3} R_{i j} p_{j},
\end{aligned}
$$

where $R \in \mathrm{O}(3) . \Rightarrow$

Action of a group 2

Example from classical physics

The Hamiltonian of a particle in a central potential,

$$
H(\vec{p}, \vec{x})=\frac{\vec{p}^{2}}{2 m}+V(|\vec{x}|)
$$

is invariant under

$$
\begin{aligned}
x_{i} & \mapsto \sum_{j=1}^{3} R_{i j} x_{j}, \\
p_{i} & \mapsto \sum_{j=1}^{3} R_{i j} p_{j},
\end{aligned}
$$

where $R \in \mathrm{O}(3) . \Rightarrow$
The angular momentum is a conserved quantity.

Action of a group 3

Example from quantum mechanics

$$
\begin{aligned}
|\uparrow\rangle & =\binom{1}{0}: \quad \text { electron polarized in positive } z \text { direction } \\
S_{z} & =\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\frac{\hbar}{2} \sigma_{z}, \quad \sigma_{z}|\uparrow\rangle=\vec{\sigma} \cdot \hat{e}_{z}|\uparrow\rangle=|\uparrow\rangle
\end{aligned}
$$

Action of a group 3

Example from quantum mechanics

$$
\begin{aligned}
|\uparrow\rangle & =\binom{1}{0}: \quad \text { electron polarized in positive } z \text { direction } \\
S_{z} & =\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\frac{\hbar}{2} \sigma_{z}, \quad \sigma_{z}|\uparrow\rangle=\vec{\sigma} \cdot \hat{e}_{z}|\uparrow\rangle=|\uparrow\rangle
\end{aligned}
$$

Electron polarized in arbitrary direction

$$
\hat{n}=\sin (\theta) \cos (\phi) \hat{e}_{x}+\sin (\theta) \sin (\phi) \hat{e}_{y}+\cos (\theta) \hat{e}_{z}
$$

Action of a group 3

Example from quantum mechanics

$$
\begin{aligned}
|\uparrow\rangle & =\binom{1}{0}: \quad \text { electron polarized in positive } z \text { direction } \\
S_{z} & =\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\frac{\hbar}{2} \sigma_{z}, \quad \sigma_{z}|\uparrow\rangle=\vec{\sigma} \cdot \hat{e}_{z}|\uparrow\rangle=|\uparrow\rangle
\end{aligned}
$$

Electron polarized in arbitrary direction

$$
\begin{aligned}
& \hat{n}=\sin (\theta) \cos (\phi) \hat{e}_{x}+\sin (\theta) \sin (\phi) \hat{e}_{y}+\cos (\theta) \hat{e}_{z} \\
& U\left(\phi, \hat{e}_{z}\right) U\left(\theta, \hat{e}_{y}\right)|\uparrow\rangle=\left(\begin{array}{cc}
e^{-i \frac{\phi}{2}} \cos \left(\frac{\theta}{2}\right) & -e^{-i \frac{\phi}{2}} \sin \left(\frac{\theta}{2}\right) \\
e^{i \frac{\phi}{2}} \sin \left(\frac{\theta}{2}\right) & e^{i \frac{\phi}{2}} \cos \left(\frac{\theta}{2}\right)
\end{array}\right)\binom{1}{0} \\
&=\binom{\cos \left(\frac{\theta}{2}\right) e^{-i \frac{\phi}{2}}}{\sin \left(\frac{\theta}{2}\right) e^{i \frac{\phi}{2}}}
\end{aligned}
$$

Action of a group 4

Example from field theory

$$
\begin{aligned}
G & =O(2)=S O(2) \cup S_{1} S O(2) \\
S_{1} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): \quad \text { reflection over the 1-axis. }
\end{aligned}
$$

Action of a group 4

Example from field theory

$$
\begin{aligned}
G & =O(2)=S O(2) \cup S_{1} S O(2) \\
S_{1} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): \quad \text { reflection over the 1-axis. }
\end{aligned}
$$

Each $g \in G$ can be written either as

$$
R(\varphi)=\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right), \quad \operatorname{det}(R(\varphi))=1
$$

Action of a group 4

Example from field theory

$$
\begin{aligned}
G & =O(2)=S O(2) \cup S_{1} S O(2) \\
S_{1} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right): \quad \text { reflection over the 1-axis. }
\end{aligned}
$$

Each $g \in G$ can be written either as

$$
R(\varphi)=\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right), \quad \operatorname{det}(R(\varphi))=1
$$

or as

$$
S_{1} R(\varphi)=\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
-\sin (\varphi) & -\cos (\varphi)
\end{array}\right), \quad \operatorname{det}\left(S_{1} R(\varphi)\right)=-1
$$

where $0 \leq \varphi<2 \pi$.

Action of a group 5

Lagrange density
$\mathcal{L}\left(\Phi_{1}, \Phi_{2}, \partial_{\mu} \Phi_{1}, \partial_{\mu} \Phi_{2}\right)=\frac{1}{2} \sum_{i=1}^{2}\left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i}-m_{i}^{2} \Phi_{i}^{2}\right)-\mathcal{V}\left(\Phi_{1}, \Phi_{2}\right)$
of two real scalar fields $\Phi_{i}(t, \vec{x}), \Phi_{i} \in C^{2}\left(M^{4}\right), i=1,2$, M^{4} : Minkowski space.

Action of a group 5

Lagrange density

$$
\mathcal{L}\left(\Phi_{1}, \Phi_{2}, \partial_{\mu} \Phi_{1}, \partial_{\mu} \Phi_{2}\right)=\frac{1}{2} \sum_{i=1}^{2}\left(\partial_{\mu} \Phi_{i} \partial^{\mu} \Phi_{i}-m_{i}^{2} \Phi_{i}^{2}\right)-\mathcal{V}\left(\Phi_{1}, \Phi_{2}\right)
$$

of two real scalar fields $\Phi_{i}(t, \vec{x}), \Phi_{i} \in C^{2}\left(M^{4}\right), i=1,2$, M^{4} : Minkowski space.
Define the action of the group G on $M=\left\{\left(\Phi_{1}, \Phi_{2}\right)\right\}$,

$$
\begin{aligned}
\binom{\Phi_{1}^{\prime}}{\Phi_{2}^{\prime}} & :=A\left(R(\varphi),\left(\Phi_{1}, \Phi_{2}\right)\right) \\
& :=\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}} \in M
\end{aligned}
$$

for $R(\varphi) \in \mathrm{SO}(2)$ and analogously for $S_{1} R(\varphi) \in S_{1} \mathrm{SO}(2)$.

