Computer Algebra for Feynman Graphs

9.

In this Lecture

- FORM examples
- Feynman graphs: one-loop nucleon electromagnetic vertex with pseudoscalar pion-nucleon coupling

Example: Loop Graphs

- We want to compute these two one-loop graphs, which are the leading corrections to the nucleon e.m. vertex in theory with the pseudoscalar pionnucleon coupling:

$$
\mathcal{L}_{\mathrm{int}}=\frac{m g_{A}}{f_{\pi}} \bar{N} \gamma^{5} \tau^{a} N \pi^{a}
$$

$$
\begin{aligned}
i \Gamma^{\nu}\left(p, p^{\prime}\right)=\frac{e m^{2} g_{A}^{2}}{f_{\pi}}[& {\left[2 \tau^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 k-q)^{\nu}\left(\not k-\not p^{\prime}+m\right)}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right.} \\
& \left.-\frac{1}{2}\left(3-\tau^{3}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\left(\not k-\not p^{\prime}+m\right) \gamma^{\nu}(\not k-\not p+m)}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right]
\end{aligned}
$$

Example: Loop Graphs

- If the initial and final nucleons are on-shell (free), we can use the Dirac equation:

$$
\begin{aligned}
i \Gamma^{\nu}\left(p, p^{\prime}\right)=\frac{e m^{2} g_{A}^{2}}{f_{\pi}} & {\left[2 \tau^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 k-q)^{\nu}\left(\not k-\not p^{\prime}+m\right)}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right.} \\
& \left.-\frac{1}{2}\left(3-\tau^{3}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\left(\not k-\not p^{\prime}+m\right) \gamma^{\nu}(\not k-\not p+m)}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right] \\
i \Gamma^{\nu}\left(p, p^{\prime}\right)=\frac{e m^{2} g_{A}^{2}}{f_{\pi}}[& {\left[2 \tau^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 k-q){ }^{\nu} \not k}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right.} \\
& \left.-\frac{1}{2}\left(3-\tau^{3}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\not k \gamma^{\nu} \nmid k}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right]
\end{aligned}
$$

- This might not be the most general consideration though, so let us keep in mind that we might want to retain the off-shell pieces at some stage

Example: Loop Graphs

- Now, we want to use the Feynman parameterization in order to combine the three denominators into one:

$$
\frac{1}{A_{1}^{n_{1}} \ldots A_{N}^{n_{N}}}=\frac{\Gamma\left(n_{1}+\cdots+n_{N}\right)}{\Gamma\left(n_{1}\right) \ldots \Gamma\left(n_{N}\right)} \prod_{i=1}^{N} \int_{0}^{1} d x_{i} \frac{\delta\left(1-x_{1}-\cdots-x_{N}\right) x_{1}^{n_{1}-1} \ldots x_{N}^{n_{N}-1}}{\left(x_{1} A_{1}+\cdots+x_{N} A_{N}\right)^{n_{1}+\cdots+n_{N}}}
$$

- this is the most general formula; we have three denominators, all of which are different, so in our case this becomes

$$
\frac{1}{A B C}=2 \int_{0}^{1} d x \int_{0}^{1-x} d y[A x+B y+C(1-x-y)]^{-3}
$$

- Note that we can freely choose which of the denominators is A, B, or C; the choice can (and will) be different for the two different terms (= different loops), depending on what gives a more compact expression in the end

$$
\begin{aligned}
i \Gamma^{\nu}\left(p, p^{\prime}\right)=\frac{e m^{2} g_{A}^{2}}{f_{\pi}} & {\left[2 \tau^{3} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 k-q)^{\nu} \not k}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right.} \\
& \left.-\frac{1}{2}\left(3-\tau^{3}\right) \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\not k \gamma^{\nu} \not k}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}\right]
\end{aligned}
$$

Example: Loop Graphs

- Start with the pion-coupling loop:

$$
\begin{gathered}
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 k-q)^{\nu} \nless k}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]} \\
\left.\left.2 \int_{0}^{1} d x k_{0}^{1}-m_{\pi}^{2}\right]\left[(k-q)^{2}-m_{\pi}^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]\right)^{-1}= \\
2\left\{\left[k^{2}-m_{\pi}^{2}\right](1-x-y)+\left[(k-q)^{2}-m_{\pi}^{2}\right] y+\left[(k-p)^{2}-m^{2}\right] x\right\}^{-3}
\end{gathered}
$$

