
Computer Algebra for Feynman Graphs

6.

In this Lecture

● $-variables
● Flow control at the level of the compiler: if, repeat, while, do

Variables in FORM: $-variables

● As we saw previously, there are two main types of variables in FORM:

– Algebraic variables: expressions and objects that enter there (symbols,
indices, vectors, etc.), are manipulated on by the compiler during
execution

– Preprocessor variables: string variables, used by the preprocessor to
prepare input for the compiler

● Dollar variables ($-variables) are something in-between the first two types,
they can be assigned and used both by the compiler and the preprocessor

● A valid name for a $-variable starts with a $ sign, followed by a letter, the rest
can be alphanumeric characters:
$a, $b14, $aaa1, …

● $-variables do not have to be declared, however, they should be assigned,
i.e., given a value, before they are used (FORM will complain otherwise,
although this will not be an error)

● They are stored in memory so should be kept small

$-variables: What Can It Be?

● The following can be stored in a $-variable:

– An algebraic expression: $expr = (x+y)^4;

– An individual object such as symbol, index, vector, function, etc.

– Parts of a term (treated as a special case of an algebraic expression;
example below)

– Argument field of a function (example below)

● FORM will try to convert between these different types (except from argument-
field-like variables), depending on how the $-variable is used

● If a $-variable is used in a way that should not be possible, e.g., a variable
whose value is a vector used where a symbol is expected, this will produce an
error

● $-variables cannot have arguments (as opposed to preprocessor variables)

$-variables: Assignment

● Assigning a $-variable can proceed in a few ways, some of which can be quite
useful:

– At the preprocessor level analogously to preprocessor variables:
#$x = something;
The r.h.s. can be any algebraic expression, it also can contain $-variables
and local/global expressions

– During execution in a similar statement:
$x = something;
Here, the r.h.s. can again be any valid algebraic expression; it is evaluated
by the compiler and the result is assigned to $x. Note that existing values
are overwritten – in contrast to what happens with preprocessor variables

– During execution a $-variable can be assigned the value of a wildcard:
id f(x?$y) = something;
In this case, the $-variable $y takes the value of the function argument
that matches the wildcard x?. If there are several matches, $y keeps the
value of the last match after the id statement is executed. Note the order
can be implementation dependent!

[Example file: dollar_vars.frm]

$-variables: Wildcards

● The last way to assign $-variables, i.e., using them in wildcarcs, can be quite
useful, for instance, one can see what exactly generated a match to the
wildcard – very handy in debugging

● In general, $-variables can be attached to any wildcards:

– id f?$x1(x?$x2) * y$x3 = something;
In this example $x1, $x3, and $x3 will take the values of those f, x, and y
that matched the wildcards

– id f(?a$x4) = something;
Here, $x4 will become the argument field of the function that generated
the match. It can be used from that point on in assignments like
Local expr = g($x4)

– id f(x?set{a,b,c}$x5) = something;
This is an example of how a $-variable is attached to a wildcard with a
restriction

[Example file: dollar_vars.frm]

$-variables in Wildcards: Examples

symbol a, b, c, x, y, z;
functions f, g, h;
Local expr = f(x) * y + g(x) * a;

id f?$x1(x?$x2) * y?$x3 = g(f(x)) * h(y);

print "Matched wildcard: {f,x,y} = {%$, %$, %$}", $x1, $x2, $x3;
print;

The output will be

Matched wildcard: {f,x,y} = {f, x, y}
Matched wildcard: {f,x,y} = {g, x, a}

expr =
 g(f(x))*h(y) + g(g(x))*h(a);

[Example file: dollar_vars.frm]

This is a special version of
the print statement (to be
discussed in detail later, see
Lecture 8) that prints values
term-by-term during execution

We can see what triggered the
matches of each wildcard,
term-by-termThe values of $x1, $x2, and $x3 at this point are

g, x, and a, as is easy to check by printing them
out (note that one needs a .sort to close this module)
before printing the $-variables again

$-variables in Wildcards: Examples

Local expr=f(x,y,z)+g(x + 1, 2 * y + 3 * z)+h(a * x^2, b, c, x);
id f?(?a$x4) = f(?a) * g(?a);
print "Matched wildcard: ?a = %$", $x4;

This will print

Matched wildcard: ?a = x,y,z
Matched wildcard: ?a = 1 + x,3*z + 2*y
Matched wildcard: ?a = a*x^2,b,c,x

Local expr = (a * x + b)^5;
id x?{x}$x1^a?$x2 = f($x1)^$x2;
print "Matched wildcard: %$^%$", $x1, $x2;

The printout is

Matched wildcard: x^5
Matched wildcard: x^4
Matched wildcard: x^3
Matched wildcard: x^2
Matched wildcard: x^1
Matched wildcard: x^1

[Example file: dollar_vars.frm]

This is also an example of a
$-variable taking the value of
the argument field of a function

And this is also an example of a $-variable
taking the value of a part of a term
in an expression. Note again that the
printout is generated also for the terms
that do not match the wildcard

$-variables: Usage

● A $-variable can be used as

– A preprocessor variable, referred to by enclosing it in `’: `$x1’. In this
case, the current (at the point where it is referred to) value of the variable
is turned into a string, which is then operated by the preprocessor

– An expression in an executable statement, such as id x = y + $z or
Local expr = $expr0

– An algebraic object in an executable statement, such as
id f(x?) = g(x,$y); here, $y can be anything but an expression
(e.g., a symbol or an argument field)

● Note that substitutions where $-variables appear in patterns in the l.h.s., e.g.,
id f($x) = something are delayed substitutions, i.e., they are evaluated
for each term at runtime when the identification takes place. One can prevent
this behaviour and use the “current” value by using the $-variable as a
preprocessor variable instead: id f(`$x’) = something

● An important feature of $-variables is that they can be factorized in FORM.
The only other type of object that can be factorized is expressions.

