Exercise sheet 11 Theoretical Physics 6a (QFT): WS 2017-2018 Lecturer : Prof. M. Vanderhaeghen

22.01.2018

Exercise 1. (50 points) : β -function in QED

In the lecture notes we have calculated the effective (running) coupling in QED at 1-loop level as:

$$e_R^2(Q^2) = e_R^2 \left\{ 1 + \frac{e_R^2}{12\pi^2} \ln \frac{Q^2}{m^2} + \mathcal{O}(e_R^4) \right\},\tag{1}$$

where e_R^2 on the *rhs* can be interpreted as the coupling defined at $Q^2 = m^2$. The β -function in QED expresses in general how the coupling constant changes with mass scale Q as:

$$\beta(e_R) \equiv Q \frac{de_R}{dQ}.$$
 (2)

(a)(10 points)

Use Eq. (1) to express the β -function at leading order in terms of the renormalized coupling $e_R(Q)$.

(b)(10 points)

Which power in e_R do the correction terms to the leading order result for the β -function have ?

(c)(10 points)

Discuss from the sign of the β function how it behaves at high energies (short distances), corresponding with $Q \to \infty$.

(d)(20 points)

By using the result obtained in (a) for the β -function, you obtain a differential equation for $e_R(Q^2)$. Solve this equation by expressing the running coupling $e_R(Q^2)$ at scale Q in terms of the running coupling $e_R(\mu^2)$ at an arbitrary scale μ . Show that when taking $\mu = m$, you find back the result of Eq. (1) up to correction terms of $\mathcal{O}(e_R^6)$.

Exercise 2. (50 points) : Behavior of running coupling near a fixed point

Consider a theory with running coupling $g(Q^2)$, for which the β function is given by

$$\beta(g) \equiv Q \frac{dg}{dQ} = g(a^2 - g^2), \qquad (3)$$

where a is a known constant.

(a)(10 points)

Plot β as function of q.

(b)(30 points)

The coupling at some reference scale $Q^2 = 1$ is given as:

$$g(Q^2 = 1) = g_0. (4)$$

Solve the differential equation (3) to express $g(Q^2)$ at some arbitrary scale. Your result should be expressed in terms of Q^2 and depend on the parameters a and g_0 . Check that for $Q^2 = 1$ your result gives $g(Q^2 = 1) = g_0$. Consider the cases $g_0 > 0$ and $g_0 < 0$ separately.

(c)(10 points)

For the case $g_0 > 0$, what will be the value of $g(Q^2)$ in the limit $Q^2 \to \infty$? In the opposite case where $g_0 < 0$, what will now be the value of $g(Q^2)$ in the limit $Q^2 \to \infty$?

The specific limiting couplings are called ultra-violet fixed points. Does their value depend on the chosen starting value (discuss this for $g_0 > 0$ and $g_0 < 0$ separately)?