Practice Exam
 Theoretical Physics 6a (QFT): WS 2017-2018
 Lecturer : Prof. M. Vanderhaeghen

Exercise 1. Vector + Pseudoscalar (70 points)

Consider the following Lagrangian:
$\mathcal{L}=\underbrace{\left(\partial_{\mu} \pi^{\dagger}\right)\left(\partial_{\mu} \pi\right)-m_{\pi}^{2} \pi^{\dagger} \pi+\frac{1}{2} W_{\mu \nu} W^{\mu \nu}-m_{\rho}^{2} \rho_{\mu} \rho^{\mu}}_{\mathcal{L}_{\text {free }}}+\underbrace{i g_{\rho \pi \pi} \rho^{\mu}\left(\pi^{\dagger} \partial_{\mu} \pi-\pi \partial_{\mu} \pi^{\dagger}\right)}_{\mathcal{L}_{\mathrm{I}}}$
where $W_{\mu \nu}=\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}$ and the real field ρ^{μ} corresponds to the neutral vector meson ρ, where $\pi\left(\pi^{\dagger}\right)$ are the pseudoscalar meson fields which absorb the charged pions $\pi^{-}\left(\pi^{+}\right)$.
(a)(15 points) Using the free Lagrangian $\left(\mathcal{L}_{\text {free }}\right)$ write down the equation of motion and the Noether current for the fields, considering the global transformation $e^{-i \theta}$.
(b)(15 points) Determine the propagators of the particles in the momentum space.
(c)(20 points) For the Dyson expansion of S-Matrix at the second order $(\mathrm{n}=2)$ in $g_{\rho \pi \pi}$, calculate the S-matrix elements and its respective diagrams.
(d)(20 points) Using the result obtained in the previous item, calculate the total cross section for the elastic collision of $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$.

Exercise 2. Renormalization Scalars (30 points)

Consider now the $\lambda \phi^{4}$ theory, with the following interaction Lagrangian

$$
\begin{equation*}
\mathcal{L}_{I}=-\frac{\lambda}{4!} \phi^{4} . \tag{2}
\end{equation*}
$$

(a)(20 points) Using the Feynman rules and the $\overline{\mathrm{MS}}$ scheme, calculate the one-loop diagram, for a $2 \rightarrow 2$ process for the s-channel, that is, $s \equiv\left(p_{1}+p_{2}\right)^{2} \geq 4 m_{\pi}^{2}$
(b)(10 points) With this result, one can resum the lowest order diagram through a geometric series. Calculate the β-function at leading order when this sum is truncated in second order $(n=1)$. From this result of beta function what one can say about the behavior of the coupling?

