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Exercise 1. (35 points)

Consider a quantum harmonic oscillator, the time-independent ground state wave function of which
is given by

ψ0(x) = 4

√
mω

πh̄
e−

mωx2

2h̄ ≡ αe−
y2

2 ,

where, for further simplicity, we have introduced α =
(
mω
πh̄

) 1
4 and dimensionless variable y =

√
mω
h̄ x.

a) (5 p.) Using explicit definition of the raising ladder operator

a+ =
1√

2h̄ωm
(−ip̂+mωx) ≡ 1√

2

(
− d

dy
+ y

)
,

derive expression for the first excited state wave function ψ1 and check its orthogonality to ψ0.

b) (20 p.) Compute 〈x〉, 〈p〉, 〈x2〉 and 〈p2〉, for the states ψ0 and ψ1 by explicit integration.

c) (5 p.) Check the uncertainty principle for these two states.

d) (5 p.) Compute expectation values of the kinetic energy 〈T 〉 and the potential energy 〈V 〉. Check
these to sum up to 〈H〉.

Exercise 2. – Harmonic oscillator: power series method (65 points)

The quantum harmonic oscillator problem can be solved using the power series method. One starts
with the stationary Schrödinger equation (ψ′′ ≡ d2ψ/dx2)

− h̄2

2m
ψ′′(x) +

1

2
mω2x2ψ(x) = E ψ(x).

a) (10 p.) To simplify the initial problem, rewrite the equation using the dimensionless quantities

y =

√
mω

h̄
x, ε = E/h̄ω.

Further on, define ϕ(y) = cψ(x) and find c, such that ϕ(y) is normalized.

b) (10 p.) Investigate the asymptotical behaviour of the equation for large y. Show that for y →∞

ϕ(y) ∼ e−
y2

2 .
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c) (10 p.) We can now explicitly isolate the asymptotic behaviour of the unknown function:

ϕ(y) = h(y) e−
y2

2 .

Derive the following equation on h(y):

h′′ − 2yh′ + (2ε− 1)h = 0.

d) (15 p.) At this point, assume that h(y) can be written as an infinite power series in y

h(y) =
∞∑
m=0

am y
m.

Derive the recurrence relation between the coefficients am and show that there are two sets of
independent solutions (even and odd).

e) (15 p.) Prove that, in order for the wave function to be finite and normalizable, one has to imply
that the infinite series must be “cut off” at some finite integer n: am>n = 0.
(Hint : consider Maclaurin expansion of ey

2
and compare it to the series behaviour for large y).

f) (5 p.) Using the previous conclusion, show that the energy is quantized En = (n+ 1
2)h̄ω.

The obtained polynomials hn(y) are proportional to Hermite polynomials Hn(y). The orthonormal
set of solutions of the initial stationary Schrödinger equation then reads:

ψn(x) =

(
2nn!

√
πh̄

mω

)− 1
2

Hn

(√
mω

h̄
x

)
e−

mωx2

2h̄ , n = 0, 1, 2, ....

(Bonus) Exercise 3. – Supersymmetric QM (50 points)

We consider in this exercise a generalization of the raising and lowering operator method. For a
given potential V−(x), the idea is to construct a partner potential V+(x) which has the same energy
eigenvalues, except for the ground state. Without loss of generality, we can shift the potential V−(x)
so that the corresponding ground state ψ0(x) has zero energy E−0 = 0.

a) (10 p.) Show that the Hamiltonian H− = − h̄2

2m
d2

dx2 + V− can be written in the form

H− = A+A

with

A+ ≡ h̄√
2m

(− d

dx
− ψ′0
ψ0

),

A ≡ h̄√
2m

(
d

dx
− ψ′0
ψ0

),

and ψ′0 ≡ d
dxψ0.

b) (10 p.) Consider the partner Hamiltonian H+ = AA+ which can also be defined as H+ = − h̄2

2m
d2

dx2 +
V+. Show that the partner potential V+ is related to V− as follows

V+ = V− −
h̄2

m

d

dx

(
ψ′0
ψ0

)
c) (15 p.) Show that H− and H+ have same spectrum, except for the ground state (Hint : Consider

the states Aψ−n and A+ψ+
n with ψ±n eigenstates of H±.). Write the eigenstates ψ+

n and energies E+
n

in terms of ψ−n and E−n .
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d) (15 p.) Consider a particle in the infinite square potential well

V−(x) =

{
V0 for 0 ≤ x ≤ a
+∞ otherwise,

Find V0 such that the ground state has zero energy. Derive the partner potential V+(x). Write
down the properly normalized eigenstates ψ+

n (x). Explain why the existence of partner potentials
may be useful.
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