Exercise sheet 11

Theoretical Physics 3 : QM SS2017

Lecturer: Prof. M. Vanderhaeghen

30.06.2017

Exercise 1. (40 points)

In this first exercise we will practice how to couple two angular momenta j_1 and j_2 , using the Clebsch-Gordan Table.

- a) (25 p.) Write down all the possible states $|JM\rangle$ in the basis $|j_1m_1\rangle|j_2m_2\rangle$ for the compositions $\frac{1}{2}\otimes 1$ and $1\otimes 1$ (the symbol \otimes stands for the coupling of two angular momenta).
- b) (15 p.) Check explicitly that the decompositions of the state $|\frac{5}{2}, +\frac{1}{2}\rangle$ in the basis $|\frac{1}{2}m_1\rangle |1m_2\rangle |1m_3\rangle$ obtained from $(\frac{1}{2}\otimes 1)\otimes 1$ and $\frac{1}{2}\otimes (1\otimes 1)$ are the same.

Exercise 2. (30 points)

Consider a general spin-1/2 state

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix}$$

which is normalized $|a|^2 + |b|^2 = 1$.

- a) (10 p.) Show that there always exists a direction in space $\vec{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ such that χ is the eigenstate of the spin component along this direction $S_{\vec{n}} = \vec{n} \cdot \vec{S}$ with eigenvalue $\hbar/2$.
- b) (15 p.) Write θ and ϕ in terms of a and b.
- c) (5 p.) Would an analogous result hold for higher spin states? Hint: Count the number of degrees of freedom.

Exercise 3. (30 points)

- a) (15 p.) Derive the spin matrices S_x, S_y, S_z in the basis $|s, s_z\rangle$ for s = 1.
- b) (15 p.) Find the eigenvalues and the normalized eigenvectors of S_x and S_y in that basis. Hint: The general relation $S_{\pm}|s,s_z\rangle = \hbar\sqrt{s(s+1)-s_z(s_z\pm1)}|s,s_z\pm1\rangle$ can we useful.

1