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In this Lecture

● One-loop Feynman graphs – general information
– General one-loop Feynman graphs

– Reduction of tensor integrals to scalar functions

● LoopTools: a package to evaluate general one-loop integrals
– Introduction and notations

– Example of loop integral reduction



One-Loop Feynman Graphs

● Amplitudes that correspond to one-loop Feynman graphs have the general 
form

where the numerator is a polynomial of the integration momentum, external 
momenta, masses, gamma matrices, polarization vectors etc., while the 
numerator arises from the propagators of internal particles.

● Example: electron vertex correction in QED (a three-point vertex)



One-Loop Feynman Graphs

● The external quantities in the numerator can be factored out, so instead of the
complete expression one only needs to consider tensor loop integrals with 
simple numerators, for instance, for the one-loop electron vertex in QED, 

it is sufficient to only consider integrals with numerators                     .

● The general amplitude, analogously,

can be expressed through integrals with numerators                                     
and so on – in principle, one can have arbitrary powers of the integration 
momentum in the numerator

● In renormalizable theories (such as QED, QCD, the Standard Model), there 
can be at most             factors of integration momentum in the numerator of an 
   -point function; so the number of needed tensor integrals is limited by 

● If needed, integrals with             can be considered, too



One, Two, Three, Four Points

● It also turns out that all one-loop integrals with more than four propagators 
(five, six, … N-point functions) can be reduced to linear combinations of four-
point integrals

● This means one has to consider one-, two-, three-, and four-point one-loop 
integrals in order to calculate a most general one-loop diagram

● Let us consider a two-point function and the integrals that can arise in it:

● This reduction can be done using the Feynman parameters (as you know), but 
it is in fact a very general thing that follows from Lorentz covariance



One, Two, Three, Four Points

● Analogously, one can write expressions for the reduction of three- and four-
point one-loop tensor integrals to scalar functions (note the tensor integrals 
are symmetric in their indices by construction):



One, Two, Three, Four Points

and, finally,

where the braces {} mean that the object within has to be symmetrized with 
respect to all Lorentz indices:                                                            , and so on.

● In this way, all tensor one-loop integrals can be reduced to scalar loop 
integrals (functions                                        and so on) 

● Good news: all these scalar integrals can be calculated analytically in terms of 
elementary functions (mostly radicals and logarithms) and of the dilogarithm 
function,

● The expressions involved are, however, very cumbersome in the most general 
case; depending on the choice of the specific parametrization, they also may 
be subject to numerical instabiliites (cancellations between large terms etc)



LoopTools

● LoopTools (developed by T. Hahn and collaborators, www.feynarts.de) is a 
numerical package that evaluates the scalar tensor coefficients that we 
considered above

● It works with analytic formulas for the tensor coefficients, so it is very fast (no 
numerical integration is involved)

● It has built-in methods to cross-check the results against large cancellations 
and other numerical errors (in particular, it implements two different methods 
to perform the reduction of the tensor integrals which can be compared)

● It is based on a previous package FF by G.J. van Oldenborgh and J. 
Vermaseren that was written in Fortran.

● LoopTools has Fortran, C/C++, and Mathematica interfaces for function calls

http://www.feynarts.de/


LoopTools: in Practice

● A numerical calculation of a one-loop diagram becomes easy* with the use of 
FORM and LoopTools:

– First, one performs a tensor decomposition in FORM, expressing the 
whole Feynman diagram in terms of tensor coefficients B, C, D (rather 
than in terms of loop functions obtained via the Feynman parameters);

– Second, one takes the obtained expression, substitutes the numerical 
values of kinematical parameters (masses, energies, etc), and calls the 
LoopTools routines that calculate the coefficents B, C, D

● The numerical results are ready!

* There (as always) can be issues; some of them will be discussed later



LoopTools: About Notation

● The notation that is used in LoopTools:

– External loop momenta are defined to flow into the diagram

– Tensor coefficient functions are functions of
masses and external momenta squared – here, 

– These functions are, however, the coefficients
of the momenta in the loop – here,      and      .
For instance,

is the coefficient of           in the tensor reduction
of        , and so on

– Relations between      and     are  



LoopTools: About Notation

● The notation that is used in LoopTools:

– Finally, the integral is considered in D dimensions,
introducing the dimensional regularization
and keeping the renormalization scale
parameter, for example, the scalar three-point
function is 

Here, 

– One has to keep in mind this normalization convention. Note that not all 
functions are divergent – those are only two-point functions, three-point 
tensor coefficients with two zeros, and four-point coefficient  



Example: Loop Graphs

● Let us consider the example that we had at the previous lecture:



Example: Loop Graphs

● Start with the pion-coupling loop:

● Here, we can choose                                            so

● In order to match the LoopTools notation, however, we have to have             in 
the denominators; this can be done by changing the sign of the loop 
momentum, giving 

● This form conforms the LoopTools notation and can be decomposed in the 
LoopTools functions; we will do it in a FORM script later  



Example: Loop Graphs

● With the nucleon-coupling loop, we use

and choose                                            getting

● After the sign change similarly to what we did before, we get an expression 
that conforms to the LoopTools notation

● Note that we still have a different normalization of the integral – this has to be 
fixed at some stage



Exercise: the Schwinger Correction

● Using FORM, simplify the expression for the leading one-loop QED correction 
to the electron vertex function, and obtain the expression for the electron’s 
anomalous magnetic moment in terms of LoopTools functions

● Calculate the value of the electron’s a.m.m.
numerically, calling the LoopTools routines,
and check that you get the same answer
as you previously got analytically using the
Feynman parametrization

● Hint: choose some units for the mass parameters
that enter the problem, e.g., measure everything
in MeV

● Hint: evaluation might be unstable in the limit             , and it may also be 
affected by the fact that one of the internal particles has zero mass, while the 
two others have equal masses. If you encounter numerical issues, try 
offsetting these troubles by slightly changing the parameters (e.g., take small 
nonzero     , small nonzero value of the photon mass, the masses of the two 
electrons slightly different, etc.) 


