Exercise sheet 7 Theoretical Physics 3 : QM SS2018 Lecturer : Prof. M. Vanderhaeghen

06.06.2018

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (20 points)

a) (15 p.) Show that the Laplace operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in three dimensions in spherical coordinates takes the form

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

b) (5 p.) Show that the radial term can also be written as

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) = \frac{1}{r}\frac{\partial^2}{\partial r^2}r$$

Exercise 2. (45 points)

- a) (15 p.) Show that $L_{\pm}Y_l^m = \hbar \sqrt{l(l+1) m(m\pm 1)} Y_l^{m\pm 1}$. Hint: Consider the norm of $L_{\pm}Y_l^m$.
- b) (15 p.) Show that for eigenfunctions of \hat{L}_z , we have

$$\langle \hat{L}_x \rangle = \langle \hat{L}_y \rangle = 0, \qquad \langle \hat{L}_x^2 \rangle = \langle \hat{L}_y^2 \rangle \quad \text{and} \quad \langle \hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_x \rangle = 0.$$

Hint: Consider $\langle \hat{L}_{\pm} \rangle$ and $\langle \hat{L}_{\pm}^2 \rangle$.

c) (15 p.) In the state ψ_{lm} with definite angular momentum l and its z-component m, find the mean values $\langle \hat{L}_x^2 \rangle$, $\langle \hat{L}_y^2 \rangle$ as well as the mean values $\langle \hat{L}_{\tilde{z}} \rangle$ and $\langle \hat{L}_{\tilde{z}}^2 \rangle$ of the angular momentum projection along the \tilde{z} -axis making an angle α with the z-axis. Hint: Use $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$.

Exercise 3. (35 points)

a) (20 p.) Prove that for a particle in a potential $V(\vec{r})$ the rate of change of the expectation value of the orbital angular momentum \vec{L} is equal to the expectation value of the torque (rotational analog to Ehrenfest's theorem)

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{L} \rangle = \langle \vec{N} \rangle$$
 where $\vec{N} = \vec{r} \times (-\vec{\nabla}V)$

Show that $\langle \vec{L} \rangle$ is constant for any spherically symmetric potential. (This is one form of the quantum statement of conservation of angular momentum.)

b) (15 p.) Show that the mean values of the vectors \vec{L} , \vec{r} , \vec{p} for the particle state with wave function $\psi = \exp(i\vec{p}_0 \cdot \vec{r}/\hbar)\phi(\vec{r})$ are connected by the classical relation $\vec{L} = \vec{r} \times \vec{p}$. Here, p_0 is a real vector and $\phi(\vec{r})$ is a real function.

Exercise 4. (Bonus 15 points)

Confirm or invalidate the following assertions:

- a) $(10 \ p.)$ If $[\hat{H}, \hat{\vec{L}}] = \vec{0}$, the energy levels do not depend on m (i.e., on the eigenvalues of the projection of one of the components of the angular momentum $\hat{\vec{L}}$).
- b) (5 p.) If $[\hat{H}, \hat{L}^2] = 0$, the energy levels do not depend on l.