Exercise sheet 4
 Theoretical Physics 6a (QFT): WS 2017-2018
 Lecturer : Prof. M. Vanderhaeghen

20.11.2017

Exercise 1. (50 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π, physical quantities must be bilinears in ψ, so that physical quantities turn into themselves after a rotation over 2π. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector);
- $\Gamma_{T}^{\mu \nu}=\sigma^{\mu \nu} \equiv \frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ (tensor).

Without referring to any explicit representation for the Γ matrices,
(a)(10 points) show that $\Gamma^{2}= \pm \mathbb{1}$.
(b)(10 points) show that for any Γ except Γ_{S}, we have $\operatorname{Tr}[\Gamma]=0$. Hint: show first that for any Γ except Γ_{S}, there always exists a Γ^{\prime} such that $\left\{\Gamma, \Gamma^{\prime}\right\}=0$.
(c)(10 points) check that the product of 2 different Γ 's is proportional to some Γ different from Γ_{S};
(d) (10 points) show that the Γ 's are linearly independent, i.e. $\sum_{i} a_{i} \Gamma_{i}=$ $0 \Leftrightarrow a_{i}=0$.
(e) (10 points) and using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=S(a) \psi(x)$ with $x^{\prime \mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check that the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \psi, \bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=$ $a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$ and $\bar{\psi}^{\prime} \sigma^{\mu \nu} \psi^{\prime}=a^{\mu}{ }_{\rho} a^{\nu}{ }_{\sigma} \bar{\psi} \sigma^{\rho \sigma} \psi$.

Exercise 2. (50 points) : Fierz Transformation

(a)(10 points) Normalize the 16 matrices Γ^{A} to the convention

$$
\operatorname{tr}\left[\Gamma^{A}, \Gamma^{B}\right]=4 \delta^{A B}
$$

This gives $\Gamma^{A}=\left\{1, \gamma^{0}, i \gamma^{j}, \ldots\right\}$; write all 16 elements of this set.
(b)(20 points) Write the general Fierz identity as an equation

$$
\begin{equation*}
\left(\bar{u}_{1} \Gamma^{A} u_{2}\right)\left(\bar{u}_{3} \Gamma^{B} u_{4}\right)=\sum_{C, D} C_{C D}^{A B}\left(\bar{u}_{1} \Gamma^{C} u_{4}\right)\left(\bar{u}_{3} \Gamma^{D} u_{2}\right) \tag{1}
\end{equation*}
$$

with unknown coefficients $C_{C D}^{A B}$. Using the completeness of the $16 \Gamma^{A}$ matrices, show that

$$
\begin{equation*}
C_{C D}^{A B}=\frac{1}{16} \operatorname{tr}\left[\Gamma^{C} \Gamma^{A} \Gamma^{D} \Gamma^{B}\right] \tag{2}
\end{equation*}
$$

(c)(20 points) Work out explicitly the Fierz transformation laws for the products $\left(\bar{u}_{1} u_{2}\right)\left(\bar{u}_{3} u_{4}\right)$ and $\left(\bar{u}_{1} \gamma^{\mu} u_{2}\right)\left(\bar{u}_{3} \gamma_{\mu} u_{4}\right)$.

