Exercise sheet 6 Theoretical Physics 3 : QM SS2017 Lecturer : Prof. M. Vanderhaeghen

26.05.2017

Exercise 1. (35 + 20 points)

Consider Schrödinger equation with the following potential:

$$V(x) = \begin{cases} 0 & x < 0\\ -V_0 & 0 < x < a\\ V_1 & x > a. \end{cases}$$

- a) (10 p.) Consider bound states of the system (E < 0). Derive the transcendental equation(s) for the energy quantum number. Notice in the case $V_1 = 0$ one should recover expressions for the finite well problem considered in the lecture.
- b) (10 p.) Write down the eigenfunctions of the Hamiltonian for the case $0 < E < V_1$. Sketch an eigenfunction for some intermediate value of E.
- c) (10 p.) Consider scattering states for the case $E > V_1$. Derive expressions for the reflection and transmission coefficients.
- d) (5 p.) Show that in the limit $V_1 \to +\infty$ the eigenfunctions of the Hamiltonian vanish for x > a. Is it true that not only the eigenfunctions of the Hamiltonian, but *all* the wave functions must vanish for x > a?
- e) (10 p.) (Bonus) Consider the limit $V_1 \to +\infty$. Prove that the system admits no bound states if and only if $V_0 \leq \pi^2 \hbar^2 / (8ma^2)$.
- f) (10 p.) (Bonus) Assume that in the limit $V_1 \to +\infty$ the system does not admit bound states $(\sqrt{2mV_0a^2/\hbar^2} < \pi/2)$, whereas it is known that for $V_1 = 0$ the system always admits at least one bound state. Determine \bar{V}_1 such that for $V_1 < \bar{V}_1$ the system admits at least one bound state.

Exercise 2. – Hermitian operators (30 points)

Given that the two hermitian operators \hat{A} and \hat{B} commute $[\hat{A}, \hat{B}] = 0$, prove that

- a) (5 p.) if $|\psi\rangle$ is an eigenvector of \hat{A} , then $\hat{B} |\psi\rangle$ is also an eigenvector of \hat{A} with the same eigenvalue;
- b) (5 p.) if $|\psi_1\rangle$ and $|\psi_2\rangle$ are two eigenvectors of \hat{A} with different eigenvalues, then $\langle \psi_1 | \hat{B} | \psi_2 \rangle = 0$;
- c) (15 p.) one can construct an orthonormal basis made of eigenvectors common to both \hat{A} and \hat{B} (consider only the case of discrete spectra).
- d) (5 p.) Prove the reverse of the last statement.

Exercise 3. – Operators and Dirac notation (35 points)

a) (5 p.) Recall the ladder operators for the quantum harmonic oscillator problem. Show that

 $\hat{a}_+ = (\hat{a}_-)^\dagger.$

 $\hat{q} = \sum_{q} q \left| q \right\rangle \left\langle q \right|,$

b) (5 p.) Show that for any observable \hat{q} with nondegenerate spectrum

where
$$\hat{q} |q\rangle = q |q\rangle$$
, and in the case of continuous spectrum $\sum_{q} \rightarrow \int dq$.
Hint: since the set of eigenfunctions is complete and orthonormal, one can use

$$\sum_{q} \left| q \right\rangle \left\langle q \right| = \hat{1}.$$

c) (5 p.) We already know from the lecture that

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} \; e^{\frac{i}{\hbar}px}$$

Show that

$$\langle p|\hat{x}|\psi\rangle = i\hbar\frac{\partial}{\partial p}\left\langle p|\psi\right\rangle.$$

d) (5 p.) Show that

$$\langle \psi | \hat{x} | \psi \rangle = \int_{-\infty}^{+\infty} \mathrm{d}p \, \phi^*(p) \left[i\hbar \frac{\partial}{\partial p} \right] \phi(p),$$

 $\phi(p) \equiv \langle p | \psi \rangle$

where

e)
$$(5 p.)$$
 Show that

$$\langle x | \hat{p} | x' \rangle = -i\hbar \frac{\partial}{\partial x} \delta(x - x').$$

f) (10 p.) Recall the infinite square well stationary state wave function

$$\langle x|n \rangle = \begin{cases} \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right) & 0 < x < a, \\ 0 & \text{otherwise.} \end{cases}$$

Compute $\langle p|n\rangle$.