Handout 1 (read by Oct 23)

Definition 1.1.1 A group G is a non-empty set of elements $\{a, b, ...\}$ with a law of composition (multiplication) $(a, b) \mapsto c = ab \in G$ satisfying the following conditions:

- 1. (associative law) $a(bc) = (ab)c \ \forall \ a, b, c \in G$
- 2. (unit element) G contains an element, the identity element, denoted by e, such that for all $a \in G$

$$ea = ae = a$$

- 3. (existence of inverse) For all $a \in G$ there is an element, denoted by a^{-1} , such that $aa^{-1} = a^{-1}a = e$
- 4. (Abelian group) If ab = ba for all $a, b \in G$ the group is called Abelian

<u>Convention</u>: Interpret order of product ab such that b is applied "before" a.

- **Terminology 1.1.2** order |G| = number of group elements (finite, countably infinite, uncountably infinite)
 - Suppose that n is the smallest positive integer such that $g^n = e$: n is the order of the element g
 - structure of a group = specification of outcome of all possible compositions ab
 - A finite group $G = \{g_1, \ldots, g_n\}$ may be represented by a group table $T = (t_{ij})$, where $t_{ij} = g_i g_j \in G$.
 - Infinite groups: Specify structure in terms of a composition rule
 - Two groups G and G' are isomorphic, $G \cong G'$, if there exists a unique correspondence $g \leftrightarrow g'$ between their elements, which preserves the group structure, i.e.,

$$\underbrace{a'b'}_{\text{product in }G'} = \underbrace{(ab)'}_{\text{product in }G}.$$

Isomorphic groups have the same group structure.

• <u>faithful realization</u> of an abstract group = one-to-one mapping of the abstract group onto a group of concrete elements with a concrete specification of the group multiplication which preserves the structure

All faithful realizations of an abstract group are isomorphic to the group and to each other.

<u>Non-faithful realizations</u> preserve the structure of the abstract group, but the map is not injective.