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Introduction

Historical Background

In the mid-1960s, S.D. Drell and A.C. Hearn, and, independently, S.B. Gerasi-

mov, developed a relation to determine the anomalous magnetic moment from polarized
Compton scattering (CS) on nuclei in the framework of dispersion theory, the GDH
sum rule (in short, GDH) [Ger66, DH66]. Sum rules are a special kind of dispersion
relations. Dispersion relations are useful as it is possible e.g. to calculate 2-loop
contributions from pure one-loop cross sections (c.f. [Kni96]). In case of the GDH, the
sum rule allows the exact calculation of the anomalous magnetic moment from the
measured cross section, i.e. connect a low-energy constant to a dynamical spectral
integral.

The GDH sum rule has later been extended to particles of arbitrary spin [Lin71].
With the advent of quantum chromodynamics (QCD) as a complete theory of strong
interactions, however, interest in the dispersion theoretic approach has languished. In
recent years, the GDH has come to new fame. New experiments, e.g. at the Mainz
Mikrotron facility (MAMI) [Tho06], and theoretical predictions, e.g. by L. Tiator

[Tia00, Tia02] and D. Drechsel et al. [DKT01], further solidified the validity of the
sum rule.

In 1966, Hosoda and Yamamoto showed [HY66] that the sum rule can also be
gained from equal-times current algebra theory. The dispersion theoretic approach
however is stronger as the current algebra approach relies on some assumptions which
cannot be proven generally [ibid., footnote 2]. For this reason, we will focus solely on
the dispersion theory approach in this work.

vii



Introduction

Purpose of this Study

A particle of arbitrary spin j has in general 2j + 1 electromagnetic moments. While
there have been several studies on generalizing the GDH to higher spins [Pai67, LC75]
and the extension of the GDH to arbitrary spin has proven to be valid [DHK+04],
there has been no rigorous determination of sum rules for higher order electromagnetic
moments. Although there have also been some efforts to derive sum rules for higher
order electromagnetic moments (e.g. by Pais [Pai68], Lin [LC75], and Ji et al. [JL04,
CJL04]), no consistent form has been found so far which considers all contributions.

It is the purpose of this study to fill in this gap for the j = 1 case. In the course
of this study we have derived the GDH for massive vector bosons. Additionally, we
have derived a new quadrupole sum rule (QSR). These sum rules have been put to
test in the framework of a quantum field theory. We find that the GDH is verified
only for particular theories of massive charged spin-1 fields, pointing towards higher
symmetries. For the QSR, we find that polarizabilities have to be taken into account
in order to give a complete description.

Structure of this Thesis

In chapter 1, the important concepts and methods for this work are introduced. For
the gauge field theory part, we follow the approaches by Chaichian and Nelipa

[CN84] and Aitchison [Ait80]. For the introduction to dispersion theory, the works
of Nussenzveig [Nus72], and Queen and Violini [QV74] are used for reference.
In chapter 2 an effective Lagrangian for massive vector bosons is constructed. We
introduce the concept of natural values and discuss its importance for the testing of
the theory.
Chapter 3 introduces Compton scattering off massive vector bosons and continues
with a detailed derivation of the GDH for spins j = 1/2 and j = 1, as well as a
new quadrupole sum rule for the latter case. In order to accomplish this, low-energy
theorems (LETs) for the magnetic dipole and electric quadrupole structure functions
are derived from the effective Lagrangian. An excellent primer for the derivation of
the original GDH is the PhD thesis by R. Pantfoerder [Pan98], to which we have
adhered for our analogous calculations.
Chapter 4 is dedicated to the verification of the sum rules based on the effective
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Lagrangian in the limit of natural values. At tree level, the GDH can be confirmed.
However, at one-loop we find that the effective Lagrangian is not complete. An
additional self-interaction tadpole is needed to derive the anomalous magnetic moment.
Additionally, for the quadrupole sum rule, it is found that even at tree level polarization
effects might give a contribution, since the QSR yields a finite, non-zero result.
The SU(2) Yang-Mills ansatz and the resulting tadpole contribution is given in chapter 5,
where the complete Yang-Mills result at one-loop is discussed. As a concluding remark,
the anomalous magnetic moment for j = 1 is compared qualitatively to the value
for spin 1/2. The relation to the experimental results for deuteron and W bosons is
commented upon.
The conclusion is followed by an appendix containing Feynman rules for both theories,
the vertex diagrams, and some helpful references on the handling of loop integrals.

