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Abstract. Using the recent empirical information on the deuteron electromagnetic form factors we map out
the transverse charge density in the deuteron as viewed from a light front moving towards the deuteron.
The charge densities for a transversely polarized deuteron are characterized by monopole, dipole and
quadrupole patterns.

PACS. 13.40.Gp Electromagnetic form factors – 21.10.Ft Charge distribution – 21.45.Bc Two-nucleon
system

Electromagnetic form factors (FFs) of the deuteron
have received a lot of attention in recent years; for recent
reviews see, e.g., refs. [1,2]. Based on the large amount of
precise deuteron form factor data, it is therefore of interest
to exhibit the spatial information on the quark charge
distributions in the deuteron. In this letter, we develop the
general formalism to extract charge densities for a spin-1
particle and apply it to the case of the deuteron.

In the following we will consider the electromagnetic
deuteron elastic FFs when viewed from a light front mov-
ing towards the deuteron. Equivalently, this corresponds
with a frame where the deuterons have a large momen-
tum component along the z-axis chosen along the direc-
tion of P = (p + p′)/2, where p (p′) are the initial (final)
deuteron four-momenta. We indicate the deuteron light
front + component by P+ (defining a± ≡ a0 ± a3). We
furthermore choose a light front frame where the virtual
photon four-momentum q has q+ = 0, and has a trans-
verse component (lying in the xy-plane) indicated by the
transverse vector q⊥, satisfying q2 = −q⊥

2 ≡ −Q2. In
such a light front frame, the virtual photon only couples
to forward-moving partons and the + component of the
electromagnetic current J+ has the interpretation of the
quark charge density operator. It is given by

J+(0) = +2/3 ū(0)γ+u(0) − 1/3 d̄(0)γ+(0)d(0), (1)

considering only u and d quarks. Each term in the expres-
sion is a positive operator since q̄γ+q ∝ |γ+q|2.

In the following, we will use empirical information on
deuteron elastic FFs to study the deuteron quark charge
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densities in the transverse plane. It is customary to denote
the three deuteron elastic e.m. FFs by GC , GM , and GQ,
corresponding to the Coulomb monopole (GC), magnetic
dipole (GM ), and Coulomb quadrupole (GQ) FFs, respec-
tively. Similar relations between nucleon densities and FFs
can be found in [3–6].

We start by expressing the matrix elements of the
J+(0) operator between deuteron states as
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where λ = ±1, 0 (λ′ = ±1, 0) denotes the initial (final)
deuteron light front helicity, and where q⊥ = Q(cos φq êx+
sin φq êy). Furthermore in eq. (2), the helicity form factors
G+

λ′ λ are real (due to time reversal invariance) and depend
only on Q2.

We can then define transverse charge densities for a
deuteron in helicity states of λ = ±1 or λ = 0 as,
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where b ≡ b (cos φb êx + sin φb êy) denotes the position in
the xy-plane from the transverse c.m. of the deuteron. The
two independent helicity-conserving FFs G+

1 1 and G+
0 0 can
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be expressed in terms of GC,M,Q as,
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1
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3
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}

,

G+
0 0 =
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3
(1 + 2η)GQ

}

,

(4)

with η ≡ Q2/(4M2
d ), and Md is the deuteron mass.

The definitions and normalizations of GC , GM , and
GQ are the customary ones obtained from the matrix el-
ements of the electromagnetic current [7],

〈p2, λ2|Jµ |p1, λ1〉 = −(ε∗2 · ε1)2PµG1(Q
2)

−
(

εµ
1ε∗2 · q−εµ

2
∗
ε1 · q

)

GM (Q2) + q · ε1 q · ε∗2
Pµ

M2
d

G3(Q
2),

(5)

with ε1,2 the polarization vectors of the initial and final
deuteron. The charge and quadrupole FFs follow from,

GC = G1 +
2

3
η GQ,

GQ = G1 + (1 + η)G3 − GM , (6)

with normalizations GC(0) = 1, GM (0) = µd (magnetic
moment in units e/(2Md)), and GQ(0) = Qd (quadrupole
moment in units e/M2

d ).
For numerical evaluation, we use the parameterization

of the deuteron form factor data given as fit II by Ab-
bott et al. [8]. This parameterization is based on forms
suggested in [9], which read
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where the dipole form factor G(Q2) = (1 + Q2/δ2)−2 has
a (non-standard) mass parameter δ = 898.52MeV. The
reduced amplitudes are

g0 =

4
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4
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β2
i + Q2
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4
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,

(8)
and the parameters from [8] are given in table 1.

