Examples Sheet 7 Symmetries in Physics Winter 2017/18

Lecturer: PD Dr. G. von Hippel

1. A harmonic oscillator toy model for the BRST cohomology (20 P.)

1. Starting from the three-dimensional harmonic oscillator in the form

$$\hat{H}_B = \sum_{i=1}^{3} \left(\frac{\hat{p}_i^2}{2m} + \frac{m\omega^2}{2} \hat{x}_i^2 \right),\,$$

show how it can be written as

$$\hat{H}_B = \hat{H}_1 + \hat{H}_2$$

with

$$\hat{H}_1 = \hat{p}^2 + \omega^2 \hat{x}^2 = \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$
$$\hat{H}_2 = \hat{P}\hat{P} + \omega^2 \hat{X}\hat{X} = \omega \left(\hat{A}^{\dagger} \hat{A} + \hat{A}^{\dagger} \hat{A} + 1 \right)$$

by appropriately identifying its component operators.

- 2. Using the canonical commutation relations between the creation and annihilation operators, derive the spectrum and the Hilbert space of the three-dimensional harmonic oscillator.
- 3. Consider the fermionic oscillator with Hamiltonian

$$\hat{H}_F = \hat{\Pi}\hat{\Pi} + \omega^2 \hat{Z}\hat{Z} = \omega \left(\hat{b}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{b} - 1\right)$$

where the operators obey canonical anticommutation relations, and derive its spectrum and Hilbert space.

- 4. Write down the Hamiltonian $\hat{H} = \hat{H}_B + \hat{H}_F$ for a superoscillator.
- 5. Show that the resulting theory is invariant under supersymmetry transformations generated by the BRST operator

$$\hat{Q} = i \left(\hat{\bar{A}}^{\dagger} \hat{\bar{b}} - \hat{b}^{\dagger} \hat{A} \right)$$

- 6. Show that the BRST operator is nilpotent, $\hat{Q}^2 = 0$.
- 7. Write down the conjugate \hat{Q}^{\dagger} of \hat{Q} , and show that it is also nilpotent and conserved.

8. Show that

$$\left\{\hat{Q},\hat{Q}^{\dagger}\right\} = \frac{\hat{H}'}{\omega}$$

with $\hat{H}' = \hat{H}_2 + \hat{H}_F$.

- 9. Conclude that $\operatorname{Ker} \hat{H}' = \operatorname{Ker} \hat{Q} \cap \operatorname{Ker} \hat{Q}^{\dagger}$ and $\operatorname{Ker} \hat{Q} = \operatorname{Ker} \hat{H}' \oplus \operatorname{Im} \hat{Q}$.
- 10. Defining the physical Hilbert space as $\mathcal{H}_{phys} = \operatorname{Ker} \hat{Q} / \operatorname{Im} \hat{Q}$, explicitly give the spectrum of physical states.
- 2. Chiral symmetry of massless QCD (20 P.)
 - 1. Using the decomposition of the Dirac spinor into a pair of Weyl spinors, show that the Lagrangian

$$\mathcal{L} = \frac{1}{2} \operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) + \sum_{i=1}^{N_f} \overline{\psi}_i \gamma^{\mu} D_{\mu} \psi_i$$

for massless QCD with N_f quark flavours is invariant under separate $SU(N_f)$ transformations of the left- and right-handed components $\psi_{L,R} = \frac{1}{2}(1 \mp \gamma_5)\psi$ of the Dirac spinor.

- 2. Write down the Noether currents for the two $SU(N_f)$ symmetries.
- 3. By forming the sum and the difference of the Noether currents, show that the $SU(N_f)_L \times SU(N_f)_R$ symmetry can also be written as a $SU(N_f)_V \times SU(N_f)_A$, with the two factors corresponding to a vector and an axial vector Noether current, respectively.
- 4. Show that the vector Noether current remains conserved if a degenerate mass term $-m\sum \overline{\psi}_i\psi_i$ is added to the Lagrangian, but that the axial Noether current is no longer conserved.
- 5. The strong interactions lead to a quark condensate $\langle \operatorname{tr}(Q) \rangle \neq 0$ for the the trace of the matrix $Q_{ij}(x) = \overline{\psi}_i(x)\psi_j(x)$. How does Q transform under $\operatorname{SU}(N_f)_L \times \operatorname{SU}(N_f)_R$ transformations? Show that the condensate leads to spontaneous breaking of the symmetry associated with the axial vector current, but leaves the vector symmetry intact.
- 6. Conclude that there must be $(N_f^2 1)$ massless Goldstone bosons associated with the spontaneous breaking of the axial symmetry of massless QCD.
- 7. Using your result for how the mass term breaks the axial symmetry, show that the pseudo-Goldstone bosons associated with the spontaneous breaking of the approximate axial symmetry of QCD with light quarks have masses of order $m_{PS}^2 \propto m$.
- 8. Which particles are the pseudo-Goldstone bosons for $N_f = 2, 3$? What is their parity and why?