Exercise sheet 6 Theoretical Physics 6a (QFT): WS 2017-2018 Lecturer : Prof. M. Vanderhaeghen

04.12.2017

Exercise 1. (60 points) : Scalar Quantum Electrodynamics

(a) (30 points) Consider the Lagrangian for the charged Klein-Gordon Field

$$\mathcal{L} = (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi \tag{1}$$

- Check that this Lagrangian is not invariant under U(1) gauge transformation of the form $\phi(x) \rightarrow \phi'(x) = e^{i\alpha(x)}\phi(x)$;
- Replace the derivatives by the convariant one $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ and check whether now the Lagrangian is invariant under the local symmetry;
- Write down the interaction Lagrangian and identify the terms. Sketch each one as a different diagrams;

(b)(30 points) For the free charged KG-Lagrangian in equation (1), calculate the conserved current and the conserved charge for a Lorentz boost along the x-axis.

Hint: Use the Lorentz transformation with generator derived in the previous exercise sheet.

Exercise 2. (40 points) : Gauge transformation

Consider a state $|\Psi_T\rangle$ which only contains transverse photons. Futhermore, construct a state $|\Psi_T'\rangle$ as:

$$|\Psi_T'\rangle = \left\{1 + \alpha \left[a^{\dagger}(\vec{k}, 3) - a^{\dagger}(\vec{k}, 0)\right]\right\} |\Psi_T\rangle,$$

with α a constant. Show that replacing $|\Psi_T\rangle$ by $|\Psi_T'\rangle$ corresponds to a gauge transformation:

$$\langle \Psi_T' | A^\mu(x) | \Psi_T' \rangle = \langle \Psi_T | A^\mu(x) + \partial^\mu \Lambda | \Psi_T \rangle,$$

where Λ is given by:

$$\Lambda(x) = \operatorname{Re}\left(i\alpha \frac{\sqrt{2}}{\omega_k^{3/2}} e^{-ik \cdot x}\right).$$