Action of a group 6

Note

$$
\begin{aligned}
A\left(R(0),\left(\Phi_{1}, \Phi_{2}\right)\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}}=\binom{\Phi_{1}}{\Phi_{2}}, \\
A\left(g_{1}, A\left(g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right)\right) & =A\left(g_{1} g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right) .
\end{aligned}
$$

(The product of two $O(2)$ matrices is an $O(2)$ matrix.)

Action of a group 6

Note

$$
\begin{aligned}
A\left(R(0),\left(\Phi_{1}, \Phi_{2}\right)\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}}=\binom{\Phi_{1}}{\Phi_{2}}, \\
A\left(g_{1}, A\left(g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right)\right) & =A\left(g_{1} g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right) .
\end{aligned}
$$

(The product of two $\mathrm{O}(2)$ matrices is an $\mathrm{O}(2)$ matrix.) The Lagrange density \mathcal{L} is a so-called group invariant, i. e.

$$
\mathcal{L}\left(\Phi_{1}, \Phi_{2}, \partial_{\mu} \Phi_{1}, \partial_{\mu} \Phi_{2}\right)=\mathcal{L}\left(\Phi_{1}^{\prime}, \Phi_{2}^{\prime}, \partial_{\mu} \Phi_{1}^{\prime}, \partial_{\mu} \Phi_{2}^{\prime}\right)
$$

iff

Action of a group 6

Note

$$
\begin{aligned}
A\left(R(0),\left(\Phi_{1}, \Phi_{2}\right)\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}}=\binom{\Phi_{1}}{\Phi_{2}}, \\
A\left(g_{1}, A\left(g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right)\right) & =A\left(g_{1} g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right) .
\end{aligned}
$$

(The product of two $\mathrm{O}(2)$ matrices is an $\mathrm{O}(2)$ matrix.) The Lagrange density \mathcal{L} is a so-called group invariant, i. e.

$$
\mathcal{L}\left(\Phi_{1}, \Phi_{2}, \partial_{\mu} \Phi_{1}, \partial_{\mu} \Phi_{2}\right)=\mathcal{L}\left(\Phi_{1}^{\prime}, \Phi_{2}^{\prime}, \partial_{\mu} \Phi_{1}^{\prime}, \partial_{\mu} \Phi_{2}^{\prime}\right)
$$

iff

- $m_{1}=m_{2}$
and

Action of a group 6

Note

$$
\begin{aligned}
A\left(R(0),\left(\Phi_{1}, \Phi_{2}\right)\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\Phi_{1}}{\Phi_{2}}=\binom{\Phi_{1}}{\Phi_{2}}, \\
A\left(g_{1}, A\left(g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right)\right) & =A\left(g_{1} g_{2},\left(\Phi_{1}, \Phi_{2}\right)\right) .
\end{aligned}
$$

(The product of two $\mathrm{O}(2)$ matrices is an $\mathrm{O}(2)$ matrix.) The Lagrange density \mathcal{L} is a so-called group invariant, i. e.

$$
\mathcal{L}\left(\Phi_{1}, \Phi_{2}, \partial_{\mu} \Phi_{1}, \partial_{\mu} \Phi_{2}\right)=\mathcal{L}\left(\Phi_{1}^{\prime}, \Phi_{2}^{\prime}, \partial_{\mu} \Phi_{1}^{\prime}, \partial_{\mu} \Phi_{2}^{\prime}\right)
$$

iff

- $m_{1}=m_{2}$
and
- \mathcal{V} is a function of $\Phi_{1}^{2}+\Phi_{2}^{2}$.

Action of a group 7

Remarks

(1) Since $\mathrm{U}(1) \cong \mathrm{SO}(2)$, the invariant Lagrange density may be used to describe a pair of oppositely charged (pseudo-)scalar particles. The coupling to the electromagnetic field is generated in terms of the gauge principle.
(2) S_{1} may be regarded as the charge conjugation transformation.
(3) Noether-Theorem \Rightarrow conservation laws.

Action of a group 7

Remarks

(1) Since $\mathrm{U}(1) \cong \mathrm{SO}(2)$, the invariant Lagrange density may be used to describe a pair of oppositely charged (pseudo-)scalar particles. The coupling to the electromagnetic field is generated in terms of the gauge principle.
(2) S_{1} may be regarded as the charge conjugation transformation.
(3) Noether-Theorem \Rightarrow conservation laws.

Outlook

The Lagrangian of the Standard Model of Particle Physics is a group invariant with $G=S U(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$. The construction requires the (local) operation of the group G on the set of the quarks, leptons (matter fields) and the gauge bosons and the Higgs fields.

SU(N) and quarks 1

Aim: Classification of composite states
(1) Atoms: Atomic nucleus and electron shell

SU(N) and quarks 1

Aim: Classification of composite states

(1) Atoms: Atomic nucleus and electron shell
(2) Nuclei: Protons and neutrons (Collective term: Nucleons \subset baryons \subset hadrons)

SU(N) and quarks 1

Aim: Classification of composite states

(1) Atoms: Atomic nucleus and electron shell
(2) Nuclei: Protons and neutrons (Collective term: Nucleons \subset baryons \subset hadrons)
(3) Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))

SU(N) and quarks 1

Aim: Classification of composite states

(1) Atoms: Atomic nucleus and electron shell
(2) Nuclei: Protons and neutrons (Collective term: Nucleons \subset baryons \subset hadrons)
(3) Nucleons: Quarks (M. Gell-Mann, Phys. Lett. 8, 214 (1964))

