Exercise sheet 9
 Theoretical Physics 3 : QM SS2018
 Lecturer : Prof. M. Vanderhaeghen

20.06.2018

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (40 points)

In this exercise we will practice how to couple two angular momenta j_{1} and j_{2}, using the ClebschGordan Table.

Recall that the coupled states which are characterized by the total angular momentum J and its projection M can be expanded via the completeness relation in the uncoupled basis:

$$
|J M\rangle=\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle
$$

The expansion coefficients, $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$, are the Clebsch-Gordan coefficients which can be found in the following table:

34. CLEBSCH-GORDAN COEFFICIENTS. SPHERICAL HARMONICS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15$ read $-\sqrt{8 / 15}$.

$$
Y_{1}^{1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}
$$

$$
Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta
$$

$$
\begin{array}{|c|ccc|}
\cline { 2 - 4 } \text { Notation: } & J & J & \cdots \\
M & M & \cdots \\
\hline m_{1} & m_{2} & & \\
m_{1} & m_{2} & \text { Coefficients } \\
\vdots & . & \\
\vdots & . & \\
\hline
\end{array}
$$

$$
Y_{2}^{0}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)
$$

$$
\begin{array}{rl}
Y_{2}^{1} & =-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
Y_{2}^{2} & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi} \\
3 / 2 \times 1 \quad 5 / 2 & 3 / 2
\end{array}
$$

$+1-1 / 2$	$2 / 5$	$3 / 5$	5
$0+1 / 2$	$3 / 5$	$-2 / 5$	$-1 / 2$
	0	$-1 / 2$	$3 / 5$
		$1+1 / 2$	$2 / 5$

a) (25 p.) Write down all the possible states $|J M\rangle$ in the basis $\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle$ for the compositions $\frac{1}{2} \otimes 1$ and $1 \otimes 1$ (the symbol \otimes stands for the coupling of two angular momenta).
b) (15 p.) Check explicitly that the decompositions of the state $\left|\frac{5}{2},+\frac{1}{2}\right\rangle$ in the basis $\left|\frac{1}{2} m_{1}\right\rangle\left|1 m_{2}\right\rangle\left|1 m_{3}\right\rangle$ obtained from $\left(\frac{1}{2} \otimes 1\right) \otimes 1$ and $\frac{1}{2} \otimes(1 \otimes 1)$ are the same.

Exercise 2. (30 points)

Consider a general spin- $1 / 2$ state

$$
\chi=\binom{a}{b}
$$

which is normalized $|a|^{2}+|b|^{2}=1$.
a) (10 p.) Show that there always exists a direction in space $\vec{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ such that χ is the eigenstate of the spin component along this direction $S_{\vec{n}}=\vec{n} \cdot \vec{S}$ with eigenvalue $\hbar / 2$.
b) (15 p.) Write θ and ϕ in terms of a and b.
c) (5 p.) Would an analogous result hold for higher spin states?

Hint: Count the number of degrees of freedom.

Exercise 3. (30 points)

a) (15 p.) Derive the spin matrices S_{x}, S_{y}, S_{z} in the basis $\left|s, s_{z}\right\rangle$ for $s=1$.
b) (15 p.) Find the eigenvalues and the normalized eigenvectors of S_{x} and S_{y} in that basis. Hint: The general relation $S_{ \pm}\left|s, s_{z}\right\rangle=\hbar \sqrt{s(s+1)-s_{z}\left(s_{z} \pm 1\right)}\left|s, s_{z} \pm 1\right\rangle$ can we useful.