Figure 1 shows the transverse charge densities for def-
inite helicity (longitudinally polarized) deuterons. Recall
that the transverse charge density is the charge density
projected onto a plane perpendicular to the line of sight,
which also defines the longitudinal direction. The charge
density for the λ = 1 state, in the upper panel, is smooth
and peaks in the center. The λ = 0 state, in the middle
panel, features a dip in the center, which can also be seen

Table 1. Parameters for the deuteron form factor fit II of
ref. [8].

i = 1 i = 2 i = 3 i = 4

ai (fm−2) 1.57057 12.23792 −42.04576 27.92014

bi (fm−1) 0.07043 0.14443 −0.27343 0.05856

ci −0.16577 0.27557 −0.05382 −0.05598

α2

i (fm−2) 1.52501 8.75139 15.97777 23.20415

β2

i (fm−2) 43.67795 30.05435 16.43075 2.80716

γ2

i (fm−2) 1.87055 14.95683 28.04312 41.12940
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Fig. 1. Quark transverse charge densities in the deuteron. Up-
per panel: ρd

1. Middle panel: ρd

0. The lightest (darkest) regions
correspond with largest (smallest) densities. Lower panel: the
density along the y-axis for ρd

1 (dashed curve) and ρd

0 (solid
curve). For the deuteron FFs, we use the empirical parameter-
ization II of ref. [8], based on ref. [9].

in the lower panel, where the density along the y-axis is
plotted for both states.
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This dip —found directly from the data— reflects
the low charge density or “hole” in the center-of-the-
deuteron wave function. For the helicity-0 state, calculated
S- and D-state wave functions produce toroidal equiden-
sity surfaces in the central regions, with the axis along the
z-direction [10]. Hence looking along the z-axis for this
state, one can see the hole in the center, albeit the hole
be partly filled in because one must look though the outer
layers of the deuteron which are mostly S-state and spher-
ically symmetric. We emphasize that the dip seen in our
figure is based only on observation (codified in the form
factor fits) and a light front interpretation of the data.
The result is consistent with but does not use calculations
based on models of nucleon-nucleon interactions. Further,
the light front viewpoint gives a two-dimensional charge
density that is relativistically correct, unlike charge den-
sities obtained from Fourier transforming FFs in an equal
time formalism. The light front viewpoint also gives a neu-
tron central charge density which is negative [4], because
it involves the Fourier transform of the Dirac FF F1 in-
stead of the Sachs FF GE . More physically, the negative
core may be understood [11] as quarks at small impact pa-
rameter correlating with high momenta in all directions,
noting that high longitudinal momentum quarks in a neu-
tron are dominantly down quarks.

We next consider the charge densities for a transversely
polarized deuteron, denoting the transverse polarization
direction by S⊥ = cos φS êx + sin φS êy. The transverse
charge densities can be defined as
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, (9)

where s⊥ is the deuteron spin projection along the direc-
tion of S⊥. The transverse spin state can be expressed in
terms of the light front helicity spinor states as

|s⊥ = ±1〉 =
1

2
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√

2eiφS |λ = 0〉

+ e2iφS |λ = −1〉
)

,
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2

(
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)

. (10)

By working out the Fourier transform in eq. (9) for the
two cases where s⊥ = +1 and s⊥ = 0, one obtains
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One notices from eqs. (11), (12) that the transverse charge
density ρd

T 1 contains monopole, dipole and quadrupole
field patterns, whereas ρd

T 0 only contains monopole and
quadrupole field patterns. The deuteron helicity FF with
one unit of helicity flip, which governs the dipole field pat-
tern in ρd

T 1, can be expressed in terms of GC,M,Q as
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whereas the deuteron helicity FF with two units of helicity
flip, giving the quadrupole field patterns, is,
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η

1 + η
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3

)
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}

. (14)

The four-deuteron helicity FFs given here are not inde-
pendent. The angular condition [12] relating them is,

(2η + 1)G+
1 1 + 2

√

2η G+
0 1 + G+

−1 +1 − G+
0 0 = 0. (15)