- After cruncing the algebra, the combined denominator simplifies to $\left(k-k_{1}\right)^{2}-M_{\pi}^{2}$ with

$$
\begin{aligned}
& k_{1}=q y+p^{\prime} x \\
& M_{\pi}^{2}=m^{2} x^{2}+m_{\pi}^{2}(1-x)-q^{2} y(1-x-y)-\left(p^{\prime 2}-m^{2}\right) x(1-x-y)-\left(p^{2}-m^{2}\right) x y
\end{aligned}
$$

- Since the final and initial nucleons are on-shell, the two last terms vanish; a further simplification results if we redefine $y \rightarrow(1-x) y$

Example: Loop Graphs

- Now we can shift the momentum integration by k_{1} :

$$
2 \int_{0}^{1}(1-x) d x d y \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 \tilde{k}-q)^{\nu} \tilde{\not}}{\left(k^{2}-M_{\pi}^{2}\right)^{3}}
$$

- Here, $\tilde{k}=k+k_{1}$ with $k_{1}=q(1-x) y+p^{\prime} x$, and

$$
M_{\pi}^{2}=m^{2} x^{2}+m_{\pi}^{2}(1-x)-q^{2} y(1-y)(1-x)^{2}
$$

- The momentum integration can now be performed. We will have divergences, so we need to go to D dimensions in order to apply dimensional regularization
- We will also need the loop functions which converge for $\mathrm{n}>2$:

$$
J_{n}(M)=\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{\left(k^{2}-M^{2}\right)^{n}}=\frac{i(-1)^{n}}{(4 \pi)^{D / 2}} \frac{\Gamma(n-D / 2)}{\Gamma(n)} M^{D-2 n}
$$

- For small n the loop functions diverge, for instance, we will have $\mathrm{n}=2$ and we will have to expand in powers of [4-D]; the exact expressions for J_{n}, however, will not be needed - we will just write down the vertices in terms of those

Example: Loop Graphs

- We need one more formula that relates tensor integrals with loop functions:

$$
\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu}}{\left(k^{2}-M^{2}\right)^{n}}=\frac{g^{\mu \nu}}{2(n-1)} J_{n-1}(M)
$$

- We also have to remember that all such tensor integrals with odd powers of integration momenta vanish:

$$
\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{k^{\mu}}{\left(k^{2}-M^{2}\right)^{n}}=\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu} k^{\lambda}}{\left(k^{2}-M^{2}\right)^{n}}=\cdots=0
$$

- We also need to remember that $\gamma^{\mu} \gamma_{\mu}=D, \quad g_{\mu}^{\mu}=D$, and similarly for other identities with gamma matrices
- It is also useful to remember the off-shell Gordon identity that is just the consequence of the Dirac matrix algebra (and four-momenta conservation):

$$
\gamma^{\mu}=\frac{1}{2 m}\left\{\left(p+p^{\prime}\right)^{\mu}+\frac{1}{2}\left[\not q, \gamma^{\mu}\right]-\left(p^{\prime}-m\right) \gamma^{\mu}-\gamma^{\mu}(\not p-m)\right\}
$$

- The two last terms vanish for on-shell nucleons

Example: Loop Graphs

- With the nucleon-coupling loop, we use

$$
\begin{gathered}
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\left.k k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]}{} \\
\left(\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right]\right)^{-1}= \\
2 \int_{0}^{1} d x \int_{0}^{1-x} d y\left\{\left[k^{2}-m_{\pi}^{2}\right] x+\left[(k-p)^{2}-m^{2}\right] y+\left[\left(k-p^{\prime}\right)^{2}-m^{2}\right](1-x-y)\right\}^{-3}
\end{gathered}
$$

- Making the same simplifications as for the first loop, we get the final result for this loop integral:

$$
2 \int_{0}^{1}(1-x) d x d y \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\tilde{\not k} \gamma^{\nu} \tilde{\not} k}{\left(k^{2}-M_{N}^{2}\right)^{3}}
$$

where $\tilde{k}=k+k_{2}$ with $k_{2}=p(1-x) y+p^{\prime}(1-x)(1-y)$, and

$$
M_{N}^{2}=m^{2}(1-x)^{2}+m_{\pi}^{2} x-q^{2} y(1-y)(1-x)^{2}=M_{\pi}^{2}\left(m \leftrightarrow m_{\pi}\right)
$$

Note that these are also simplified assuming on-shell nucleons!

