Practice Exam
 Theoretical Physics 3 : QM SS2018
 Lecturer : Prof. M. Vanderhaeghen

03.07.2018

Exercise 1. General questions. (20 points +10 bonus)

1.1. (5 p.) Momentum space.

Consider the ground state wave function of the harmonic oscillator in spatial representation

$$
\left\langle x \mid \psi_{0}\right\rangle=A_{0} e^{-\frac{m \omega}{2 \hbar} x^{2}} .
$$

Recall

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x} \quad \text { and } \quad \int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi} .
$$

Compute $\left\langle p \mid \psi_{0}\right\rangle$.
1.2. (5 p.) Translation operator.

Consider an operator $\hat{T}(a) \equiv e^{\frac{i a}{\hbar}} \hat{p}$, where \hat{p} is the momentum operator and a is a real parameter.
a) Is it an observable? Why?
b) Show that $\hat{T}(a) \psi(x)=\psi(x+a)$.
1.3. (5 p.) Time evolution operator.

Assume \hat{H} is the time-independent Hamiltonian.
a) Show that the operator $\hat{U}\left(t-t_{0}\right) \equiv e^{-\frac{i}{\hbar}\left(t-t_{0}\right) \hat{H}}$ is unitary.
b) Show that the solution to the time-dependent Schrödinger equation is

$$
\Psi(x, t)=\hat{U}\left(t-t_{0}\right) \Psi\left(x, t_{0}\right),
$$

with $\Psi\left(x, t_{0}\right)$ being a given wave function of the system at time t_{0}.
1.4. (5 p.) Measurements.

Consider two observables \hat{A} and \hat{B}.
\hat{A} has two normalized eigenstates $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$, with eigenvalues a_{1} and a_{2}, respectively.
\hat{B} has two normalized eigenstates $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$, with eigenvalues b_{1} and b_{2}, respectively.
Assume the eigenstates are related by

$$
\left|a_{1}\right\rangle=\frac{3}{5}\left|b_{1}\right\rangle+\frac{4}{5}\left|b_{2}\right\rangle \quad\left|a_{2}\right\rangle=\frac{4}{5}\left|b_{1}\right\rangle-\frac{3}{5}\left|b_{2}\right\rangle .
$$

a) The observable \hat{A} is measured, and the value a_{1} is obtained. What is the state of the system (immediately) after this measurement?
b) If afterwards \hat{B} is measured, what are the possible outcomes, and what are their probabilities?
c) Right after \hat{B} is measured, \hat{A} is measured again. What is the probability of getting a_{1} ?
1.5. (Bonus 10 p.) Eigenfunctions and degeneracy.
a) (2 p.) What is the degree of degeneracy for the energy of a one-dimensional free particle?
b) (3 p.) Is the ground state of an infinite square well an eigenfunction of momentum? If so, what is its momentum? If not, why not?
c) (5 p.) Using the Schrödinger equation, prove that in one dimension there are no degenerate bound states.

Exercise 2. Half-harmonic oscillator. (25 points +5 bonus)

Consider a particle of mass m, which is moving in one dimension in a "half"-harmonic potential $V(x)$

$$
V(x)= \begin{cases}\infty, & x<0 \\ \frac{1}{2} m \omega^{2} x^{2}, & x \geq 0\end{cases}
$$

a) (5 p.) Write down the stationary Schrödinger equation for $x \geq 0$ using the dimensionless quantities

$$
y=\sqrt{\frac{m \omega}{\hbar}} x \quad \text { and } \quad \varepsilon=\frac{E}{\hbar \omega} .
$$

b) (5 p.) Show that the asymptotic behavior of the solution for large y is given by $e^{-y^{2} / 2}$.
c) ($7 p$.) By separating the asymptotic behavior for $y \rightarrow \infty$, we define

$$
\psi(y)=h(y) e^{-y^{2} / 2}
$$

Derive the equation for $h(y)$ for $y \geq 0$.
d) (8 p.) We know that for the regular quantum harmonic oscillator the eigenfunctions of the Hamiltonian are expressed in terms of the Hermite polynomials:

$$
\psi_{n}(y) \propto H_{n}(y) e^{-y^{2} / 2}, \quad n=0,1,2, \ldots,
$$

where the Hermite polynomials $H_{n}(y)$ satisfy the differential equation

$$
H_{n}^{\prime \prime}(y)-2 y H_{n}^{\prime}(y)+2 n H_{n}(y)=0, \quad n=0,1,2, \ldots,
$$

and can equivalently be defined as

$$
H_{n}(y)=(-1)^{n} e^{y^{2}} \frac{\partial^{n}}{\partial y^{n}} e^{-y^{2}}
$$

Deduce the spectrum in the case of the given "half"-harmonic potential.
e) (Bonus 5 p.) The Hermite polynomials are normalised as

$$
\int_{-\infty}^{\infty} d y H_{n}(y) H_{m}(y) e^{-y^{2}}=2^{n} n!\sqrt{\pi} \delta_{n m} .
$$

What are the normalised ground state and first excited state wave functions of the given "half"harmonic potential?

Exercise 3. Stark effect. (25 points)

In this problem we consider the modification (using first order perturbation theory) of the energy spectrum of the hydrogen atom placed in a static electric field.

