
Computer Algebra for Feynman Graphs

Introduction



Why computer algebra for Feynman 
graphs?

● We want to calculate amplitudes/correlation functions (= Feynman graphs) in 
quantum field theory

● Feynman graphs are rather cumbersome objects to be straightforwardly 
implemented numerically. For example, the two graphs that give the leading 
contribution to photon-electron (Compton) scattering – one of the simplest 
processes,

already give quite a complicated expression for the amplitude:



Why computer algebra for Feynman 
graphs?

● Numerical calculation is easily done with scalars; this expression, however, 
contains many quantities that are not scalars: Dirac gamma matrices, spinors, 
4-vectors, and so on – and this is very typical of Feynman graphs

● These quantities can be implemented numerically at an extra cost (16 
elements for each of the gamma matrices, 4 elements for each 4-vector or 
spinor, etc…); this all can get unwieldy very quiclky when the amplitudes 
become more complex!

● On the other hand, there are many algebraic identities that the quantities 
above satisfy:

… and many others!!!

(Dirac algebra)

(four-momentum conservation)

(the Dirac’s equation)



Why computer algebra for Feynman 
graphs?

● With so many algebraic identities at hand (which is also a very typical feature 
of Feynman graphs, since elements that enter the amplitudes – 4-vectors, 
spinors, Dirac gamma matrices etc. – as a rule have very specific algebraic 
properties) it is an obvious, and a very good, idea to crunch the algebra first, 
trying to simplify the expression algebraically as much as possible, and use 
the simplified output in a numerical calculation

● Simple cases (for instance, the two graphs of the Compton scattering shown 
above) can be rather easily done by hand

● They, however, have all long been solved, so using a computer becomes 
almost a necessity, and this is why we need a computer algebra system!

● One has to notice that the use of computer algebra (in particular, of the tools 
that we are going to discuss, first of all – FORM) is not limited to the 
calculation of Feynman graphs. The features of the latter – the appearance of 
complicated non-scalar elements that cannot be easily implemented 
numerically but satisfy a set of algebraic identities – can be seen in many 
other problems in physics an mathematics



What are we going to talk about?

● We start with FORM – a specialised computer algebra system that was 
designed specially for particle physics; https://www.nikhef.nl/~form/

– FORM is: fast, specialised, doing what you specifically request, uses low 
memory

– FORM processes your scripts. Writing those is a bit difficult from the start 
(as with virtually any new programming language) but once you get used 
to it it becomes very natural

– Why not try doing things with Mathematica? The answer is: with FORM, 
one can do really big calculations really fast, where Mathematica just 
cannot do it.

● We will discuss the basic features of the FORM scripting language: 
declarations, built-in objects, flow control (#if, #do, #switch, #define, …, 
#include), output (esp. in the context of using it as input for other [numerical or 
symbolic] software) 

● We will (depending on the available time) discuss how FORM works [a nice 
project: write your own symbolic manipulation program!]



What are we going to talk about?

● We will apply FORM to the calculation of tree Feynman graphs: (quite) a few 
examples!

● To have some further context, we will discuss specific mathematical tools used 
to evaluate one-loop Feynman graphs:

– Dimensional regularisation;

– Feynman parameterisation;

– Passarino-Veltman reduction and the calculation of a general one-loop 
graph.

● After that we will be able to apply FORM to the calculation of one-loop graphs

● The scalar loop functions that we will have separated with the help of FORM 
need to be calculated numerically (the final stage of the calculation).

● This can be done by many means (e.g., numerical integration over Feynman 
parameters in Mathematica [or your favourite numerical tool]



What are we going to talk about?

● We will look at LoopTools – the package that numerically implements one-loop 
integrals (using Fortran, C, or Mathematica), http://www.feynarts.de/looptools/

●  We will calculate some one-loop graphs using LoopTools

● Time permitting, we will also discuss certain other computer algebra software 
that could be useful: FeynCalc, FormCalc, …

● Requests and suggestions welcome!

http://www.feynarts.de/looptools/


Excercises and other assignments

● There will be small exercises, mostly involving writing scripts in FORM and 
later calculating some loop functions in LoopTools (in your favourite 
programming language; I assume using Mathematica will be the easiest)

● For those of you who want it, there can be larger projects/problems



Assessment

● If you want to get credits for this course, you will have to:

1) Check it with whoever is responsible for that at the Dean’s Office!

2) Register for the course

3) Learn the stuff

4) Pass the final assessment, which will either be a few problems for you to 
solve, using the tools that we will be mastering during the semester, or a small 
project – we can discuss the details



Example: a small (but real) FORM code

● Consider the reaction we had as example in the beginning: electron Compton 
scattering (it can actually be a nucleon, in which case one has to add the 
a.m.m. coupling):

● I will now show you a FORM script that simplifies this amplitude and 
decomposes it into basis tensors



Some definitions

● Tensor decomposition of the Compton scattering amplitude [follows 
from photon crossing symmetry, P and T invariance]


