Exercise sheet 2 Theoretical Physics 6a (QFT): WS 2017-2018 Lecturer : Prof. M. Vanderhaeghen

6.11.2017

Exercise 1 (60 points) : Complex Klein-Gordon field

The complex Klein-Gordon field is used to describe charged bosons. Its Lagrangian is given by

$$\mathcal{L} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - m^{2}\phi^{\dagger}\phi, \qquad (1)$$

where the field ϕ has the following normal mode expansion

$$\phi(\vec{x},t) = \int \frac{d^3\vec{k}}{(2\pi)^3} \frac{1}{\sqrt{2E_{\vec{k}}}} \left[a(\vec{k}) e^{-ik\cdot x} + b^{\dagger}(\vec{k}) e^{ik\cdot x} \right]$$

and satifies the equal-time commutation relations

$$\begin{bmatrix} \phi(\vec{x},t), \Pi_{\phi}(\vec{x}',t) \end{bmatrix} = i \,\delta^{(3)}(\vec{x}-\vec{x}'), \\ \begin{bmatrix} \phi^{\dagger}(\vec{x},t), \Pi_{\phi^{\dagger}}(\vec{x}',t) \end{bmatrix} = i \,\delta^{(3)}(\vec{x}-\vec{x}'),$$

all other commutators vanishing. In the following, you can conveniently consider the fields ϕ and ϕ^{\dagger} as independent.

(a)(15 points) Show that (1) is equivalent to the Lagrangian of two independent real scalar fields with same mass and satisfying the standard equal-time commutation relations. *Hint*: Decompose the complex field in real components $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$. (b)(15 points) Write down the conjugate momentum fields Π_{ϕ} and $\Pi_{\phi^{\dagger}}$ in terms of ϕ and ϕ^{\dagger} , and derive the equal-time commutation relations of a, a^{\dagger} , b and b^{\dagger} .

(c)(15 points) Show that (1) is invariant under any global phase transformation of the field $\phi \to \phi' = e^{-i\alpha}\phi$ with α real. Write down the associated conserved Noether current J^{μ} and express the conserved charge $Q = \int d^3x J^0$ in terms of creation and annihilation operators.

(d)(15 points) Compute the commutators $[Q, \phi]$ and $[Q, \phi^{\dagger}]$. Using these commutators and the eigenstates $|q\rangle$ of the charge operator Q, show that the field operators ϕ and ϕ^{\dagger} modify the charge of the system. How would you interpret the operators a, a^{\dagger}, b and b^{\dagger} ?

Exercise 2 (40 points) : Klein-Gordon Propagator

(a)(10 points) Calculate the Feynman propagator of the complex Klein-Gordon field,

$$i\Delta_F(x-y) = \langle 0 | T[\phi(x)\phi(y)] | 0 \rangle.$$

Express the final result in momentum space.

(b)(10 points) Explain the sign of $i\epsilon$ using contour deformation in the complex k^0 plane.

(c)(10 points) What physically would it mean if the sign of $i\epsilon$ was the opposite of the chosen one?

(d)(10 points) Evaluate the spacelike Klein-Gordon propagator, i.e. for $(x - y)^2 < 0$, explicitly in terms of Bessel functions.

(Bonus)

(e)(20 points) Can the Klein-Gordon field be a one-particle wave-function?