Example: Loop Graphs

- The expression that we have to insert in the code is, up to a constant factor,
$i \Gamma^{\nu}\left(p, p^{\prime}\right)=\left[4 \tau^{3} \int_{0}^{1}(1-x) d x d y \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{(2 \tilde{k}-q)^{\nu} \tilde{k}}{\left(k^{2}-M_{\pi}^{2}\right)^{3}}-\left(3-\tau^{3}\right) \int_{0}^{1}(1-x) d x d y \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{\tilde{k} \gamma^{\nu} \tilde{k}}{\left(k^{2}-M_{N}^{2}\right)^{3}}\right]$
- Remember that the shifted momenta are different in the two integrals!
- Now, we will program in FORM.
- We will treat the two loops separately (which is not necessary though)
- We will forget about the integration and about denominators in each integral and work with the numerators
- In the latter, we will disentangle the structures that correspond to scalar and tensor integrals and replace them with loop functions
- This will be our final result (which still has to be integrated over the Feynman parameters)

Example: Loop Graphs

- A few thoughts about what we expect to get, based on the Lorentz covariance arguments: the photon-nucleon vertex (on-shell) has to have the form

$$
i \Gamma^{\nu}\left(p, p^{\prime}\right)=F_{1}\left(q^{2}\right)\left(p+p^{\prime}\right)^{\nu}+F_{2}\left(q^{2}\right)\left[\gamma^{\nu}, \gamma^{\mu}\right] q_{\mu}+F_{3}\left(q^{2}\right) q^{\nu}
$$

- For on-shell nucleons, the third term has to vanish - a consequence of gauge invariance, follows from the requirement $\Gamma\left(p, p^{\prime}\right)^{\nu} q_{\nu}=0$; we can check that!
- Besides that, there can be some off-shell structures (important if the loop vertices are parts of larger Feynman graphs); they are proportional to $[p p-m]$ on the right or $\left[p^{\prime}-m\right]$ on the left (or both) and therefore vanish for on-shell nucleons (recall the off-shell Gordon identity). Note that we threw away some of these terms already when we used the Dirac equation in the initial integrals; if we want to trace the complete off-shell vertices we have to restore them (as well as pieces proportional to $p^{2}-m^{2}$ and $p^{\prime 2}-m^{2}$ in M_{π}^{2} and M_{N}^{2})
[Example file: vertices.frm]

Exercise: the Schwinger Correction

- Using FORM, simplify the expression for the leading one-loop QED correction to the electron vertex function, and obtain the expression for the electron's anomalous magnetic moment
- Hint: the a.m.m. is the value of $F_{2}\left(q^{2}\right)$ (see previous slide) at $q^{2}=0$, up to a constant normalisation factor (which is for you to figure out)
- Calculate the QED loop diagram, using the appropriate Feynman parameterisation; assume the initial and final electrons on-shell

- Check that $F_{3}\left(q^{2}\right)$ vanishes; disregard $F_{1}\left(q^{2}\right)$, and find the value of the electron a.m.m. at leading order in the expansion in powers of the fine structure constant - the Schwinger correction

Exercise: Ward-Takahashi Identity

- The requirement that $\Gamma\left(p, p^{\prime}\right)^{\nu} q_{\nu}=0$ is in fact the consequence of a more general statement called the Ward-Takahashi identity: if one considers the self-energy loop due to the interaction with the pion and the self-energy correction due to that loop,
$i \Sigma(p)=-3 \frac{m^{2} g_{A}^{2}}{f_{\pi}^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\not k-\not p+m}{\left[k^{2}-m_{\pi}^{2}\right]\left[(k-p)^{2}-m^{2}\right]}$
these have to fulfill:

$$
\Gamma^{\nu}\left(p, p^{\prime}\right) q_{\nu}=e\left[\Sigma\left(p^{\prime}\right)-\Sigma(p)\right]
$$

- Exercise (very advanced!!!): check the Ward-Takahashi identity
- Hint: one has to calculate the self-energy correction without assuming the nucleons on-shell (and go back and do the same for the vertex loops)
- It may be easier to check this first when one of the two nucleons (either the final or the initial) is on-shell

Exercise: Ward-Takahashi Identity

- The Ward-Takahashi identity

$$
\Gamma^{\nu}\left(p, p^{\prime}\right) q_{\nu}=e\left[\Sigma\left(p^{\prime}\right)-\Sigma(p)\right]
$$

can be represented in a (simplified) form which is valid at $q=0$ and can be obtained by taking the derivative with respect to q_{ν} :

$$
\Gamma^{\nu}(p, p)=\left.e \frac{\partial}{\partial p_{\nu}^{\prime}} \Sigma\left(p^{\prime}\right)\right|_{p^{\prime}=p}
$$

- A simplified variation of the previous exercise would be to check the derivative form of the Ward-Takahashi identity; note that this is a matrix identity, one has to remember that when taking the derivatives!

