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In this Lecture

● Structure of a FORM program: blocks (modules), their structure, types of 
module instructions

● Substitutions, pattern matching



Structure of a FORM Program

● Before we continue with pattern matching, let us briefly consider the structure 
of a FORM program and how FORM executes it

● A program consists of separate blocks – modules

● These blocks are run one by one in the following sequence:

– the code is run through the preprocessor; it prepares the code, 
transforming preprocessor directives (such as preprocessor variables, 
loop and conditional structures, and so on – we will discuss some of them 
later) into compiler-recognizable statements;

– the compiler translates the resulting code into executable instructions 
(machine code)

– when the compiler encounters an end-of-module statement, it stops, and 
the calculations are executed

– the resulting expressions are sorted and (if needed) are printed, stored, 
and used as input in the subsequent module



NB: FORM Does Local Transformations

● FORM represents the expressions that it works with as lists of terms

● All instructions are executed term-by-term: the transformations are applied to 
one single term in an expression at a time, so FORM works locally

● This explains why substitutions where the left-hand side is not a monomial 
(i.e., not a single term) are not allowed:

id a + b = c                                                    this is just non-local!

● This also means that FORM cannot do factorization and other non-local 
transformations

● The representation of expressions as lists differs from what is done in, e.g., 
Mathematica where expressions are essentially trees (with many levels 
[branching points]); this is what makes FORM so fast!



Modules: Structure

● Modules generally consists of several sections, going in the following order:

– Declarations (variables: vectors, indices, symbols, functions etc.; 
instructions on how to handle statistics [names, generated symbols etc.])

– Specifications (instructions on how to handle existing expressions)

– Definitions (introduce new expressions)

– Executable part (operations on expressions)

– Output specifications (formatting output)

– Output statements (e.g., print/save the results)

● The order is strict, i.e., no statements from one of these categories can come 
after statements from subsequent categories
                                                              [Example file: Module_Structure_1.frm]

● Each module ends with one of the module instructions: .sort, .end, .clear, or 
.store.



FORM Program
Module 1

Declarations
Specifications 
Definitions
Executable part
Output specifications
Output statements

...

Module 2

Declarations
Specifications 
Definitions
Executable part
Output specifications
Output statements



Module Instructions: Types

● .sort                     [Example file: Module_Instructions_1.frm]

– Processes all active expressions and prepares them (sorts) as input for 
the next module

● .end

– Processes all active expressions and terminates FORM

● .clear

– Processes all active expressions, and clears buffers except the main input 
(as if FORM started from this point in the program)

● .store

– Processes all active expressions, stores global expressions in a storage 
file, removes all local expressions and all declarations (except for those 
that were specified before the .global instruction)

● .global

– Saves declarations made before its occurrence from being deleted by 
the .store instruction



Notes: Usage of Module Instructions: 

● .sort                     [Example file: Module_Instructions_1.frm]

– Inserting it in the code can be very useful: since it results in a sorted 
(=shorter) expression, it can greatly reduce the number of generated 
terms; on the other hand, sorting takes time, so excessive use of it may 
slow the code down instead of speeding it up. Use try and error here!

● .end

– Quite obvious: it terminates the program. Every FORM program should 
end with this statement (otherwise it is generated automatically as FORM 
encounters the end of the input file, along with an error message)

● .store

– Global expressions that have been stored are no longer active, but can be 
used in assignments in the r.h.s., e.g., Local expr = storedexpr;

● .global

– Can be useful when some of the definitions of symbols etc. need to be 
carried over to the next module after .store is executed



Substitutions

● Recall the identification statement
identify something = [something else];

● It replaces the term that is in the lhs by the rhs

● It does so only once to a single term in an expression (so that it does not 
operate on the result of its application), term by term

● Consequently, it can be applied to monomial terms (≈products of objects) only:
id x * a * b * z = w; id b=b^2;      both work fine
id x + y = z;                                           results in an error

● Numerical factors are not allowed either:
id 2 * x = y;                                                              won’t work! [Check it!]

● It can be applied repeatedly:
repeat;
id something = anotherthing;   
endrepeat;

● This cycle continues as long as terms keep being changed inside the cycle

any set of executable statements
can be here!



Some Properties of Substitutions

● Simple substitutions:                                     [Example file: Substitutions_1.frm]

– Integer powers of symbols or their products
id x^2 = y + 1;

● zero exponent is tricky [not allowed according to the manual], so it is better to 
avoid it: id x^0 = a;

● positive and negative powers are matched separately
id x = y will change, e.g., x^2 to y^2, but will not change 1/x etc.
id 1/x = 1/y will change all negative powers of x to respective powers of y

– As many substitutions as possible are made (in these simple cases), e.g., id x^2 
= y changes x^5 to y^2 x

● Substitutions are not done inside of function arguments:
Local expr = f(x);
id x = y^2 will not change expr

● There is an environment argument … endargument that allows 
manipulating arguments of functions; it can be nested, too



Example: Contractions of γ Matrices

● Let us calculate simple identities such as 

[Example file: Gamma_Matrices_1.frm]#-

ntensor g;
 tensor d(s);
index mu, nu, la, rh;