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: $\operatorname{spin} \frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{1^{3}}$. We then refer to the members $\mathrm{u}^{\frac{2}{3}}, \mathrm{~d}^{-\frac{1}{3}}$, and $\mathrm{s}^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks $\overline{\mathrm{q}}$. Baryons can now be constructed from quarks by using the combinations (qqq), ($\mathrm{qqqq} \bar{q}$), etc., while mesons are made out of ($q \bar{q}$), ($q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and $\mathbf{1 0}$ that have been observed, while the lowest meson configuration ($q \bar{q}$) similarly gives just 1 and 8.
6) James Joyce, Finnegan's Wake: „three quarks for Muster Mark"

SU(N) and quarks 2

Physical motivation

SU(N) and quarks 2

Physical motivation
(1) Evidence for substructure of hadrons

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$
- Excitation spectrum

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
(2) Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
(2) Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom
(3) Fundamental Theory: Quantum chromodynamics (QCD) QCD is a non-Abelian gauge theory with gauge group $G=\operatorname{SU}(3)_{c}$ (c for color)

SU(N) and quarks 2

Physical motivation

(1) Evidence for substructure of hadrons

- Extension (form factors, e.g., root-mean-square charge radius of the proton $\left.r_{E}^{p}=(0.8751 \pm 0.0061) \mathrm{fm}\right)$
- Excitation spectrum
- Deep inelastic scattering (pointlike partons)
(2) Interpretation: Hadrons are (complicated) bound states of fundamental degrees of freedom
(3) Fundamental Theory: Quantum chromodynamics (QCD) QCD is a non-Abelian gauge theory with gauge group $G=\operatorname{SU}(3)_{c}$ (c for color)
(9) Matter fields of QCD (quarks) are fermions with spin $1 / 2$, which show up in six different flavors

SU(N) and quarks 3

Light quarks

flavor	u	d	s
masse $[\mathrm{MeV}]$	$2.2_{-0.4}^{+0.6}$	$4.7_{-0.4}^{+0.5}$	96_{-4}^{+8}
charge $[e>0]$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$
I_{3}	$+\frac{1}{2}$	$-\frac{1}{2}$	0
			strangeness: -1

SU(N) and quarks 4

Heavy quarks

flavor	c	b	t
mass $[\mathrm{GeV}]$	1.28 ± 0.03	$4.18_{-0.03}^{+0.04}$	173.1 ± 0.6
charge $[e>0]$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$
l_{3}	0	0	0
	charm: +1	bottom: -1	top: +1

See http://pdg.lbl.gov

SU(N) and quarks 5

(3) Each quark flavor comes with three colors

SU(N) and quarks 5

(0) Each quark flavor comes with three colors

- Motivation

$$
\Delta^{++}\left(S_{z}=\frac{3}{2}\right)=u \uparrow u \uparrow u \uparrow
$$

SU(N) and quarks 5

(0) Each quark flavor comes with three colors

- Motivation

$$
\Delta^{++}\left(S_{z}=\frac{3}{2}\right)=u \uparrow u \uparrow u \uparrow
$$

- Contradiction to Pauli principle

SU(N) and quarks 5

(0) Each quark flavor comes with three colors

- Motivation

$$
\Delta^{++}\left(S_{z}=\frac{3}{2}\right)=u \uparrow u \uparrow u \uparrow
$$

- Contradiction to Pauli principle
- Solution: Slater determinant

$$
\frac{1}{\sqrt{6}}\left|\begin{array}{lll}
r_{1} & g_{1} & b_{1} \\
r_{2} & g_{2} & b_{2} \\
r_{3} & g_{3} & b_{3}
\end{array}\right|
$$

SU(N) and quarks 5

(3) Each quark flavor comes with three colors

- Motivation

$$
\Delta^{++}\left(S_{z}=\frac{3}{2}\right)=u \uparrow u \uparrow u \uparrow
$$

- Contradiction to Pauli principle
- Solution: Slater determinant

$$
\frac{1}{\sqrt{6}}\left|\begin{array}{lll}
r_{1} & g_{1} & b_{1} \\
r_{2} & g_{2} & b_{2} \\
r_{3} & g_{3} & b_{3}
\end{array}\right|
$$

- General N_{c} :

$$
\frac{1}{\sqrt{N_{c}!}} \epsilon_{i_{1} \ldots i_{N_{c}}} \chi^{i_{1}} \otimes \ldots \otimes \chi^{i_{N_{c}}}
$$

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.

SU(N) and quarks 6

(0 To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.

SU(N) and quarks 6

(0 To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
(3) 8 gluons (spin 1, massless) mediate the interaction

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
(3) 8 gluons (spin 1, massless) mediate the interaction
(B) The interaction is flavor independent

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
(3) 8 gluons (spin 1, massless) mediate the interaction
(B) The interaction is flavor independent
(0) Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
(3) 8 gluons (spin 1, massless) mediate the interaction
(B) The interaction is flavor independent
(0) Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)
(10) Baryons: $q q q$ states; color neutral via Slater determinant

SU(N) and quarks 6

(0) To each quark q there exists an antiquark \bar{q} with

- spin $1 / 2$
- the same mass, $m_{u}=m_{\bar{u}}$, etc.
- opposite charge, $Q_{\bar{u}}=-2 / 3$, etc.
- opposite internal quantum numbers, $I_{3}=-1 / 2$ for \bar{u}, etc., $S=+1$ for \bar{s}, etc.
- opposite color quantum numbers, r vs. \bar{r}, etc.
(1) 8 gluons (spin 1, massless) mediate the interaction
(B) The interaction is flavor independent
(0) Free quarks and gluons have not been observed (\Rightarrow color-confinement hypothesis)
(10) Baryons: qqq states; color neutral via Slater determinant
(1) Mesons: $q \bar{q}$ (quark-antiquark) states; color neutral via $\frac{1}{\sqrt{3}}(r \bar{r}+g \bar{g}+b \bar{b})$

SU(N) and quarks 7

Quark model

SU(N) and quarks 7

Quark model
(1) Building blocks (quarks and antiquarks as basis states)

SU(N) and quarks 7

Quark model
(1) Building blocks (quarks and antiquarks as basis states) Goal: Classification of so-called irreducible representations of SU(N)

SU(N) and quarks 7

Quark model

(1) Building blocks (quarks and antiquarks as basis states) Goal: Classification of so-called irreducible representations of SU(N)
(2) Method: Construction in terms of direct products from quarks and antiquarks (in technical terms: from the fundamental representation and its complex conjugate representation)

