
Computer Algebra for Feynman Graphs

8.

In this Lecture

● Input control: #include, folds, save/load
● Output control: printing, output formats, dictionaries, ...

Input: #include

● A simple way to make FORM definitions and statements reusable over and
over again is to write them into a text file (which has to comply with the usual
FORM syntax). Let us call this file statements.h.

● This file can be included in the text of a FORM program (which is done at the
level of the preprocessor) by using the following directive:
#include statements.h

● The preprocessor reads the text of statements.h and appends it to the text
input at this point. The #include directive can be followed by a switch (+ or -
sign) that works as a #+ or a #- instruction w.r.t. the contents of
statements.h.

● If FORM cannot find a file statement.h, there will be an error. Be careful:
FORM can search for files in many directories (depending on the call options
and the value of the FORMPATH variable), so make sure FORM actually finds
what you want it to!

[Example file: include.frm]

Input: #include with Folds

● The contents of the included file can be structured in sections, called folds,
that are declared as follows (this has to do with code folding):
*--#[foldname :
...
statements;
...
*--#] foldname :

● Each of these folds can be included separately by the #include directive:
#include statements.h #foldname1 #foldname2 ...

● This makes the preprocessor read the contents of the fold with the specified
name and append it to input. The rest of the included file is ignored.

● Using folds enables one to include blocks of statements in a more flexible way,
which can be used as another means of “procedural” programming (along with
preprocessor variables/macros and preprocessor procedures)

● Since #include works at the level of the preprocessor, one can even have
parts of the input (rather than complete statements) in the included file

[Example file: include.frm]

Please note the syntax: it is quite rigid here,
in particular, there has to be no spaces
before the *’s (which in fact are the current
commentary character)

Expressions: Save/Load

● Apart from storing definitions such as blocks of statements (and other pieces
of input) and possibly expressions in text files and inserting them in the input
using the #include directive, one can store, save and load complete
expressions (e.g., when the result of a calculation in FORM needs to be
further processed in another program in FORM). This is done using the
instructions .store, save, and load:

● .store stores all active global expressions

● delete storage empties the storage file

● save filename.sav [expr1, expr2, …] saves the listed (or all if the
list is empty) stored expressions to the file filename.sav (note the
conventional, although not obligatory, filename extension)

● load filename.sav [expr1, expr2, …] loads the listed (or all if the
list is empty) expressions from the file filename.sav into storage. The
loaded expressions become stored global expressions; an error occurs if the
name of an expression was listed but not found in the save file

[Example file: saveload.frm]

Save/Load: Stored Declarations

● Note that apart from the stored expressions per se, FORM also stores
information about the objects that occur in those expressions, i.e., the
declarations of symbols, vectors, indices etc.

● This means that these objects become known to FORM when the save file is
loaded (as can be checked using the On Names instruction)

● Conflicting definitions for objects (those changing types, e.g., if z is defined in
the code as a vector, the code then loads an expression that contains a
symbol z, and this expression is used in assignment) will result in errors

[Example file: saveload.frm]

Output: Printing

● We have already encountered the print statement, which exists in two
forms: it either prints expressions in the end of the current module, or prints
separate terms during evaluation

● The first form:
print [expr1, expr2, …] assigns listed expressions (or all
expressions if the list is empty) to be printed at the end of the current module
nprint [expr1, expr2, …] removes the listed (or all) expressions at
from the list of expressions to be printed at the end of the current module

● The second form:
print “format string” [objects] prints separate terms or
objects such as $-variables during evaluation; it can be encountered in
different parts of the program. The useful format control characters are:
%t (%T): the current term with (without) the possible leading plus sign;
%$: a $-variable, the name of the $-variable to be printed follows the format
string as in “printout: %$” $a
%: prevent newline after the printout (having one is the default)
%%: print a % character; \n print a newline character

[Example file: print.frm]

Printing Options

● A print command can be followed by options such as

print +f -s;

+f/-f switch off/on output to the screen; this works only if output to a log file
is used by specifying a -l option in the call of FORM, the default is -f (output
both to the screen and the log file). This option can be used in both the full
expression mode and term-by-term mode of the print statement

-s/+s/+ss/+sss switch modes of printing terms, with -s (default) printing
as many terms in one line as possible within the specified length, +s printing
each term on a single line, +ss printing each group (a function, all symbols
together, all vectors together, all dotproducts together) on a single line, and
+sss printing each object on a single line

[Example file: print.frm]

Output: Formatting

● FORM allows to control in what form the output is printed out, using the format
statement:
format [options]

● Options include:
fortran/doublefortran/quadruplefortran/fortran90/C/mathema
tica/maple: format output in a form readable in the corresponding
programming language (may not work perfectly, generally works fine)
nospaces/spaces: remove/put spaces (the latter is the default)
39<N<255: a number, the requested length of line; the default is 72
float <N>/rational: switches on printing numbers as floating
point/rational (the latter is default). N is the floating point precision (the default
is 10)

● Format statements may follow each other; they are either combined (e.g.,
format C; format 120) or the last format overrides the previous ones
(e.g., format fortran90; format mathematica)

[Example file: format.frm]

Output: Dictionaries

● FORM also allows for a finer control over the output formatting, using the
mechanism of user-defined dictionaries; this can be used to adjust output to
the specific needs of post-processing (e.g., LaTeX, Fortran, etc)

● In a dictionary, one can define words and their “meanings” with which they will
be replaced in the output

● A dictionary has to be opened in order to add entries:
#opendictionary name
One can define many dictionaries, but only one can be open at any instance.

● Entries are added to a dictionary as follows:
#add x1: “x_1”
#add 2: “two”
#add *: “\,”
#add ^: “**”

● Strings in the r.h.s. can be anything (but keep in mind how the preprocessor
works, e.g., [LaTeX] braces might be considered as calculable expressions
and evaluated unless a non-calculable character is inserted)
#add 1/2: “\frac{1,}{2,}”

Allowed in the l.h.s.: variables (a symbol/index/function),
numbers (integer/rational), special characters (*,^),
a function with arguments

[Example file: dictionary.frm]

Output: Dictionaries

● After entries in the dictionary have been added, it has to be closed:
#closedictionary name
One can define many dictionaries, but only one can be open at any instance.

● A dictionary can be used in the output by invoking the directive
#usedictionary name (option1,option2,...)
where options regulate how the dictionary is used, i.e., what type of objects is
looked up in the dictionary

● (Some of) the options are:

– allnumbers: all numbers are looked up in the dictionary

– integersonly: only integers are looked up

– nonumbers: numbers are not looked up

– numbersonly: numbers are not looked up

– novariables: vars (not numbers/special characters) are not looked up

– variablesonly: only variables are looked up

[Example file: dictionary.frm]

Output: Dictionaries

● (Some of) the options, continued:

– nospecials: special characters (*,^) are not looked up

– specialsonly: only special characters are looked up

– nofunwithargs: functions with arguments are not looked up

– funwithargsonly: only functions with arguments are looked up

– warnings: floating point warnings in fortran or C formats, warning if the
dictionary cannot be used so as to avoid floating point notation

– nowarnings: no floating point warnings

– infunctions: dictionary is used inside function args

– notinfunctions: dictionary is not used inside function args

– $: substitutions are made in $-variables

● The default is that all possible matches are looked up in the dictionary, but no
warnings are given and no $-variables are expanded

[Example file: dictionary.frm]