Consider an electron in the $n=2$ state of the hydrogen atom. The electric dipole moment $\vec{d}=-e \vec{r}$ of the electron interacts with an external electric field \vec{E} through

$$
\hat{H}_{E}^{\prime}=-\vec{d} \cdot \vec{E},
$$

which can be treated as a perturbation to the Coulomb potential.
Assume a constant electric field along the x-axis:

$$
\vec{E}=E_{0} \vec{e}_{x} .
$$

We denote the unperturbed eigenstates $\left|n l m_{l}\right\rangle$ (neglecting spin) as

$$
\begin{aligned}
|1\rangle & \equiv|200\rangle, \\
|2\rangle & \equiv|210\rangle, \\
|3\rangle & \equiv|21+1\rangle, \\
|4\rangle & \equiv|21-1\rangle .
\end{aligned}
$$

a) (15 p.) Recall the hydrogen atom wave functions are given by

$$
\psi_{n l m_{l}}(r, \theta, \phi)=R_{n, l}(r) Y_{l, m_{l}}(\theta, \phi) .
$$

You are given the spherical harmonics

$$
\begin{aligned}
Y_{0,0}(\theta, \phi) & =\frac{1}{\sqrt{4 \pi}} \\
Y_{1,0}(\theta, \phi) & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1, \pm 1}(\theta, \phi) & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi},
\end{aligned}
$$

and the radial integral

$$
\int_{0}^{\infty} d r r^{3} R_{2,0}(r) R_{2,1}(r)=3 \sqrt{3} a,
$$

with a being the Bohr radius.
Determine the 4×4 matrix form of \hat{H}_{E}^{\prime} in the unperturbed basis in terms of $\Omega_{e} \equiv e E_{0} \frac{a}{\hbar}$.
Hint: Use symmetry relations to argue that several of the angular integrals are zero.
b) (10 p.) Diagonalize the above matrix to calculate the first order corrections to all four $n=2$ levels due to \hat{H}_{E}^{\prime} (you only need to find the eigenvalues, not the eigenstates).
Make a qualitative sketch of the total energy of the $n=2$ levels as a function of the externally applied electric field E_{0}. Comment on their degeneracies.

Exercise 4. Spin-1/2 in a time dependent magnetic field. (30 points)

The neutron is a spin- $\frac{1}{2}$ particle. Its magnetic moment $\vec{\mu}_{n}$ is expressed in terms of its spin as $\vec{\mu}_{n}=\gamma_{n} \frac{\hbar}{2} \vec{\sigma}$, with $\gamma_{n}<0$ being the neutron gyromagnetic ratio and $\vec{\sigma}$ being the vector of Pauli matrices:

$$
\sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

The magnetic moment couples to an external magnetic field \vec{B} through the (interaction) Hamiltonian:

$$
\hat{H}=-\vec{\mu}_{n} \cdot \vec{B} .
$$

Consider a uniform external magnetic field \vec{B}, which has a constant component along the z-axis, and a rotating component in the $x y$-plane

$$
\vec{B}=B_{1} \vec{e}_{x} \cos \omega\left(t_{0}+t\right)+B_{1} \vec{e}_{y} \sin \omega\left(t_{0}+t\right)+B_{0} \vec{e}_{z},
$$

where B_{0} and B_{1} are constant amplitudes and ω is the (externally controlled) frequency.
a) (5 p.) Write down \hat{H} in 2×2 matrix form using $\omega_{0} \equiv-\gamma_{n} B_{0}$ and $\omega_{1} \equiv-\gamma_{n} B_{1}$.
b) (5 p.) The neutron spin $-\frac{1}{2}$ state at time t is given (in matrix notation) by

$$
\Psi(t)=\left[\begin{array}{l}
c_{+}(t) \\
c_{-}(t)
\end{array}\right]
$$

where $c_{+}(t)$ and $c_{-}(t)$ are the amplitudes of being in spin-up and spin-down states, respectively. Given the time-dependent Schrödinger equation

$$
\hat{H} \Psi(t)=i \hbar \frac{\partial}{\partial t} \Psi(t)
$$

write down the system of equations which describes the time evolution of $c_{ \pm}(t)$.
c) (5 p.) Consider the special case of the resonance condition $\omega=\omega_{0}$. Express

$$
\begin{aligned}
& c_{+}(t)=e^{-\frac{i}{2} \omega_{0} t} \beta_{+}(t), \\
& c_{-}(t)=e^{+\frac{i}{2} \omega_{0} t} \beta_{-}(t),
\end{aligned}
$$

and write down the equivalent differential equations for $\beta_{ \pm}(t)$.
d) (10 p.) Given the values $c_{+}(0)$ and $c_{-}(0)$ at time $t=0$, show that the general solution for $c_{+}(t)$ is

$$
c_{+}(t)=e^{-i \chi} \cos \phi c_{+}(0)-i e^{-i \delta} \sin \phi c_{-}(0),
$$

with $\phi \equiv \frac{\omega_{1}}{2} t, \chi \equiv \frac{\omega_{0}}{2} t$ and $\delta \equiv \frac{\omega_{0}}{2}\left(t+2 t_{0}\right)$.
e) (5 p .) Using the general solution for $c_{ \pm}(t)$ which is then given by

$$
\left[\begin{array}{c}
c_{+}(t) \\
c_{-}(t)
\end{array}\right]=\left[\begin{array}{cc}
e^{-i \chi} \cos \phi & -i e^{-i \delta} \sin \phi \\
-i e^{+i \delta} \sin \phi & e^{+i \chi} \cos \phi
\end{array}\right]\left[\begin{array}{c}
c_{+}(0) \\
c_{-}(0)
\end{array}\right],
$$

determine the probabilities to find the neutron in the spin-up and spin-down states at time t. Sketch the probabilities for $c_{-}(0)=0$.