SU(N) and quarks 7

Quark model

(1) Building blocks (quarks and antiquarks as basis states) Goal: Classification of so-called irreducible representations of SU(N)
(2) Method: Construction in terms of direct products from quarks and antiquarks (in technical terms: from the fundamental representation and its complex conjugate representation)
(3) Application: Mesons and baryons (hadrons)

SU(N) and quarks 7

Quark model

(1) Building blocks (quarks and antiquarks as basis states) Goal: Classification of so-called irreducible representations of SU(N)
(2) Method: Construction in terms of direct products from quarks and antiquarks (in technical terms: from the fundamental representation and its complex conjugate representation)
(3) Application: Mesons and baryons (hadrons)

Properties of the building blocks (quarks)

SU(N) and quarks 7

Quark model

(1) Building blocks (quarks and antiquarks as basis states) Goal: Classification of so-called irreducible representations of SU(N)
(2) Method: Construction in terms of direct products from quarks and antiquarks (in technical terms: from the fundamental representation and its complex conjugate representation)
(3) Application: Mesons and baryons (hadrons)

Properties of the building blocks (quarks)
(1) Spin $1 / 2$ with two projections $(S U(2))$

SU(N) und quarks 8

(2) Quark triplet (flavor-SU(3) symmetry for light quarks)

SU(N) und quarks 8

(2) Quark triplet (flavor-SU(3) symmetry for light quarks) $Y=B+S$

SU(N) und quarks 8

(2) Quark triplet (flavor-SU(3) symmetry for light quarks) $Y=B+S$
$|u\rangle$
$|d\rangle$
$|s\rangle$

SU(N) und quarks 8

(2) Quark triplet (flavor-SU(3) symmetry for light quarks) $Y=B+S$

$$
\begin{aligned}
& |u\rangle \\
& |d\rangle \\
& |s\rangle
\end{aligned}
$$

(3) Antiquark triplet

$$
\begin{aligned}
& |\bar{u}\rangle \\
& |\bar{d}\rangle \\
& |\bar{s}\rangle
\end{aligned}
$$

SU(N) and quarks 9

Transformation properties

SU(N) and quarks 9

Transformation properties

(1) Quarks transform under the fundamental representation of SU(3):

$$
q=\left(\begin{array}{l}
\psi_{u} \\
\psi_{d} \\
\psi_{s}
\end{array}\right), \quad q \mapsto q^{\prime}=U q \quad \text { with } \quad U \in \operatorname{SU}(3)
$$

SU(N) and quarks 9

Transformation properties

(1) Quarks transform under the fundamental representation of SU(3):

$$
q=\left(\begin{array}{l}
\psi_{u} \\
\psi_{d} \\
\psi_{s}
\end{array}\right), \quad q \mapsto q^{\prime}=U q \quad \text { with } \quad U \in \operatorname{SU}(3)
$$

(2) Antiquarks transform under the complex conjugate representation:

$$
\bar{q}=\left(\begin{array}{l}
\psi_{\bar{u}} \\
\psi_{\bar{d}} \\
\psi_{\bar{s}}
\end{array}\right), \quad \bar{q} \mapsto U^{*} \bar{q} .
$$

SU(N) and quarks 10

SU(6)

Assume a Hamiltonian, where the interaction between quarks does not depend on spin and flavor.
Combine properties: $|1\rangle=|u \uparrow\rangle,|2\rangle=|u \downarrow\rangle, \ldots,|6\rangle=|s \downarrow\rangle$

SU(N) and quarks 10

SU(6)

Assume a Hamiltonian, where the interaction between quarks does not depend on spin and flavor.
Combine properties: $|1\rangle=|u \uparrow\rangle,|2\rangle=|u \downarrow\rangle, \ldots,|6\rangle=|s \downarrow\rangle$

Composite states

Description in terms of tensor product

$$
\begin{aligned}
X \otimes X \otimes X & \text { for baryons } \\
X \otimes X^{*} & \text { for mesons }
\end{aligned}
$$

SU (N) and quarks 11

Graphical method, spin

$$
\begin{aligned}
& J=0 \\
& J=\frac{1}{2} \\
& J=1 \\
& J=\frac{3}{2}
\end{aligned}
$$

SU(N) and quarks 12

Sequential coupling

Eigenvalues of $J_{3}=J_{3}(1)+J_{3}(2)$ are additive

SU(N) and quarks 12

Sequential coupling

Eigenvalues of $J_{3}=J_{3}(1)+J_{3}(2)$ are additive

$$
\begin{aligned}
\frac{1}{2} \otimes \frac{1}{2} & =\bullet \otimes \bullet \bullet \\
& =\longleftrightarrow \quad \bullet \\
& =1 \oplus 0
\end{aligned}
$$

SU (N) and quarks 13

Symmetry properties

$$
\mathcal{H}=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{1} \oplus \mathcal{H}_{0}
$$

SU(N) and quarks 13

Symmetry properties

$$
\mathcal{H}=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{1} \oplus \mathcal{H}_{0}
$$

(1) Basis of \mathcal{H}_{1}

$$
\begin{aligned}
|1,1\rangle & :=|\uparrow, \uparrow\rangle, \\
|1,0\rangle & :=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle), \\
|1,-1\rangle & :=|\downarrow, \downarrow\rangle
\end{aligned}
$$

SU(N) and quarks 13

Symmetry properties

$$
\mathcal{H}=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{1} \oplus \mathcal{H}_{0}
$$

(1) Basis of \mathcal{H}_{1}

$$
\begin{aligned}
|1,1\rangle & :=|\uparrow, \uparrow\rangle, \\
|1,0\rangle & :=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle), \\
|1,-1\rangle & :=|\downarrow, \downarrow\rangle
\end{aligned}
$$

states are symmetric under exchange $1 \leftrightarrow 2$

SU(N) and quarks 13

Symmetry properties

$$
\mathcal{H}=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{1} \oplus \mathcal{H}_{0}
$$