Tools

In the course of this work, two major tools have been used in the calculation process.
Besides manual calculations, we used Nikhef’s FORM algebra manipulation program
[Ver00] and Wolfram’s Mathematica 6 suite. FORM has primarily been used to
derive the structures used in this work, i.e. the diagrams and the LETs, as well as
to confirm the Ward-Takahashi-identities. In Mathematica we derived the amplitude
decompositions and identified the LETs with the appropriate dispersion relations. The
sum rule tree-level integrations were done in Mathematica, which we also used to plot
the integrands.
For the creation of this work free software was used where possible. The thesis was
written in LATEX using Kile and Aquamacs Emacs. The document is based on a
template by T. Beranek. It uses the KOMA-Script scrbook class. Also, the physics-
related TEX package PhysTEX by F. Jung [Jun02] was used, with some personal
extensions. All Feynman diagrams and other illustrations were either created in
JaxoDraw [BT04, BCKT08] or done using PGF and TikZ [Tan06].

Notation and Conventions

Throughout this thesis, the Einstein summation convention is used, i.e. summation is
implied over indices which appear twice. If not mentioned otherwise, latin letters imply

ix



Introduction

Euclidian metric and summation over i = 1, 2, 3, greek letters stand for Minkowski
metric and summation over 0, .., 3. We use the metric convention

(gµν) = diag(1,−1,−1,−1). (1)

As is common in particle and high-energy physics, we use the system of natural
units with ~ = c = 1. The structure constant of the electromagnetic interaction is
α = e2

4π
≈ 1/137. The electric charge e is defined such that electrons carry the charge

−e.

For loop integrals we will often use the abbreviation

dk̃ :=
dDk

(2π)D
,

where D is the number of dimensions.

When referring to the terms of different order in the perturbative expansion of the
amplitudes, we use the abbreviations LO for leading-order and NLO for next-to-leading-
order.
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Chapter 1

Physical method

1.1 Introduction to Field Theory

The mathematical framework of particle physics is quantum field theory (QFT). One
can transit from the formalism of classical mechanics to field theory by replacing the
n trajectories with—here, quantized—fields:

qi(t)→ φ(x, t). (1.1)

While in classical mechanics the n generalized coordinates of a system represent
n degrees of freedom (d.o.f.s), the transformation i→ x induces infinite d.o.f.s, with
φ(x, t) being one d.o.f. at a given point x. In (quantum) field theory, the generalized
variables are the fields (operators) and derivatives thereof, so that the Lagrange density
can be written as

L = L (φ(x), ∂µφ(x)) . (1.2)

The four-dimensional spatial integral over L is the action:

S =

∫
d4xL, (1.3)

assuming that the fields vanish at infinity. Since the action is a Lorentz invariant
function and it is stationary under arbitrary variations of the field δφi(x) (action
principle),

δS =

∫
d4x

{
∂L

∂φi(x)
− ∂µ

∂L
∂(∂µφi(x))

}
δφi(x)

!
= 0, (1.4)

1



Chapter 1 Physical method

the term in brackets has to vanish so that we obtain the Lorentz covariant equations
of motion from the Euler-Lagrange equations:

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0. (1.5)

Noether’s Theorem

Emmy Noether1 found one of the most important theorems in physics. It connects
global symmetries to conserved quantities:

Theorem 1.1.1. To any continuous global symmetry which leaves the Lagrange density
invariant, there exists a corresponding law of conservation and a conserved quantity:

δL = 0 ⇔ ∂µJ
µ = 0, (1.6)

where δL denotes the variation of the Lagrange density. The conserved quantity is also
called Noether charge, which is a spatial integral over the charge density,

Q(t) =

∫
d3x J0(t,x). (1.7)

Examples for Field Theories

Particles are divided into two inherently different types depending on their spin;
half-integer spin particles, called fermions2, and integer spin particles, called bosons3.
They differ in one decisive property: fermions obey the Fermi-Dirac statistics theorem,
implying that no two fermions can occupy the same state following the Pauli exclusion
principle. Bosons, on the other hand, obey Bose-Einstein statistics, which means that
there is no boundary on the number of particles which can occupy the same state.
This also implies that particles in the same state are indistinguishable, in contrast
to classical particles. Massive spin 0- and spin-1/2 particles are described by the
Klein-Gordon and Dirac theory, respectively [BD65]:

For a free massive, neutral scalar field (j = 0, m 6= 0) the Lagrange density is given by

