Exercise sheet 2
 Theoretical Physics 3 : QM SS2018
 Lecturer : Prof. M. Vanderhaeghen

02.05.2018

The goal of this exercise sheet is to investigate the time evolution of particles which were initially "living" in an infinite square well potential of width a,

$$
V(x)= \begin{cases}0 & \text { for } 0 \leq x \leq a \tag{1}\\ +\infty & \text { otherwise }\end{cases}
$$

after an instantaneous shift at the moment $t=0$ of the left border of the potential by a to the left. So that new potential being

$$
\tilde{V}(x)= \begin{cases}0 & \text { for } \quad-a \leq x \leq a \tag{2}\\ +\infty & \text { otherwise }\end{cases}
$$

and the initial wave functions are no more stationary states for $t>0$. The "instantaneous shift" implies that it does not affect the state of the particle, which is the same before and immediately after the shift.

The system within the potential $V(x)$ was investigated during the lecture and the stationary states

$$
\Psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n}{a} x\right), \quad n=1,2,3, \ldots
$$

with the corresponding energies

$$
E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n}{a}\right)^{2}
$$

were found.

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (40 points)

We should start by investigating the stationary states $\tilde{\Psi}_{n}(x)$ within the potential $\tilde{V}(x)$.
a) Starting from the stationary Schrödinger equation, find the energy spectrum of the system, \tilde{E}_{n}. How could one guess the obtained results using the spectrum E_{n} ?
Apart from the Schrödinger equation itself, which conditions determine the spectrum?
b) Show that the set of the stationary states consists of (spatially) even and odd ones:

$$
\begin{array}{ll}
\tilde{\Psi}_{n}^{\text {even }}(x) \propto \cos \left(\frac{\pi n x}{2 a}\right), & n=1,3, \ldots \\
\tilde{\Psi}_{n}^{\text {odd }}(x) \propto \sin \left(\frac{\pi n x}{2 a}\right), & n=2,4, \ldots
\end{array}
$$

which can be combined:

$$
\tilde{\Psi}_{n}(x) \propto \sin \left(\frac{\pi n}{2 a}(x+a)\right), \quad n=1,2,3, \ldots
$$

Normalize this result.

Exercise 2. (60 points)

The obtained set of stationary states $\tilde{\Psi}_{n}(x)$ form a complete basis within the linear space spanned by the potential $\tilde{V}(x)$. As result, any function in this space can be written as a linear combination of $\tilde{\Psi}_{n}(x)$. We are going to apply this fact to the initial wave functions $\Psi_{n}(x)$.
a) Assuming each initial state is expanded in series

$$
\Psi_{m}(x)=\sum_{n=1}^{\infty} c_{n}^{m} \tilde{\Psi}_{n}(x)
$$

Find the expansion coefficients c_{n}^{m}.
Hint: Is $\sin (\pi n) /\left(n^{2}-m^{2}\right)$ equal to 0 for all $n, m \in \mathbb{Z}$?
b) At times $t>0$ the corresponding time-dependent wave functions can be found as

$$
\Psi_{m}(x, t)=\sum_{n=1}^{\infty} c_{n}^{m} \tilde{\Psi}_{n}(x, t)
$$

Check that normalization holds with time.
What is the probability P_{n}^{m} of finding a particle which had initially the energy E_{m} in the $\tilde{\Psi}_{n}(x)$ eigenstate of the new system for $t>0$?
Determine P_{2}^{1}.
c) When will the probability of finding any particle in the right half of the well ($0 \leq x \leq a$) become zero?
d) Consider a particle which was initially in the ground state $\Psi_{1}(x)$.

Calculate the expectation value of the energy at any time $t>0$.
What is the meaning of this result?
Hint: $\sum_{n=0}^{\infty}\left(\frac{2 n+1}{(2 n+1)^{2}-4}\right)^{2}=\frac{\pi^{2}}{16}$

(Bonus) Exercise 3. (20 points)

A particle in the infinite square well has as its initial wave function an even mixture of the first and second excited stationary states:

$$
\Psi(x, 0)=A\left(\Psi_{2}(x)+\Psi_{3}(x)\right)
$$

Note, that Ψ_{2} is the spatially odd wave function of the first excited state of the system $(n=2)$. While Ψ_{3} is the spatially even wave function of the second excited state of the system $(n=3)$.
a) Normalize $\Psi(x, 0)$.
b) Find $\Psi(x, t)$ and $|\Psi(x, t)|^{2}$. To simplify the result, define $\omega \equiv \pi^{2} \hbar / 2 m a^{2}$.

Check that normalization holds with time.
c) Compute time evolution of $\langle x\rangle$.

What are the frequency and the amplitude of its oscillation?
Compute $\langle p\rangle$ using $\langle p\rangle=m \frac{\mathrm{~d}}{\mathrm{~d} x}\langle x\rangle$.
d) Find the expectation value of H. How does it compare to E_{2} and E_{3} ?