(1) Basis of \mathcal{H}_{1}

$$
\begin{aligned}
|1,1\rangle & :=|\uparrow, \uparrow\rangle, \\
|1,0\rangle & :=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle), \\
|1,-1\rangle & :=|\downarrow, \downarrow\rangle
\end{aligned}
$$

states are symmetric under exchange $1 \leftrightarrow 2$
(2) Basis of \mathcal{H}_{0}

$$
|0,0\rangle:=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle)
$$

SU (N) and quarks 13

Symmetry properties

$$
\mathcal{H}=\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{1} \oplus \mathcal{H}_{0}
$$

(1) Basis of \mathcal{H}_{1}

$$
\begin{aligned}
|1,1\rangle & :=|\uparrow, \uparrow\rangle, \\
|1,0\rangle & :=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle), \\
|1,-1\rangle & :=|\downarrow, \downarrow\rangle
\end{aligned}
$$

states are symmetric under exchange $1 \leftrightarrow 2$
(2) Basis of \mathcal{H}_{0}

$$
|0,0\rangle:=\frac{1}{\sqrt{2}}(|\uparrow, \downarrow\rangle-|\downarrow, \uparrow\rangle)
$$

state is antisymmetric under exchange $1 \leftrightarrow 2$

SU(N) and quarks 14

$$
\begin{aligned}
1 \otimes \frac{1}{2} & =\bullet \bullet \bullet \\
& =\sim \\
& =\frac{\square}{2} \oplus \frac{1}{2}
\end{aligned}
$$

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

$$
\mathcal{H}_{0} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{1}{2}, M A}
$$

states of $\mathcal{H}_{\frac{1}{2}, M A}$ are

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

$$
\mathcal{H}_{0} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{1}{2}, M A}
$$

states of $\mathcal{H}_{\frac{1}{2}, M A}$ are

- antisymmetric under $1 \leftrightarrow 2$ (A)

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

$$
\mathcal{H}_{0} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{1}{2}, M A}
$$

states of $\mathcal{H}_{\frac{1}{2}, M A}$ are

- antisymmetric under $1 \leftrightarrow 2$ (A)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

SU(N) and quarks 15

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{3}{2}, S} \oplus \mathcal{H}_{\frac{1}{2}, M S}
$$

- States of $\mathcal{H}_{\frac{3}{2}, S}$ are completely symmetric
- States of $\mathcal{H}_{\frac{1}{2}, M S}$ are
- symmetric under $1 \leftrightarrow 2$ (S)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

$$
\mathcal{H}_{0} \otimes \mathcal{H}_{\frac{1}{2}}=\mathcal{H}_{\frac{1}{2}, M A}
$$

states of $\mathcal{H}_{\frac{1}{2}, M A}$ are

- antisymmetric under $1 \leftrightarrow 2$ (A)
- without well-defined symmetry under $1 \leftrightarrow 3,2 \leftrightarrow 3$ (M)

Number of states

$$
2 \cdot 2 \cdot 2=4+2+2
$$

SU(N) and quarks 16

Coupling in $\mathrm{SU}(3)$ analogous

$$
3 \otimes 3=6 \oplus \overline{3}
$$

$\mathrm{SU}(N)$ and quarks 17

$$
6 \otimes 3=10 \oplus 8
$$

SU(N) and quarks 18

$$
\overline{3} \otimes 3=8 \oplus 1
$$

SU(N) and quarks 18

$$
\overline{3} \otimes 3=8 \oplus 1
$$

Dimensions of the vector spaces

$$
3 \cdot 3 \cdot 3=10+8+8+1
$$

SU(N) and quarks 19

Baryon octet

$\mathrm{Y}=\mathrm{B}+\mathrm{S} . \mathrm{B}=1 \quad$ baryon octet with $J=\frac{1}{2}$

SU(N) and quarks 20

Baryon decuplet

baryon decuplet with $J=\frac{3}{2}$

SU(N) and quarks 21

Mathematical procedure

SU(N) and quarks 21

Mathematical procedure

(1) Decompose the tensor product into a direct sum

$$
Z=X \otimes X \otimes X=\bigoplus_{j=1}^{M} P_{j}(Z)
$$

Each of the linear subspaces $P_{j}(Z)$ is irreducible with respect to the product representation (states of different subspaces do not mix under transformations)

SU(N) and quarks 21

Mathematical procedure

(1) Decompose the tensor product into a direct sum

$$
Z=X \otimes X \otimes X=\bigoplus_{j=1}^{M} P_{j}(Z)
$$

Each of the linear subspaces $P_{j}(Z)$ is irreducible with respect to the product representation (states of different subspaces do not mix under transformations)
(2) Key words: Young diagrams and Young operators

SU(N) and quarks 21

Mathematical procedure

(1) Decompose the tensor product into a direct sum

$$
Z=X \otimes X \otimes X=\bigoplus_{j=1}^{M} P_{j}(Z)
$$

Each of the linear subspaces $P_{j}(Z)$ is irreducible with respect to the product representation (states of different subspaces do not mix under transformations)
(2) Key words: Young diagrams and Young operators
(3) Example SU(6)

$$
\square \otimes \square \otimes \square=\square \square \square \oplus \square \square \square \square \square \square \square \square \square \square
$$

SU(N) and quarks 21

Mathematical procedure

(1) Decompose the tensor product into a direct sum

$$
Z=X \otimes X \otimes X=\bigoplus_{j=1}^{M} P_{j}(Z)
$$

Each of the linear subspaces $P_{j}(Z)$ is irreducible with respect to the product representation (states of different subspaces do not mix under transformations)
(2) Key words: Young diagrams and Young operators
(3) Example SU(6)

$$
\begin{aligned}
\square \otimes \square \otimes \square & =\square \square \square \oplus \square \square \oplus \square \square \\
\square & \square \\
6 \otimes 6 \otimes 6 & =\underbrace{56}_{\mathrm{S}} \oplus \underbrace{70}_{\mathrm{M}, \mathrm{~S}} \oplus \underbrace{70}_{\mathrm{M}, \mathrm{~A}} \oplus \underbrace{20}_{\mathrm{A}}
\end{aligned}
$$

SU(N) and quarks 22

(9) Physical interpretation

$$
56=\underbrace{10}_{S U(3) \text { decuplet }} \cdot \underbrace{4}_{\text {spin } 3 / 2}+\underbrace{8}_{S U(3) \text { octet }} \cdot \underbrace{2}_{\text {spin } 1 / 2}
$$

SU (N) and quarks 22

(9) Physical interpretation

$$
56=\underbrace{10}_{\operatorname{SU}(3) \text { decuplet }} \cdot \underbrace{4}_{\text {spin } 3 / 2}+\underbrace{8}_{S U(3) \text { octet }} \cdot \underbrace{2}_{\text {spin } 1 / 2}
$$

(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents

SU(N) and quarks 22

(4) Physical interpretation

$$
56=\underbrace{10}_{S U(3) \text { decuplet }} \cdot \underbrace{4}_{\text {spin } 3 / 2}+\underbrace{8}_{S U(3) \text { octet }} \cdot \underbrace{2}_{\text {spin } 1 / 2}
$$

(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents
(0) Contradiction: 56 is completely symmetric!