Local g2 = g(mu) * g(nu) * g(mu);
Local g4 = g(mu) * g(nu) * g(la) * g(mu);

repeat;
id g(mu) * g(nu) = 2 * d(mu,nu) - g(nu) * g(mu);
id g(mu) * g(mu) = 4;
id g(mu) * d(mu,nu) = g(nu);
id g(la) * g(mu) = 2 * d(la,mu) - g(mu) * g(la);
id g(mu) * d(mu,la) = g(la);
id g(la) * g(nu) = 2 * d(la,nu) - g(nu) * g(la);
endrepeat;

print;

.end

Excercise: calculate identities
with 3 and 4 sandwiched γ matrices 



Example: Derivatives

● Let us calculate derivatives of expressions of the form
#-

functions sin, cos, exp, D, x;
cfunctions Sin, Cos, Exp, X;

Local expr = D^4 * exp(x) * x^5 * cos(x)^2 * sin(x)^3;

repeat;
id D * exp(x) = exp(x) + exp(x) * D;
id D * x = 1 + x * D;
id D * sin(x) = cos(x) + sin(x) * D;
id D * cos(x) = - sin(x) + cos(x) * D;
endrepeat;

id x = X;
id sin(x) = Sin(X);
id cos(x) = Cos(X);
id exp(x) = Exp(X);
id D = 0;

print;

.end

[Example file: Derivatives_1.frm]

Excercise: extend the code to expressions
that have the form 

and calculate derivatives of a few
expressions; check with Mathematica etc.
or by hand



Pattern Matching in Form: Wildcards

● Simple substitutions work well, however, it is very often the case that the 
programs could be written more efficiently if one could replace classes of 
expressions (generic objects)

● For instance, in the examples above:

– Commutators of two γ matrices could be substituted for generic indices:

– One could take the derivatives using the chain rule:

● FORM has a very powerful tool that allows one to do very efficient pattern 
matching: wildcards (wildcard objects)

● A wildcard is obtained when a ? symbol is added to a name of a declared 
object:
symbol a, x;
id a? = x;

● This wildcard matches any symbol; in general, the type of matched objects is 
defined by the type of the object used in the wildcard



Wildcards: Examples

● Some wildcards:
symbol a, b, c, x, y, z;
index mu, nu;
vector p, q;
function f, g;

a? - matches any symbol
a?^2 – matches any symbol squared
p(mu?) - matches any component of vector p
p? - matches any vector
f(x?) - matches function f of any scalar argument
                                            [ f(x), f(q.p), f(2 * x + y), f(1), ... ]
f(p?) - matches function f of any vector argument
                                            [f(p), f(q + p), f(2 * p + 3 * q) … ]
f?(x?,y) – matches any function of two scalar arguments where y is the 
second argument
mu? - matches any index
...



Wildcards: Usage and Properties

● Wildcards are used in the l.h.s. of the substitutions:
id f(g?(x),x) = x^2;

● Symbols that define the wildcard can appear in the r.h.s. of the substitutions:
id f(g?(x?),x) = g(x)
The r.h.s. symbols will take the values that match the pattern on the l.h.s.:
id f(g?(x?),x) = g(x):    f(h(y),x) → h(y)

● If a symbol appears in a wildcard in the l.h.s. more than once, all instances 
should be the same in order to match: f(x?,x?) matches all appearances of 
function f where it has two equal (scalar) arguments, but not those where f 
has two different arguments

● Sometimes wildcards can match more general patterns compared to separate 
wildcard objects; this is especially true when wildcards are used in function 
arguments, e.g., x^n? will match powers of x with both symbolic and integer 
numerical n, but n? will match only symbolic n; x? will match any symbol, 
whereas f(x?) will match function f with any scalar-like argument [e.g., 
f(p.q) or f(1+2*x)]. 



Wildcards in Functions: Properties

● There are some properties regarding wildcards in function arguments:
– Function wildcards cannot match tensors and vice versa

– Index wildcards will match indices and vectors contracted with functions:
f(mu?) matches f(nu) and f(p)=f(nu) * p(nu) [SCHOONSCHIP]

– Vector wildcards match vectors and vector-like expressions:
f(p?) matches f(q), f(p+2*q), f(x*p + y*q), … but not 
f(x + q) etc.

– Symbol wildcards can match any scalar arguments:
f(x?) matches f(y), f(x + y*z), f(2), f(p.q + 3*x), ...



Argument Field Wildcards

● A different type of wildcard exists for functions: argument field wildcards, which 
refer to groups of function arguments:
f(?group,x) matches all instances of f where the last argument is x and 
other arguments can be arbitrary

● Here, group is just an identifier, no need to define a variable group

● Argument field wildcards cannot be used in symmetric and antisymmetic 
functions (due to the need to make too many argument permutations in the 
function arguments in order to identify the possible pattern match, which slows 
the calculation down)

● Note: too many argument field wildcards can make the pattern matching very 
slow (since there are too many options)

● Also, note that there can be clashes, for instance, if f is a function and g is a 
tensor, the substitution id f(?a)=g(?a) can lead to arguments [such as 
scalars] that are legal for a function but illegal for a tensor passed to g; this will 
lead to a runtime error [a simple wildcard variable would generate a 
compilation error in a such case]



Excercise

● Rewrite the programs that calculate the contraction of γ matrices and the 
derivatives of a trigonometric monomial, using wildcards


