Handout 3 (read by Nov. 6)

Homogeneous Lorentz group L or $\mathbf{O}(1,3)$

Let $V=\mathbb{R}^{4}$. Define the Minkowski metric as

$$
M(x, x):=x_{0} x_{0}-\sum_{i=1}^{3} x_{i} x_{i}=x^{T} G x
$$

with

$$
x=\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { and } \quad G=\left(G_{i j}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad i, j=0,1,2,3
$$

The enumeration matches the convention used in Physics.
Consider the linear map

$$
x \mapsto x^{\prime}=\Lambda x, \quad x_{i}^{\prime}=\Lambda_{i j} x_{j},
$$

with

$$
M\left(x^{\prime}, x^{\prime}\right)=M(x, x) \Leftrightarrow x^{T} \Lambda^{T} G \Lambda x=x^{T} G x
$$

i.e.

$$
\begin{equation*}
\Lambda^{T} G \Lambda=G \tag{*}
\end{equation*}
$$

The abstract group is defined as

$$
\mathrm{L}=\mathrm{O}(1,3):=\left\{\Lambda \in \mathrm{GL}(4, \mathbb{R}) \mid \Lambda^{T} G \Lambda=G\right\}
$$

Properties of the 4×4 matrices Λ

1. $\operatorname{det}(\Lambda)= \pm 1$, because

$$
\operatorname{det}(G)=-1=\operatorname{det}\left(\Lambda^{T} G \Lambda\right)=\underbrace{\operatorname{det}\left(\Lambda^{T}\right)}_{=\operatorname{det}(\Lambda)} \operatorname{det}(G) \operatorname{det}(\Lambda)=-(\operatorname{det}(\Lambda))^{2} .
$$

$\operatorname{det}(\Lambda)=+1$: proper Lorentz transformations
2. Either $\Lambda_{00} \geq 1$ or $\Lambda_{00} \leq-1$.

Explanation: Consider the matrix equation ($*$) for $i=j=0$:

$$
1=G_{00}=\underbrace{\Lambda_{0 k}^{T}}_{=\Lambda_{k 0}} G_{k l} \Lambda_{l 0}=\Lambda_{00}^{2}-\underbrace{\sum_{k=1}^{3} \Lambda_{k 0}^{2}}_{\leq 0} \Rightarrow \Lambda_{00}^{2}=1+\sum_{k=1}^{3} \Lambda_{k 0}^{2} \geq 1 \Rightarrow\left|\Lambda_{00}\right| \geq 1
$$

$\Lambda_{00} \geq 1$: orthochronous Lorentz transformations
3. Four so-called branches $\mathrm{L}_{+,-}^{\uparrow, \downarrow}$:
(a) $+: \operatorname{det}(\Lambda)=1$,
(b) $-: \operatorname{det}(\Lambda)=-1$,
(c) $\uparrow: \Lambda_{00} \geq 1$,
(d) $\downarrow: \Lambda_{00} \leq-1$.
4. Subgroup of proper, orthochronous Lorentz transformations:

$$
\mathrm{L}_{+}^{\uparrow}:=\left\{\Lambda \in \mathrm{GL}(4, \mathbb{R}) \mid \Lambda^{T} G \Lambda=G, \operatorname{det}(\Lambda)=+1, \Lambda_{00} \geq 1\right\}
$$

5. Special transformations
(a) identity

$$
E=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \mathrm{L}_{+}^{\uparrow}
$$

(b) parity

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \in \mathrm{L}_{-}^{\uparrow}
$$

(c) time reversal

$$
T=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \mathrm{L}_{-}^{\downarrow}
$$

(d) product $P T$

$$
P T=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \in \mathrm{L}_{+}^{\downarrow}
$$

$\{E, P, T, P T\}$: Klein four-group (Felix Klein, 1849-1925), Abelian (diagonal matrices commute)
6. $\mathrm{L}_{+}^{\downarrow}, \mathrm{L}_{-}^{\uparrow}, \mathrm{L}_{-}^{\downarrow}$ are not subgroups of L , because they do not contain the identity.
7. $\mathrm{L}=\mathrm{L}_{+}^{\uparrow} \uplus P \mathrm{~L}_{+}^{\uparrow} \uplus T \mathrm{~L}_{+}^{\uparrow} \cup P T \mathrm{~L}_{+}^{\uparrow}$ (explanation analogous to $\mathrm{O}(3)$)