SU(N) and quarks 22

(4) Physical interpretation

$$
56=\underbrace{10}_{S U(3) \text { decuplet }} \cdot \underbrace{4}_{\text {spin } 3 / 2}+\underbrace{8}_{S U(3) \text { octet }} \cdot \underbrace{2}_{\text {spin } 1 / 2}
$$

(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents
(0) Contradiction: 56 is completely symmetric!
(3) Solution (Greenberg 1964, Han and Nambu 1965)

SU(N) and quarks 22

(4) Physical interpretation

$\operatorname{SU}(3)$ decuplet $\operatorname{spin} 3 / 2 \quad \mathrm{SU}(3)$ octet $\operatorname{spin} 1 / 2$
(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents
(0) Contradiction: 56 is completely symmetric!
(O) Solution (Greenberg 1964, Han and Nambu 1965)
(8) Color degree of freedom
red, green, blue

SU(N) and quarks 22

(4) Physical interpretation

$\mathrm{SU}(3)$ decuplet $\operatorname{spin} 3 / 2 \quad \mathrm{SU}(3)$ octet $\operatorname{spin} 1 / 2$
(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents
(0) Contradiction: 56 is completely symmetric!
(O) Solution (Greenberg 1964, Han and Nambu 1965)
(8) Color degree of freedom
red, green, blue

- Confinement: Physical states are color singlets

SU(N) and quarks 22

(4) Physical interpretation

$\operatorname{SU}(3)$ decuplet $\operatorname{spin} 3 / 2 \quad \mathrm{SU}(3)$ octet $\operatorname{spin} 1 / 2$
(5) Pauli principle: The state must be completely antisymmetric under the exchange of any two (spin-1/2) constituents
(0) Contradiction: 56 is completely symmetric!
(O) Solution (Greenberg 1964, Han and Nambu 1965)
(3) Color degree of freedom
red, green, blue

- Confinement: Physical states are color singlets
- Realization for $3 q$ baryons in terms of color Slater determinant

Gauge theories 1

Gauge principle

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$
(2) Define action of a group G on the set M of fields (group theory):

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$
(2) Define action of a group G on the set M of fields (group theory):

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory, which is invariant under the action of all group elements (symmetry)

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$
(2) Define action of a group G on the set M of fields (group theory):

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory, which is invariant under the action of all group elements (symmetry)
(4) Postulate invariance under local transformations:

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$
(2) Define action of a group G on the set M of fields (group theory):

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory, which is invariant under the action of all group elements (symmetry)
(4) Postulate invariance under local transformations:

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

(3) Introduce additional, so-called gauge fields, in order to guarantee invariance under local transformations

Gauge theories 1

Gauge principle

(1) Mathematical description of elementary particles in terms of (matter-) fields: $\Psi(x), x=(\vec{x}, t)$
(2) Define action of a group G on the set M of fields (group theory):

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=A(g, \Psi(x))
$$

(3) Construct (free) theory, which is invariant under the action of all group elements (symmetry)
(1) Postulate invariance under local transformations:

$$
\Psi(x) \mapsto A(g(x), \Psi(x))
$$

(3) Introduce additional, so-called gauge fields, in order to guarantee invariance under local transformations
(0) \Rightarrow interaction between gauge fields and elementary particles

Gauge theories 2

Example: Quantum electrodynamics (QED, U(1), Abelian)

Lagrange density of a free electron:

$$
\begin{aligned}
\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right) & =\bar{\Psi}(i \not \partial-m) \Psi, \\
\Psi & =\left(\begin{array}{l}
\Psi_{1} \\
\Psi_{2} \\
\Psi_{3} \\
\Psi_{4}
\end{array}\right), \\
\not \partial & =\gamma^{\mu} \partial_{\mu}, \\
\gamma^{0} & =\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right), \\
\vec{\gamma} & =\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \\
\bar{\Psi} & =\Psi^{\dagger} \gamma^{0} .
\end{aligned}
$$

Gauge theories 3

\mathcal{L}_{0} is invariant under a global $\mathrm{U}(1)$ transformation:

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

$\alpha \in[0,2 \pi[$ does not depend on $x:$

Gauge theories 3

\mathcal{L}_{0} is invariant under a global $\mathrm{U}(1)$ transformation:

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

$\alpha \in[0,2 \pi[$ does not depend on x :

$$
\bar{\Psi} \psi \mapsto \bar{\Psi} \underbrace{e^{i \alpha} e^{-i \alpha}}_{=1} \Psi=\bar{\psi} \Psi
$$

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi \mapsto \bar{\Psi} e^{i \alpha} \gamma^{\mu} \partial_{\mu} e^{-i \alpha} \Psi=\bar{\Psi} e^{i \alpha} e^{-i \alpha} \gamma^{\mu} \partial_{\mu} \Psi=\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi
$$

Gauge theories 3

\mathcal{L}_{0} is invariant under a global $\mathrm{U}(1)$ transformation:

$$
\begin{aligned}
& \Psi(x) \mapsto \Psi^{\prime}(x)=e^{-i \alpha} \Psi(x) \\
& \bar{\Psi}(x) \mapsto \bar{\Psi}^{\prime}(x)=\bar{\Psi}(x) e^{i \alpha}
\end{aligned}
$$

$\alpha \in[0,2 \pi[$ does not depend on x :

$$
\bar{\Psi} \Psi \mapsto \bar{\Psi} \underbrace{e^{i \alpha} e^{-i \alpha}}_{=1} \Psi=\bar{\Psi} \Psi
$$

$$
\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi \mapsto \bar{\Psi} e^{i \alpha} \gamma^{\mu} \partial_{\mu} e^{-i \alpha} \Psi=\bar{\Psi} e^{i \alpha} e^{-i \alpha} \gamma^{\mu} \partial_{\mu} \Psi=\bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi
$$

Remark

All components Ψ_{i} are multiplied by the same phase.

