
Computer Algebra for Feynman Graphs

7.

In this Lecture

● Detailed description of some useful commands and statements related to:

– Settings control at runtime

– Manipulations with functions

– Manipulations with terms in expressions and $-variables

Useful Commands

● Here we provide more detailed information about a few useful compiler
statements (some of which we already considered), grouped by types
depending on what these statements do

● General statements

– dimension

● Settings control statements

– on/off

● Manipulations with functions

– symmetrize (antisymmetrize, (r)cyclesymmetrize)

– argument/endargument

– chainin/chainout

– commuteinset

– transform

Useful Commands

● Manipulations with expressions and terms

– global/local

– drop/ndrop

– skip/nskip

– hide/unhide/nhide/nunhide/intohide

– inside/endinside

– term/endterm, sort

– multiply

– discard

Dimension

● dimension 5; Declares the current default dimension to be a number

● dimension D; The same as above but the dimension is a symbol (D
will be implicitly declared as such if not already declared)

● dimension D:[D-4]; In addition to a symbolic dimension, the declaration
can include the name of a symbol that serves as the dimension minus 4.

● The declaration of dimension is used in various contraction identitites that
involve built-in tensors such as d_, e_, and g_

● The default dimension in FORM is 4

● These options can also be used in the declaration of indices, such as
index i=6, m=D, n=D:[D-4];

[Example file: dimension.frm]

On/Of

● The statements on and off provide means of control the settings of FORM
during the execution of the program by switching on or off a certain setup
parameter

● The syntax is either of these statements followed by an option, e.g.,
on statistics
on names
off finalstats

● The scope of each statement comprises the current module and all
subsequent modules until either a .clear instruction or a new on/off
statement that overrides previous settings is encountered

● Some of the useful options [and their default values] are the following (you are
referred to the reference manual for the rest):

– [off] names: print the names of defined variables and expressions

– [off] allnames: as names plus prints the names of system variables

– [off] setup: print the current setup parameters

[Example file: on_off.frm]

On/Of

– [on] statistics: print the runtime statistics

– [on] finalstats: print the final statistics in the end of the execution

– [on] lowfirst: sort polynomial expressions by increasing powers

– [off] highfirst: sort polynomial expressions by decreasing powers

● These options can be very useful for debugging (when one wants to see as
much information as possible and would therefore want to enable the printing
out of statistics, setup, etc)

● On the other hand, one can suppress the printing of all statistics so as to get
only the final expression printed out [the default FORM greeting message that
prints out the version of FORM etc. can be switched off by using the option -q:
form -q script.frm]. This is useful when the FORM output is to be used
by another program (e.g., Mathematica). One can get the result in a text file
by, e.g., redirecting the output:
form -q script.frm > script.log

[Example file: nomessages.frm]

Checkpointing in FORM

● FORM has a built-in checkpointing mechanism, which is also switched on or
off in the same manner:

– [off] checkpoint: activate/disactivate the built-in checkpointing

● We will not consider this here, mainly because FORM is so fast that
checkpointing is hardly ever needed; however, it is useful to know that such
feature exists, in case you ever run a really very big calculation

Manipulate Functions: Symmetrize
● symmetrize (antisymmetrize, (r)cyclesymmetrize)

symmetrizes (antisymmetrizes, ...) the arguments of a function or a tensor

– the symmetrization can be restricted; this is more versatile than defining
functions to be (anti)symmetric (which then applies to all of its arguments)

– function f;
symmetrize f; all arguments
symmetrize f 2,3,5; selected args, no action if less than 5 args
symmetrize f:4; only functions with 4 args
symmetrize f:4 2,3; functions with 4 args, selected args
symmetrize f: 2,3,5;
 selected args, action always, args with too large numbers ignored
symmetrize f (1,3),(2,4),(7,8);
 groups of arguments; no action if less than 8 args
symmetrize f:6 (1,3),(2,5),(4,6);
 groups of args, only functions with 6 args
symmetrize f: (1,3),(2,4),(5,7);
 groups of args, action always, groups with too large numbers ignored

Manipulate Functions: Transform

● transform
Transforms arguments of a function/tensor (or functions/tensors) according to
specified transformations.

● One can specify ranges of arguments to which the transformations are
applied, such as (1,5), (1,last), (last-3,5); these specifications can
include $-variables provided they evaluate to numbers at runtime

● The syntax is as in the example:
transform f, reverse(1,last), dropargs(3,5);
this will reverse all arguments of f, and then drop arguments 3 to 5 thereof.

● Some useful tranformations include:

– reverse(m,n); reverses args from m to n

– permute(m,n,k)(p,r)…; permutes args once in the specified cycles

– dropargs(m,n); removes args from m to n

– selectargs(m,n); removes args outside the range m to n

[Example file: transform.frm]

Manipulate Functions: Transform

● Some useful tranformations – continued:

– addargs(m,n); replaces args from m to n with their sum

– mulargs(m,n); replaces args from m to n with their product

– dedup(m,n); removes duplicate args in the range, keeping the first

– replace(m,n)=(rules); this is a replacement transformation which is
applied to the range from m to n according to the replacement rules.
The rules are a list of pairs where the first element shows what to replace,
and the second element what to insert, such as (x,y,a,b,1,2).
The rules allow simple replacement of generic arguments, which are
denoted by the special variables xarg_, iarg_, parg_, and farg_, such
as (xarg_,xarg_+2,parg_,2*parg_), which will replace scalarlike
arguments by their sum with 2, and vectorlike arguments by their product
by 2. Note that iarg_ and farg_ do not seem to work at the moment!
Replacements are done only once, and they also allow mixing of types
(e.g., a symbol can be replaced by a vector etc).

