Exercise sheet 9 Theoretical Physics 3 : QM SS2017 Lecturer : Prof. M. Vanderhaeghen

16.06.2017

Exercise 1 – Algebraic method for the hydrogen atom. (85 points)

We consider the radial dimensionless equation for the Coulomb problem of the form

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{l(l+1)}{\rho^2} + \frac{2}{\rho}\right)u_{n,l}(\rho) = \epsilon \, u_{n,l}(\rho),$$

where $\rho = r/a$ (and *a* is the Bohr radius), and $u_{n,l}(\rho) = \rho R_{n,l}(\rho)$ is the reduced wave function which satisfies the conditions $\int_0^\infty |u_{n,l}(\rho)|^2 d\rho = 1$ and $u_{n,l}(0) = 0$. We introduce the operators:

$$A_{l}^{-} = \frac{d}{d\rho} + \frac{l+1}{\rho} - \frac{1}{l+1} \qquad A_{l}^{+} = \frac{d}{d\rho} - \frac{l+1}{\rho} + \frac{1}{l+1}$$

a) (10 p.) Calculate $A_l^- A_l^+$. Show that the dimensionless radial equation can be written as

$$\left(A_l^- A_l^+\right) u_l = \left(\epsilon - \frac{1}{(l+1)^2}\right) u_l.$$

b) (15 p.) Show that

$$A_l^+ A_l^- = A_{l+1}^- A_{l+1}^+ - \frac{1}{(l+2)^2} + \frac{1}{(l+1)^2}$$

By multiplying the equation from a) by A_l^+ , show that $A_l^+ u_l(\rho)$ satisfies the radial equation with the same eigenvalue ϵ but for an angular momentum l' = l + 1.

- c) (15 p.) Similarly, show that $A_{l-1}^{-}u_{l}(\rho)$ satisfies the radial equation with the same eigenvalue ϵ but for an angular momentum l' = l 1.
- d) (15 p.) Calculate the expectation value of $A_l^- A_l^+$ with $u_l(\rho)$, and show that $\epsilon \leq \frac{1}{(l+1)^2}$.
- e) (15 p.) Show that, for a given value of ϵ , there exists a maximum value l_{max} of the angular momentum such that $\epsilon = 1/n^2$, where we have set $n = l_{\text{max}} + 1$. Show that the corresponding radial wave function $u_{l_{\text{max}}}$ satisfies the differential equation

$$\left(\frac{\mathrm{d}}{\mathrm{d}\rho} - \frac{n}{\rho} + \frac{1}{n}\right) u_{l_{\max}}(\rho) = 0.$$

f) (15 p.) Deduce from these results the energy levels and the corresponding wave functions of the hydrogen atom.

Exercise 2 – Hydrogenic atom. (15 points)

A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons. Determine the Bohr energies $E_n(Z)$, the binding energy $E_1(Z)$, the Bohr radius a(Z), and the Rydberg constant R(Z) for a hydrogenic atom. Express your answers as appropriate multiples of the hydrogen values. Are these expressions still accurate for large Z? Why?