Gauge theories 4

Transformation property

Convention: Electron has negative electric charge $\left(q_{e}=-1\right)$

$$
\mathrm{U}(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

We make use of the following local transformation:

$$
\Psi(x) \mapsto e^{i \alpha(\mathrm{x})} \Psi(x)
$$

Gauge theories 4

Transformation property

Convention: Electron has negative electric charge $\left(q_{e}=-1\right)$

$$
\mathrm{U}(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

We make use of the following local transformation:

$$
\Psi(x) \mapsto e^{i \alpha(\mathrm{x})} \Psi(x)
$$

Covariant derivative

Requirement

$$
D_{\mu} \Psi(x) \mapsto\left[D_{\mu} \Psi(x)\right]^{\prime}=D_{\mu}^{\prime} \Psi^{\prime}(x) \stackrel{!}{=} e^{i \alpha(x)} D_{\mu} \Psi(x)
$$

Gauge theories 4

Transformation property

Convention: Electron has negative electric charge $\left(q_{e}=-1\right)$

$$
\mathrm{U}(1) \ni e^{-i \alpha} \mapsto e^{-i \alpha q_{e}}=e^{i \alpha}
$$

We make use of the following local transformation:

$$
\Psi(x) \mapsto e^{i \alpha(\mathrm{x})} \Psi(x)
$$

Covariant derivative

Requirement

$$
D_{\mu} \Psi(x) \mapsto\left[D_{\mu} \Psi(x)\right]^{\prime}=D_{\mu}^{\prime} \Psi^{\prime}(x) \stackrel{!}{=} e^{i \alpha(x)} D_{\mu} \Psi(x)
$$

Gauge potential $\mathcal{A}_{\mu}(x)$

$$
\mathcal{A}_{\mu}(x) \mapsto \mathcal{A}_{\mu}^{\prime}(x)=\mathcal{A}_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x), \quad e>0
$$

Gauge theories 5

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) \\
& =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

Gauge theories 5

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) \\
& =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

New Lagrange density

$$
\mathcal{L}_{0}\left(\Psi, D_{\mu} \Psi\right)=\bar{\Psi}(i \not D-m) \Psi=\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)+e \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}
$$

Gauge theories 5

$$
\begin{aligned}
D_{\mu} \Psi(x) & :=\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) \mapsto D_{\mu}^{\prime} \Psi^{\prime}(x) \\
& =\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right]\left[e^{i \alpha(x)} \Psi(x)\right] \\
& =e^{i \alpha(x)}\left[\partial_{\mu}+i \partial_{\mu} \alpha(x)-i e \mathcal{A}_{\mu}(x)-i \partial_{\mu} \alpha(x)\right] \Psi(x) \\
& =e^{i \alpha(x)}\left[\partial_{\mu}-i e \mathcal{A}_{\mu}(x)\right] \Psi(x) .
\end{aligned}
$$

New Lagrange density

$$
\mathcal{L}_{0}\left(\Psi, D_{\mu} \Psi\right)=\bar{\Psi}(i \not D-m) \Psi=\mathcal{L}_{0}\left(\Psi, \partial_{\mu} \Psi\right)+e \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}
$$

Invariant under so-called gauge transformation of the second kind:

$$
\begin{aligned}
\Psi(x) & \mapsto e^{i \alpha(x)} \Psi(x) \\
\mathcal{A}_{\mu}(x) & \mapsto \mathcal{A}_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x)
\end{aligned}
$$

Gauge theories 6

Lagrange density of QED

Interpret \mathcal{A}_{μ} as a dynamical variable. Define field-strength tensor

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce a "kinetic" term:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

Gauge theories 6

Lagrange density of QED

Interpret \mathcal{A}_{μ} as a dynamical variable. Define field-strength tensor

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce a "kinetic" term:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

- After quantization, the dynamical gauge field is identified with the photon.

Gauge theories 6

Lagrange density of QED

Interpret \mathcal{A}_{μ} as a dynamical variable. Define field-strength tensor

$$
\mathcal{F}_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}
$$

and introduce a "kinetic" term:

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\Psi} i \gamma^{\mu}\left(\partial_{\mu}-i e \mathcal{A}_{\mu}\right) \Psi-m \bar{\Psi} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}
$$

- After quantization, the dynamical gauge field is identified with the photon.
- Interaction between the matter field and the gauge field

$$
\mathcal{L}_{\mathrm{int}}=-(-e) \bar{\Psi} \gamma^{\mu} \Psi \mathcal{A}_{\mu}=-J_{\mathrm{em}}^{\mu} \mathcal{A}_{\mu}
$$

Gauge theories 7

Remarks

(1) A mass term

$$
\begin{aligned}
\frac{1}{2} M^{2} \mathcal{A}_{\mu} \mathcal{A}^{\mu} & \mapsto \frac{1}{2} M^{2}\left(\mathcal{A}_{\mu} \mathcal{A}^{\mu}+\frac{2}{e} \partial_{\mu} \alpha \mathcal{A}^{\mu}+\frac{1}{e^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right) \\
& \neq \frac{1}{2} M^{2} \mathcal{A}_{\mu} \mathcal{A}^{\mu}
\end{aligned}
$$

would destroy gauge invariance.
Gauge bosons are massless! (without spontaneous symmetry breaking)

Gauge theories 8

(2) The coupling of the photon to the matter field is dictated by the transformation property of the matter field under $\mathrm{U}(1)$. Consider matter field Ψ_{q} for a particle with charge q

$$
\Psi_{q}(x) \mapsto e^{-i q \alpha} \Psi_{q}(x)
$$

\Rightarrow so-called minimal substitution $\left(\partial_{\mu} \mapsto \partial_{\mu}+\right.$ ieq $\left.\mathcal{A}_{\mu}\right)$

$$
D_{\mu} \Psi_{q}(x)=\left[\partial_{\mu}+i e q \mathcal{A}_{\mu}(x)\right] \Psi_{q}(x)
$$