Flow Control: Compiler

● We previously considered how the programming flow control (and procedural
programming) are implemented at the level of the FORM preprocessor, in
particular, the #do cycle, and the conditional #if statement

● The preprocessor loops/conditionals are generally quick, which follows from
the fact that no calculations are done at this level (apart from simple
arithmetic). On the other hand, this also means that the preprocessor cannot
take decisions based on the information about the expression (more precisely,
about the current term). Such decisions have to be made at the level of the
compiler

● FORM has flow control structures implemented at the level of compiler, too.
We will consider the following environments: do, repeat, while, if.

Repeat

● We have already encountered the simplest cycle realised at the level of
compiler
repeat;
statements;
endrepeat;

● This cycle continues while something is done on the active expressions by the
statements inside (even if the expressions are left unchanged in the end)

● Note that FORM allows one to insert end-of-module instructions inside of the
cycle; this can be very useful, e.g., when one calculates something recursively,
so that one can drop expressions calculated at previous steps:
repeat;
$i = $i+1;
Local expr`$i’ =expr{`$i’-1} + expr{`$i’-2};
drop expr{`$i’-3};
.sort
endrepeat; [Example file: fibonacci.frm]

Do

● The do cycle has the following syntax
do $i = min, max, {increment};
statements;
enddo;

● The loop counter has to be a $-variable, and it, as well as the other
parameters, is evaluated at runtime. All of them have to evaluate to integers

● The cycle runs term-by-term

● Note that the evaluation at runtime slows down the execution, which means
that the preprocessor #do cycle will usually be more efficient

● Some manipulations, however, are not possible without evaluation, e.g.,
id f(y?$x) = g(y);
do $i = 0, count_(x,1);

id $x = $x * g(y);
enddo;
Here $x and the power of x in the current term are evaluated at runtime and
can be different for each term, so this cannot be realized in the preprocessor

[Example file: compiler_do.frm]

If

● The syntax of the if statement is standard and very similar to other
programming languages:
if (condition) statement
or
if (condition);
statements;
elseif (condition);
statements;
…
else;
statements;
endif;

● The conditions can be quite complex, but have to be built of simple numerical
comparison blocks, such as, e.g., ($i <=5), where the $-variable has to
evaluate to a numerical value

● There are several functions that can be used in the conditions to check
information about the current term and get one of the numerical arguments in
these numerical comparison blocks

In the first variant, only one statement
follows the condition operator, and there
is no semicolon in the end

In the second variant, at least
the endif is necessary; both elseif
and else are optional

The conditions have to be included
in brackets

If – Conditions

● count(x,n)
Here, x is a variable (allowed: symbols, dotproducts, functions, vectors), n
is the weight (an integer number, can be positive or negative).
The function returns the power of the variable x with the weight n.
Several options are allowed for vectors, such as
count(p+vdf?set,n),
where the presence of each of the options (each of them can be omitted)
means:
v: loose vectors with an index are taken into account;
d: vectors inside dotproducts are taken into account;
f: vectors inside tensors are taken into account;
?set: a set of functions; vectors inside those functions (assumed to be linear
in a given vector) are taken into account
The default options are +vdf.

[Example file: compiler_if.frm]

If – Conditions

● match(options,pattern)
Here, the argument is any valid l.h.s. of the identify statement, with
possible options such as once, only, etc. The function returns the number
of matches that is produced by the pattern in the current term

● expression(list of expressions)
Here, the argument is a list of expressions, and the function returns 1 (0) if the
current term belongs (does not belong) to any of the expressions in the list

● occurs(list of variables)
Here, the argument is a list of variables, and the function returns 1 (0) if any
variable from the list occurs (does not occur) in the current term, including
inside function arguments

● multipleof(natural number)
When this object is compared with another number (e.g., the result of
evaluation of something), and that number is a multiple of the argument of this
function, the two numbers match

● coefficient
Represents the numerical coefficient of the current term

[Example file: compiler_if.frm]

While

● The syntax of the while loop is
while (condition) statement;
or
while (condition);
statements;
endwhile;

● This cycle is similar to the repeat...endrepeat environment, whereas the
condition works in the same way as that of if … endif.

● The operation here is again term-by-term, so for each term that reaches the
while (condition) part, the condition is checked, if it is matched, the
statements inside are executed, and when the endwhile is reached, the
control is transferred to the while (condition) line again. If the condition
is not met by the current term, statements after the endwhile are executed.

[Example file: while.frm]