LKG =
1

2
(∂µφ

∗)(∂µφ)− 1

2
m2φ2, (1.8)

1Amalie “Emmy” Noether, *1882 Erlangen, Germany; †1935 Bryn Mawr (PA), USA
2named after Enrico Fermi, *1901 Rome, Italy, †1954 Chicago (IL), USA
3named after Satyendra Nath Bose, *1894 Kolkata, India, †1974, ibid.
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1.2 Gauge Theory

with the equation of motion

(
� +m2

)
φ = 0, (1.9)

known as the Klein-Gordon equation. The equation implies the validity of the theory of
special relativity : any relativistic covariant free field satisfies this equation (component-
wise for n-dimensional fields).
A massive, charged spin-1/2 field is described by the Dirac equation resulting from the
Lagrangian

LDirac = i
(
ψ̄/∂ψ

)
−mψ̄ψ (1.10)

⇒ −iγµ∂µψ +mψ = 0. (1.11)

1.2 Gauge Theory

Gauge theories are the very foundation of modern physics. The concept of theories with
intrinsic symmetries, meaning that they are invariant under certain transformations,
has led to the development of many successful theories improving our understanding of
nature in many ways. This formalism connects Noether’s theorem with the concept of
group theory: to each conserved quantity there exists an underlying symmetry which
can be expressed by a symmetry group. Hence, the theory is invariant under the action
of a symmetry group G, being a representation of a Lie algebra G. There are different
types of symmetries which we will discuss in the following.

1.2.1 Internal Symmetries and Global Transformations

Transformations of a Lagrangian L(φi, ∂µφi) under actions of an arbitrary symmetry
group which transform only the fields while leaving the coordinates untouched,

φi(x)→ φ′i(x) = φ(x) + δφi(x) (x→ x′ = x), (1.12)

are called internal symmetries. The symmetry group is defined through a corresponding
Lie algebra

[Ti, Tj] = fijkTk, (1.13)

3



Chapter 1 Physical method

where the Ti are the generators of the group. The fijk are the structure constants of
the Lie algebra. They fulfill the total antisymmetry relation and the Jacobi identity,

fijk = −fjik, (1.14a)

fijkfklm + fjlkfkim + flikfkjm = 0. (1.14b)

An infinitesimal transformation (εk being an arbitrary global infinitesimal parameter)
is then represented by

φi(x)→ φ′i(x) = φi(x) + δφi(x), (1.15a)

where δφi(x) = (T k)ijεkφj(x). (1.15b)

The invariance condition can be derived in analogy to the Euler-Lagrange equations:
For infinitesimal transformations, the invariance of the action S of a system can be
written as

δS =

∫
d4x

(
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi)

)
= 0. (1.16)

Since the integral has to fulfill this identity regardless of the path of integration, the
integrand has to be zero,

∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi) = 0. (1.17)

Using the identity δ(∂µφi) = ∂µδφi, this can be simplified further to(
∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

))
︸ ︷︷ ︸

=0 Euler-Lagrange eq.s

δφi + ∂µ

(
∂L

∂(∂µφi)
δφi

)
= 0 (1.18)

from which we obtain the Noether current J a,µ by using the definition of δφi,

∂µ

(
∂L

∂(∂µφi)
εaT

aφi

)
= εa∂µ

(
∂L

∂(∂µφi)
T aφi

)
︸ ︷︷ ︸

=:J a,µ

= 0 (1.19)

which is conserved.

4



1.2 Gauge Theory

1.2.2 Local Invariance and Gauge Groups

A gauge group is a group of local (or gauge) transformations

φi(x)→ φ′i(x) = φi(x) + (T k)ijεk(x)φj(x). (1.20)

Local transformations are used to describe the dynamics of particle fields and their
interaction with gauge fields in so-called gauge theories.

Despite being invariant under global transformations, the invariance of a theory can
be broken locally; that is, by a transformation that is characterized by a parameter
depending on the coordinate, ε = ε(x). Local transformations can result in non-
vanishing terms

δL =
∂L

∂ (∂µφi)
T kijφj(x)∂µεk(x) 6= 0 (1.21)

However, we can regain the invariance by introducing so-called gauge fields A′al (x)

such that the new Lagrangian is invariant under local transformations.