Gauge theories 8

(2) The coupling of the photon to the matter field is dictated by the transformation property of the matter field under $\mathrm{U}(1)$. Consider matter field Ψ_{q} for a particle with charge q

$$
\Psi_{q}(x) \mapsto e^{-i q \alpha} \Psi_{q}(x)
$$

\Rightarrow so-called minimal substitution $\left(\partial_{\mu} \mapsto \partial_{\mu}+i e q \mathcal{A}_{\mu}\right)$

$$
D_{\mu} \Psi_{q}(x)=\left[\partial_{\mu}+i e q \mathcal{A}_{\mu}(x)\right] \Psi_{q}(x)
$$

- Electron: $q=-1$
- Proton: $q=+1$
- Neutron: $q=0$
- up quark: $q=2 / 3$
- etc.

Gauge theories 9

(3) The requirement of renormalizability of QED excludes further gauge-invariant couplings such as the coupling to an anomalous magnetic moment,

$$
-\frac{e \kappa}{4 m} \mathcal{F}_{\mu \nu} \bar{\Psi} \sigma^{\mu \nu} \Psi, \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

This is not a group-theoretical argument!

Gauge theories 9

(3) The requirement of renormalizability of QED excludes further gauge-invariant couplings such as the coupling to an anomalous magnetic moment,

$$
-\frac{e \kappa}{4 m} \mathcal{F}_{\mu \nu} \bar{\Psi} \sigma^{\mu \nu} \Psi, \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] .
$$

This is not a group-theoretical argument!
(9) Due to the Abelian nature of $\mathrm{U}(1)$, photons do not directly interact with each other.

Gauge theories 9

Non-Abelian case

Gauge theories 9

Non-Abelian case
Quantum chromodynamics (QCD, SU(3))

Gauge theories 9

Non-Abelian case

Quantum chromodynamics (QCD, SU(3))
Matter fields: Quark fields $u_{A}, d_{A}, \ldots, A=1,2,3$
Gauge fields: Gluons $\mathcal{A}_{a}, a=1, \ldots, 8$

Gluon-quark interaction

Gauge theories 9

Non-Abelian case

Quantum chromodynamics (QCD, SU(3))
Matter fields: Quark fields $u_{A}, d_{A}, \ldots, A=1,2,3$
Gauge fields: Gluons $\mathcal{A}_{a}, a=1, \ldots, 8$

Gluon-quark interaction

New: Gluons interact with each other (because $\operatorname{SU}(3)$ is non-Abelian)

Gauge theories 9

Non-Abelian case

Quantum chromodynamics (QCD, SU(3))
Matter fields: Quark fields $u_{A}, d_{A}, \ldots, A=1,2,3$
Gauge fields: Gluons $\mathcal{A}_{a}, a=1, \ldots, 8$

Gluon-quark interaction

New: Gluons interact with each other (because $\operatorname{SU}(3)$ is non-Abelian)

Spontaneous symmetry breaking 1

(1) Illustration

> D-dorf C-stadt

A-heim B-burg
Goal: Find the shortest routes network connecting the four cities

Spontaneous symmetry breaking 2

(1) Illustration

Total length: $4 a$ (a side length of the square)

Spontaneous symmetry breaking 3

(1) Illustration

Total length: $2 \sqrt{2} a<4 a$

Spontaneous symmetry breaking 4a

(1) Illustration

Total length: $(1+\sqrt{3}) a<2 \sqrt{2} a<4 a$

Spontaneous symmetry breaking 4b

(1) Illustration

Total length: $(1+\sqrt{3}) a<2 \sqrt{2} a<4 a$

Spontaneous symmetry breaking 5

(1) Illustration

object	cities	Hamilton operator
symmetry	D_{4}	G
criterion	shortes routes network	ground state
symmetry of solution	D_{2}	subgroup H of G

Spontaneous symmetry breaking 5

(1) Illustration

object	cities	Hamilton operator
symmetry	D_{4}	G
criterion	shortes routes network	ground state
symmetry of solution	D_{2}	subgroup H of G

(2) Goldstone-Theorem (1961, 1962): For each generator of the Lie group G which does not annihilate the ground state, one obtains a massless Goldstone boson.

Chirality

$<$ Greek cheir $>$ hand<<

Spontaneous symmetry breaking in QCD 1

Spontaneous symmetry breaking in QCD 1

- Theoretical limit: $m_{u}=m_{d}=m_{s}=0$

Spontaneous symmetry breaking in QCD 1

- Theoretical limit: $m_{u}=m_{d}=m_{s}=0$

Spontaneous symmetry breaking in QCD 1

- Theoretical limit: $m_{u}=m_{d}=m_{s}=0$

Spontaneous symmetry breaking in QCD 1

- Theoretical limit: $m_{u}=m_{d}=m_{s}=0$

- H_{0} is invariant under $G=\operatorname{SU}(3)_{L} \times \operatorname{SU}(3)_{R}$

Spontaneous symmetry breaking in QCD 1

- Theoretical limit: $m_{u}=m_{d}=m_{s}=0$

- H_{0} is invariant under $G=\operatorname{SU}(3)_{L} \times \operatorname{SU}(3)_{R}$
- Ground state is invariant under $H=S U(3)_{V}$ only

Spontaneous symmetry breaking in QCD 2

- 8 (almost) massless Goldstone bosons: π, K, η

- Physical masses result from explicit symmetry breaking:

$$
m_{u}=2.2 \mathrm{MeV}, \quad m_{d}=4.7 \mathrm{MeV}, \quad m_{s}=96 \mathrm{MeV}
$$

References

(1) H. F. Jones, Groups, Representations and Physics (Adam Hilger, Bristol, 1990)
(2) S. Scherer, Symmetrien und Gruppen in der Teilchenphysik (Springer Spektrum, Berlin, 2016)

Symmetrien und Gruppen in der Teilchenphysik