[Example file: transform.frm]

Manipulate Functions: Arguments
● argument;

…
endargument;

● As already discussed, this environment allows one to work (i.e., apply identify
statements) at the level of function arguments

● Similarly to symmetrization statements, one can restrict the scope of this
statement:
argument; applies to all arguments of all functions
argument 2; applies to second arguments of all functions
argument f; applies to function f
argument f,5,7; applies to arguments 5 and 7 of function f
argument {f,g,h}; applies to functions f, g, h
argument setfun,1,3; applies to functions that enter set setfun,
 their arguments 1 and 3

● The last four patterns can repeat as many times as needed:
argument 2,f,1,{F,G,H},3,4,g,5; applies to second arguments of
all functions, the first argument of f, arguments 3 and 4 of F, G, and H, and
argument 5 of g

[Example file: argument.frm]

Manipulate Functions: Chain In/Out

● chainin f;
collects products of f with different arguments into a single instance of f with
many arguments, is equivalent to, but much faster than
repeat;
id f(a?)*f(b?) = f(a,b);
endrepeat;

● chainout f;
does the opposite to chainin f, is equivalent to, but much faster than
repeat;
id f(a?,b?,?c) = f(a) * f(b,?c);
endrepeat;

Functions: Commuting Sets

● As we discussed before, functions or tensors can be declared non-commuting
and commuting, and the default situation is that non-commuting functions or
tensors do not commute with any other non-commuting functions or tensors

● Sometimes this is not what we want; the default behaviour can be changed by
the statement commuteinset:
functions f, g, h, F, G, H;
commuteinset {f,g,h},{F,G,H},{F,F};

● Non-commuting functions or tensors specified in a set in the commuteinset
statement will commute with other functions from the same set

● Note that in order to make a function commute with itself (which is not
necessarily the case for non-commuting functions of different arguments) it
has to be specified twice within the same set. Note also that a function can
appear in more than one set

Manipulate Expressions and Terms

● Here we will consider the details of some statements that allow one to
manipulate expressions either as a whole or on a term-by-term basis. Some of
these statements have already been encountered

– Global expr = something; defines a global expression
Global expr; makes existing local expression expr global

– Local expr = something; defines a local expression
Local expr; makes existing global expression expr local

– drop expr1, expr2, ...; removes expressions from the list from
the system (they can still be used in the rhs of statements such as
Global expr3 = expr1). After the end of the current module these
expressions are eliminated completely. If the list of expressions is empty,
all previously defined expressions are removed.

– ndrop expr1, expr2, ...; cancels the previous instructions to drop
the listed expressions (or all expressions if the list is empty)

Manipulate Expressions and Terms

– skip expr1, expr2, ...; skips listed expressions (or all
expressions if the list is empty) from the current module. The skipped
expressions are not affected by the module statements but can be used in
the rhs of assignments.

– nskip expr1, expr2, ...; cancels the previous instructions to skip
the listed expressions (or all expressions to be skipped if the list is empty)

– hide expr1, expr2, ...; hides listed expressions (or all
expressions if the list is empty). The hidden expressions are inactive until
they are restored by the unhide statement, but can be used in the rhs of
assignments

– unhide expr1, expr2, ...; unhides listed expressions (or all
hidden expressions if the list is empty)

– nhide/nunhide expr1, expr2, ...; work in analogy to nskip
and cancel the instructions to hide/unhide the listed (or all affected)
expressions

Manipulate Expressions and Terms

– term;
statements;
endterm;
This environment allows one to work with separate terms [in expressions]
as if they were expressions themselves, i.e., simplify and sort terms on
their own. Only executable statements (and the term-by-term print
statement, to be considered in the next lecture) are allowed inside, and the
sorting is done with a special instruction sort (not to be confused with the
.sort end-of-module statement)

– multiply [left/right] expr; Multiplies all terms on the left or on
the right by the specified expression (either given explicitly or an existing
one). The option left/right can be omitted, but the corresponding result, in
case of non-commuting objects, can depend on many things, so it is better
to specify this option unless there are only commuting objects

Manipulate Expressions and Terms

– inside $var1, $var2, ...;
statements
endinside;
This environment is similar to the term;...endterm; statement, and it
allows one to work with the listed $-variables separately. Only executable
statements are allowed inside. Note that the $-variables are treated one by
one, so that their values change such that, e.g., $var2 uses $var1, the
new value of $var1 will be substituted in $var2, but if $var1 uses
$var2, the latter will be substituted with the old value

– discard; This statement discards the current term; it can be useful in,
e.g., conditional instructions such as
if (count(x,1) > 3) discard;
which discards all terms with power of x greater than 3.

