Exercise sheet 7
 Theoretical Physics 6a (QFT): WS 2017-2018
 Lecturer : Prof. M. Vanderhaeghen

11.12.2017

Exercise 1. (40 points) : Wick's Theorem

In the proof of Wick's theorem, we need the evaluation of the following commutator:

$$
\begin{equation*}
\left[\phi_{1}^{+}, N\left(\phi_{2} \phi_{3}\right)\right]_{-}=N\left(\phi_{1} \phi_{2} \phi_{3}\right)+N\left(\phi_{2} \phi_{1} \phi_{3}\right) . \tag{1}
\end{equation*}
$$

where we have defined $\phi_{i} \equiv \phi\left(x_{i}\right)$, and where ϕ_{i}^{+}stands for the positive frequency part (annihilation part) in the field ϕ_{i}. Prove the above identity. Hint: Start by explicitly splitting the fields ϕ_{2} and ϕ_{3} into positive and negative frequency parts.

Exercise 2. (60 points) : Scalar $2 \rightarrow 4$ scattering

Considering the interaction Lagrangian for scalar fields

$$
\begin{equation*}
\mathcal{L}_{1}=-\frac{\lambda}{4!} \phi^{4}, \tag{2}
\end{equation*}
$$

and the Dyson Expansion of S-Matrix:

$$
\begin{equation*}
S=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int d^{4} x_{1} \cdots \int d^{4} x_{n} T\left\{\mathcal{H}_{1}\left(x_{1}\right) \cdots \mathcal{H}_{1}\left(x_{n}\right)\right\} \tag{3}
\end{equation*}
$$

Calculate the second order $(n=2)$ S-matrix element for a process of 2 initial
bosons (of momenta p_{1} and p_{2}) going to 4 final ones (of momenta p_{3}, p_{4}, p_{5} and p_{6}) and draw the diagrams which arise from it (at least 2 re-orderings of the external fields).