Discussion of $\mathbf{L}_{+}^{\uparrow}$

1. Proper rotations (strictly speaking isomorphic to $\mathrm{SO}(3)$):

$$
\mathcal{R}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & & & \\
0 & & R & \\
0 & & &
\end{array}\right) \quad \text { with } \quad R \in \mathrm{SO}(3)
$$

For a discussion of R (in terms of Euler angles), see examples 1.2.15.
2. Lorentz boosts $L\left(\frac{\vec{p}}{E_{p}}\right)$
(a) Interpretation as a (passive) transformation in a primed coordinate frame which moves relative to the rest frame of a particle of mass m with $-\frac{\vec{p}}{E_{p}}$
(b) Interpretation as an active transformation with

$$
(m, \overrightarrow{0}) \mapsto\left(E_{p}, \vec{p}\right), \quad E_{p}=\sqrt{m^{2}+\vec{p}^{2}}
$$

Make use of the bra-ket notation

$$
|\vec{p}\rangle=\left(\begin{array}{l}
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right), \quad\langle\vec{p}|=\left(\begin{array}{lll}
p_{x} & p_{y} & p_{z}
\end{array}\right) .
$$

A Lorentz boost may then be written as

$$
L\left(\frac{\vec{p}}{E_{p}}\right)=\frac{1}{m}\left(\begin{array}{c|c}
E_{p} & \langle\vec{p}| \\
\hline|\vec{p}\rangle & m \mathbb{1}_{3 \times 3}+\frac{|\vec{p}\rangle\langle\vec{p}|}{E_{p}+m}
\end{array}\right)
$$

where

$$
\begin{aligned}
& 1 \leq \frac{E_{p}}{m}=: \gamma \\
& \vec{v}=\frac{\vec{p}}{\gamma m}=\frac{\vec{p}}{E_{p}}=: \beta \hat{n}, \quad 0 \leq \beta<1 \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Example: $\vec{p}=|\vec{p}| \hat{e}_{z}$, i.e., the primed system moves with $-\beta \hat{e}_{z}$ relative to the unprimed system, where $\beta=|\vec{p}| / E_{p}$:

$$
L\left(\beta \hat{e}_{z}\right)=L\left(\frac{|\vec{p}|}{E_{p}} \hat{e}_{z}\right)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & \beta \gamma \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\beta \gamma & 0 & 0 & \gamma
\end{array}\right)
$$

We made use of:

$$
\begin{aligned}
\frac{E_{p}}{m} & =\gamma \\
\frac{p_{z}}{m} & =\frac{|\vec{p}|}{m}=\beta \gamma, \\
|\vec{p}\rangle\langle\vec{p}| & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & |\vec{p}|^{2}
\end{array}\right), \\
\frac{|\vec{p}|^{2}}{m\left(E_{p}+m\right)} & =\frac{\left(E_{p}+m\right)\left(E_{p}-m\right)}{m\left(E_{p}+m\right)}=\frac{E_{p}-m}{m}=\gamma-1 .
\end{aligned}
$$

Check:

$$
L\left(\beta \hat{e}_{z}\right)\left(\begin{array}{c}
m \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\gamma m \\
0 \\
0 \\
\beta \gamma m
\end{array}\right)=\left(\begin{array}{c}
E_{p} \\
0 \\
0 \\
|\vec{p}|
\end{array}\right) .
$$

Any Lorentz boost may be expressed in terms of three parameters, e.g., the direction \hat{n} and the rapidity λ with $0 \leq \lambda<\infty$, where

$$
\sinh (\lambda)=\beta \gamma, \quad \cosh (\lambda)=\gamma, \quad \beta=\tanh (\lambda)=\frac{|\vec{p}|}{E_{p}}
$$

3. Any proper, orthochronous Lorentz transformation $\Lambda \in L_{+}^{\uparrow}$ may be written as

$$
\Lambda=L\left(\frac{\vec{p}}{E_{p}}\right) \mathcal{R}(\alpha, \beta, \gamma) .
$$

Note that there are different ways to parametrize $\Lambda \in L_{+}^{\uparrow}$. However, in any case you need 6 real parameters to fully specify a $\Lambda \in \mathrm{L}_{+}^{\uparrow}$.

