Exercise sheet 3
 Theoretical Physics 6a (QFT): WS 2017-2018
 Lecturer : Prof. M. Vanderhaeghen

13.11.2017

Exercise 1 (40 points) : Dirac Field

The Free Dirac Lagrangian is

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi
$$

where the normal mode expansion for the fields are

$$
\begin{aligned}
\psi(x) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}} \sum_{s}\left\{a(\vec{k}, s) u(\vec{k}, s) e^{-i k x}+b^{\dagger}(\vec{k}, s) v(\vec{k}, s) e^{i k x}\right\} \\
\bar{\psi}(x) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}} \sum_{s}\left\{b(\vec{k}, s) \bar{v}(\vec{k}, s) e^{-i k x}+a^{\dagger}(\vec{k}, s) \bar{u}(\vec{k}, s) e^{i k x}\right\}
\end{aligned}
$$

(a)(5 points) Show that the sum of the spinors can be written as

$$
\begin{aligned}
& \sum_{s= \pm 1 / 2} u(\vec{k}, s) \bar{u}(\vec{k}, s)=\not p+m \\
& \sum_{s= \pm 1 / 2} v(\vec{k}, s) \bar{v}(\vec{k}, s)=\not p-m
\end{aligned}
$$

(b)(5 points) Considering

$$
\left[a(\vec{k}, s), a^{\dagger}\left(\vec{k}^{\prime}, s^{\prime}\right)\right]_{+}=\left[b(\vec{k}, s), b^{\dagger}\left(\vec{k}^{\prime}, s^{\prime}\right)\right]_{+}=(2 \pi)^{3} \delta^{(3)}\left(\vec{k}-\vec{k}^{\prime}\right) \delta_{s s^{\prime}}
$$

and the other combinations zero, show that

$$
\left[\psi_{a}(x), \psi_{b}^{\dagger}\left(x^{\prime}\right)\right]_{+}=\delta^{(3)}\left(x-x^{\prime}\right) \delta_{a b} \quad\left[\psi_{a}(x), \psi_{b}\left(x^{\prime}\right)\right]_{+}=\left[\psi_{a}^{\dagger}(x), \psi_{b}^{\dagger}\left(x^{\prime}\right)\right]_{+}=0
$$

(c)(10 points) Show that the momentum operator is

$$
P=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s} \vec{k}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)+b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\}
$$

(d)(10 points) Show that the conserved charge is

$$
Q=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)-b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\}
$$

and explain the meaning of the relative minus sign in the expression above.
(e)(10 points) Show that if the Dirac field were quantized according to the Bose-Einstein statistics, that is, through commutators as for the KleinGordon field, one would get the following Hamiltonian:

$$
H=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s} E_{\vec{k}}\left\{a^{\dagger}(\vec{k}, s) a(\vec{k}, s)-b^{\dagger}(\vec{k}, s) b(\vec{k}, s)\right\}
$$

and explain why this would lead to unphysical results for the energy spectrum.

Exercise 2. (30 points) : Weyl representation

In the standard Dirac representation, Dirac matrices have the form

$$
\gamma_{s}^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \vec{\gamma}_{s}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right)
$$

while in the so-called Weyl representation, they have the form

$$
\gamma_{W}^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

with $\sigma^{\mu}=(1, \vec{\sigma})$ and $\bar{\sigma}^{\mu}=(1,-\vec{\sigma})$.
(a)(10 points) Write down a unitary matrix S connecting both representations $\gamma_{s}^{\mu}=S \gamma_{W}^{\mu} S^{-1}$.
(b)(10 points) Write the γ_{5} matrix in both representations.
$(\mathbf{c})\left(10\right.$ points) In the Weyl representation with $\psi=\binom{\psi_{L}}{\psi_{R}}$, show that the bispinors ψ_{L} and ψ_{R} are independent for massless particles, and write down the eigenstates of the chirality operator γ_{5} with their corresponding eigenvalues.

Exercise 3. (30 points) : Axial current

For a Dirac field, the transformations

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha \gamma_{5}} \psi(x), \quad \psi^{\dagger}(x) \rightarrow \psi^{\dagger^{\prime}}(x)=\psi^{\dagger}(x) e^{-i \alpha \gamma_{5}}
$$

where α is here an arbitrary real parameter, are called chiral phase transformations.
(a)(15 points) Show that the Dirac Lagrangian density $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi$ is invariant under chiral phase transformations in the zero-mass limit $m=0$ only, and that the corresponding conserved current in this limit is the axial vector current $J_{A}^{\mu} \equiv \bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x)$.
(b)(15 points) Deduce the equations of motion for the fields

$$
\psi_{L}(x) \equiv \frac{1}{2}\left(\mathbb{1}-\gamma_{5}\right) \psi(x), \quad \psi_{R}(x) \equiv \frac{1}{2}\left(\mathbb{1}+\gamma_{5}\right) \psi(x)
$$

for non-vanishing mass, and show that they decouple in the limit $m=0$.

Hence, the Lagrangian density $\mathcal{L}=i \bar{\psi}_{L} \not \partial \psi_{L}$ describes massless fermions with negative helicity and massless anti-fermions with positive helicity only. This field is called the Weyl field and can be used to describe the neutrinos as far as the latter can be considered as massless.

