Exercise sheet 2
 Theoretical Physics 6a (QFT): WS 2017-2018
 Lecturer : Prof. M. Vanderhaeghen

6.11.2017

Exercise 1 (60 points) : Complex Klein-Gordon field

The complex Klein-Gordon field is used to describe charged bosons. Its Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi \tag{1}
\end{equation*}
$$

where the field ϕ has the following normal mode expansion

$$
\phi(\vec{x}, t)=\int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}}\left[a(\vec{k}) e^{-i k \cdot x}+b^{\dagger}(\vec{k}) e^{i k \cdot x}\right]
$$

and satifies the equal-time commutation relations

$$
\begin{aligned}
{\left[\phi(\vec{x}, t), \Pi_{\phi}\left(\vec{x}^{\prime}, t\right)\right] } & =i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right) \\
{\left[\phi^{\dagger}(\vec{x}, t), \Pi_{\phi^{\dagger}}\left(\vec{x}^{\prime}, t\right)\right] } & =i \delta^{(3)}\left(\vec{x}-\vec{x}^{\prime}\right),
\end{aligned}
$$

all other commutators vanishing. In the following, you can conveniently consider the fields ϕ and ϕ^{\dagger} as independent.
(a)(15 points) Show that (1) is equivalent to the Lagrangian of two independent real scalar fields with same mass and satisfying the standard equal-time commutation relations. Hint: Decompose the complex field in real components $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$.
(b)(15 points) Write down the conjugate momentum fields Π_{ϕ} and $\Pi_{\phi^{\dagger}}$ in terms of ϕ and ϕ^{\dagger}, and derive the equal-time commutation relations of a, a^{\dagger}, b and b^{\dagger}.
(c)(15 points) Show that (1) is invariant under any global phase transformation of the field $\phi \rightarrow \phi^{\prime}=e^{-i \alpha} \phi$ with α real. Write down the associated conserved Noether current J^{μ} and express the conserved charge $Q=\int d^{3} x J^{0}$ in terms of creation and annihilation operators.
(d)(15 points) Compute the commutators $[Q, \phi]$ and $\left[Q, \phi^{\dagger}\right]$. Using these commutators and the eigenstates $|q\rangle$ of the charge operator Q, show that the field operators ϕ and ϕ^{\dagger} modify the charge of the system. How would you interpret the operators a, a^{\dagger}, b and b^{\dagger} ?

Exercise 2 (40 points) : Klein-Gordon Propagator

(a)(10 points) Calculate the Feynman propagator of the complex KleinGordon field,

$$
i \Delta_{F}(x-y)=\langle 0| T[\phi(x) \phi(y)]|0\rangle .
$$

Express the final result in momentum space.
(b)(10 points) Explain the sign of $i \epsilon$ using contour deformation in the complex k^{0} plane.
(c)(10 points) What physically would it mean if the sign of $i \epsilon$ was the opposite of the chosen one?
(d)(10 points) Evaluate the spacelike Klein-Gordon propagator, i.e. for $(x-y)^{2}<0$, explicitly in terms of Bessel functions.
(Bonus)
(e)(20 points) Can the Klein-Gordon field be a one-particle wave-function?

