IComputer Algebra for Feynman Graphs




In this Lecture

* FORM examples

- Feynman graphs: one-loop nucleon electromagnetic vertex with
pseudoscalar pion-nucleon coupling



Example: Loop Graphs

 We want to compute these two one-loop graphs, which are the leading
corrections to the nucleon e.m. vertex in theory with the pseudoscalar pion-
nucleon coupling:
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Example: Loop Graphs

If the initial and final nucleons are on-shell (free), we can use the Dirac
equation:
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This might not be the most general consideration though, so let us keep in
mind that we might want to retain the off-shell pieces at some stage



Example: Loop Graphs

 Now, we want to use the Feynman parameterization in order to combine the
three denominators into one:
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— this is the most general formula; we have three denominators, all of which
are different, so in our case this becomes
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* Note that we can freely choose which of the denominators is A, B, or C; the
choice can (and will) be different for the two different terms (= different loops),
depending on what gives a more compact expression in the end
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* After cruncing the algebra, the combined denominator simplifies to (k — k1)? — M
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* Since the final and initial nucleons are on-shell, the two last terms vanish: a
further simplification results if we redefine y — (1 —x)y



Example: Loop Graphs

Now we can shift the momentum integration by k;:
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The momentum integration can now be performed. We will have divergences,
so we need to go to D dimensions in order to apply dimensional regularization

We will also need the loop functions which converge for n>2:
dPk 1 (—1)" I'(n — D/2

) @m)P (k2= M2 (4m)P/2 - T(n)

For small n the loop functions diverge, for instance, we will have n=2 and we
will have to expand in powers of [4-D]; the exact expressions for J,,, however,
will not be needed — we will just write down the vertices in terms of those



Example: Loop Graphs

We need one more formula that relates tensor integrals with loop functions:
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We also have to remember that all such tensor integrals with odd powers of
Integration momenta vanish:

/ Pk kM _/ Pk KRR
em)P (@ =22~ emP @ =

We also need to remember that v, = D, gﬁ = D, and similarly for
other identities with gamma matrices

It is also useful to remember the off-shell Gordon identity that is just the
conseqguence of the Dirac matrix algebra (and four-momenta conservation):
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The two last terms vanish for on-shell nucleons



Example: Loop Graphs
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Making the same simplifications as for the first loop, we get the final result for
this loop integral:
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Note that these are also simplified assuming on-shell nucleons!




Example: Loop Graphs

 The expression that we have to insert in the code is, up to a constant factor,
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 Remember that the shifted momenta are different in the two integrals!

* Now, we will program in FORM.

We will treat the two loops separately (which is not necessary though)

We will forget about the integration and about denominators in each
integral and work with the numerators

In the latter, we will disentangle the structures that correspond to scalar
and tensor integrals and replace them with loop functions

This will be our final result (which still has to be integrated over the
Feynman parameters)



Example: Loop Graphs

« A few thoughts about what we expect to get, based on the Lorentz covariance
arguments: the photon-nucleon vertex (on-shell) has to have the form
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* For on-shell nucleons, the third term has to vanish — a consequence of gauge
invariance, follows from the requirement I'(p,p')”q, = 0; we can check that!

* Besides that, there can be some off-shell structures (important if the loop
vertices are parts of larger Feynman graphs); they are proportional to [p — m]
on the right or [p' — m] on the left (or both) and therefore vanish for on-shell
nucleons (recall the off-shell Gordon identity). Note that we threw away some
of these terms already when we used the Dirac equation in the initial integrals;
If we want to trace the complete off-shell vertices we have to restore them (as
well as pieces proportional to p* —m* and p”? —m? in M2 and M?2)

[Example file: vertices.frm]



Exercise: the Schwinger Correction

Using FORM, simplify the expression for the leading one-loop QED correction
to the electron vertex function, and obtain the expression for the electron’s
anomalous magnetic moment

Hint: the a.m.m. is the value of F:(¢?)
(see previous slide) at ¢*> = 0, up to

a constant normalisation factor
(which is for you to figure out)

Calculate the QED loop diagram,
using the appropriate Feynman
parameterisation; assume the
initial and final electrons on-shell

Check that F5(¢*) vanishes; disregard F1(g?), and find the value of the
electron a.m.m. at leading order in the expansion in powers of the fine
structure constant — the Schwinger correction



Exercise: Ward-Takahashi Identity

« The requirement that I'(p,p")”¢. = Ois in fact the consequence of a more
general statement called the Ward-Takahashi identity: if one considers the
self-energy loop due to the interaction with the pion and the self-energy
correction due to that loop,
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* Exercise (very advanced!!!): check the Ward-Takahashi identity

* Hint: one has to calculate the self-energy correction without assuming the
nucleons on-shell (and go back and do the same for the vertex loops)

* |t may be easier to check this first when one of the two nucleons (either the
final or the Initial) is on-shell



Exercise: Ward-Takahashi Identity

 The Ward-Takahashi identity
I(p, p')ay = e[Z(p") — X(p)]

can be represented in a (simplified) form which is valid at ¢ = 0 and can be
obtained by taking the derivative with respect to g, :
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* Asimplified variation of the previous exercise would be to check the derivative
form of the Ward-Takahashi identity; note that this is a matrix identity, one has
to remember that when taking the derivatives!