Magnetic dipole moments in a rest frame appear, be-
cause of relativity, as electric dipole moments in a fast-
moving frame [13]. The electric dipole moment (EDM)
corresponding to the transverse charge densities ρd

T s⊥
is

dd
s⊥

≡ e

∫

d2b b ρd
T s⊥

(b). (16)

Equation (12) gives dd
0 = 0, whereas eq. (11) yields

dd
1 = − (S⊥ × êz) {GM (0) − 2}

(

e

2Md

)

. (17)

Expressing the spin-1 magnetic moment in terms of the
g-factor, i.e. GM (0) = g, one sees that the induced EDM

dd
1 is proportional to g− 2. The same result was found for

the case of a spin-1/2 particle [5]. One thus observes that
for a particle without internal structure (corresponding
with g = 2 [14]), there is no induced EDM.

The electric quadrupole moment corresponding with
the transverse charge densities ρd

T s⊥
is, for S⊥ = êx,

Qd
s⊥

≡ e

∫

d2b (b2
x − b2

y) ρd
T s⊥

(b). (18)

From eqs. (11), (12) one obtains,

Qd
1 = −1

2
Qd

0

=
1

2
{[GM (0) − 2] + [GQ(0) + 1]}

(

e

M2
d

)

. (19)

For a spin-1 particle without internal structure, exempli-
fied by W and Z gauge bosons in standard electroweak
theory, it is required that at tree level GM (0) = 2
and GQ(0) = −1; these values also allow satisfying the
Gerasimov-Drell-Hearn sum rule to lowest order in per-
turbation theory [15,16]. For elementary particles, any
deviations from these values would indicate new (beyond
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Fig. 2. Quark transverse charge densities for a deuteron which
is polarized along the positive x-axis. Upper panel: ρd

T 1. Middle
panel: ρd

T 0. The light (dark) regions correspond with largest
(smallest) densities. The lower panel compares the density
along the y-axis for ρd

T 1 (dashed curve) and ρd

T 0 (solid curve).
For the deuteron e.m. FFs, we use the empirical parameteriza-
tion II of ref. [8], based on ref. [9].

standard model) physics. (Current data from pp̄ collisions,
up to

√
s = 1.96TeV, are compatible with zero anomalous

WWγ and ZZγ couplings [17].) For composite particles,
it is the deviations from these benchmark values that in-
dicate deformations of the states.

It is thus interesting to observe from eq. (19) that
Qd

s⊥
is only sensitive to the anomalous parts of the spin-1

magnetic dipole and electric quadrupole moments, and
vanishes for a particle without internal structure. The
deuteron magnetic dipole moment GM (0) is 1.71 [18],
close to a spin-1 particle’s natural value. However, in con-
trast to the W and Z gauge bosons, the deuteron has a
large anomalous quadrupole moment. Its measured value

is GQ(0) = 25.84 (3) [19], highlighting the prominent role
of the pion exchange potential.

Pictorial results for the transverse charge density with
transverse deuteron polarization are shown in fig. 2. The
upper panel shows the charge distribution for the state
with projection-1 in the x-direction. One sees the large ef-
fects of the quadrupole term together with a small overall
shift of the charge distribution along the y-axis. The lat-
ter contrasts to the large shift of the charge in the neutron
case [5], where the anomalous moment is far from its point-
like value. As noted [13,20], an object with a magnetic
dipole moment when stationary exhibits an electric dipole
moment when seen by a moving observer, proportional to
the vector product v × (magnetic moment). The middle
panel shows the charge density for a state with projection-
0 in the x-direction. One notices that the quadrupole term
stretches the charge along the y-axis but does not cause
any shift of the charge center. The two cases are com-
pared in the lower panel, which plots the density along
the y-axis.

In summary, we used recent empirical information on
the deuteron e.m. FFs to map out the transverse charge
densities in longitudinally and in transversely polarized
deuterons. Notably, one sees a dip in the center-of-the-
charge distribution for helicity-zero deuterons. This is in
harmony with nuclear force model calculations, which for
the zero helicity case predict toroidal equidensity surfaces
for higher densities, with the axis along the quantiza-
tion direction. Transversely polarized deuterons show di-
pole and quadrupole structure in the charge distributions.
Their electric dipole and quadrupole moments only de-
pend on the spin-1 particle’s anomalous magnetic dipole
moment and its anomalous electric quadrupole moment,
arising from its internal structure.
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DE-FG02-04ER41302.
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