The Lagrangian of the free gauge fields is given by

L = −1

4

n∑
a=1

FaµνFa,µν , (1.22)

where Faµν is the field strength tensor,

Faµν = ∂µAaν − ∂νAaµ − fabcAbµAcν . (1.23)

If the generators commute, the theory is called abelian. In this case, the generators are
diagonal and the structure constants vanish. An example for such a theory is QED. If
the generators are non-commuting, the theory is consequently called non-abelian. In
the following, we will discuss a description of non-abelian gauge theories, the Yang-Mills
theory.

1.2.3 Nonabelian Gauge Theory: Yang-Mills Theory

C.N. Yang and R.L. Mills [YM54] proposed in 1954 a locally invariant Lagrangian
for non-abelian gauge fields which is now referred to as Yang-Mills theory. Its renor-
malizability was proven by Gerard ’t Hooft [’t 71]. The theory is described by the

5



Chapter 1 Physical method

Lagrangian

LYM = −1

4
TrFµνFµν = −1

4

N2−1∑
a=1

FaµνFa,µν , Fµν = FaµνTa, (1.24)

which is invariant under the gauge group SU(N). The generators of the symmetry
group satisfy

[
T a, T b

]
= ifabcTc. (1.25)

The covariant derivative for the SU(N) Yang-Mills gauge theory is defined as

Dµ = ∂µ − ig TaAaµ, (1.26)

where g is the SU(N) coupling constant. The field strength tensor in eq. (1.23) can be
derived from the commutation relation of the covariant derivative,

[Dµ, Dν ] = −ig TaFaµν . (1.27)

In modern physics, Yang-Mills theories play an important role. In the standard model
of particle physics, the description of strong interactions, quantum chromodynamics
(QCD), is an SU(3) Yang-Mills theory. Also, the electroweak interaction is of Yang-Mills
type, with the underlying symmetry being SU(2)× U(1).

Due to Noether’s theorem (c.f. section 1.1), the Lagrangian (1.24) leads to the
conserved currents

J a
µ = fabcAb,νF cµν ⇔ DµJ a

µ = 0. (1.28)

1.3 S-Matrix Formalism and Dispersion Theory

The S-Matrix formalism is an approach to describe scattering processes commonly
used in modern physics. It was first introduced by Wheeler [Whe37] based on the
Heisenberg description of interactions. The scattering Matrix, or S-Matrix, can be
decomposed as S = I + iT , where T is the transition matrix which is defined such that

〈f |T |i〉 = (2π)4δ(4)(Pf − Pi)Mfi. (1.29)

6



1.3 S-Matrix Formalism and Dispersion Theory

The formalism is based on the assumption that the S-Matrix fulfills, besides Lorentz
invariance, fundamental properties like unitarity, analyticity, and crossing symmetry.
From unitarity, S†S = 1, we obtain

− i(T − T †) = T †T. (1.30)

From this, we can follow by virtue of Cutkosky’s rule that the absorptive part of
the transition amplitude is proportional to the sum over all kinematically allowed
intermediate states [Kni96],

AbsT = 2 ImMfi = (2π)4
∑
n

δ(4)(Pn − Pi)M∗
nfMni (1.31)

As a consequence of the postulate about analyticity, scattering variables can be
continued into the complex plane if they are expressed as functions of specific kinematic
variables. This property is on of the foundations of dispersion theory.

1.3.1 Causality and Analyticity

There is a direct connection between analyticity and causality which we will show in
the following. A physical system is analytic if it satisfies the conditions

(i) Linearity (superposition principle),

(ii) Time-translation invariance, and

(iii) Causality.

Consider a simple scattering process of massless particles, written in the framework of
the propagation of waves along one axis. The incident wave packet is a superposition
of plane waves,

ψinc(x, t) =

∞∫
−∞

A(ν) exp iν(x− ct)dν, (1.32)

and the corresponding scattered wave is

ψsc(r, t) =

∞∫
−∞

A(ν)F (ν)
exp iν(r − ct)

r
dν, (1.33)

7



Chapter 1 Physical method

where F (ν) is the forward scattering amplitude. Now, for a scattering process at time t,
let G(t) be the incident wave seen by the target at x = 0 and H(t) be the scattered
wave at some arbitrary but fixed observation point R,

G(t) ≡ ψinc(0, t) =

∞∫
−∞

A(ν)e−iνtdν (1.34)

H(t) ≡ ψsc(R, t) =

∞∫
−∞

A(ν)F (ν)
eiν(R−t)

R
dν (1.35)

The output of the scattering process can be rewritten using

L(t, t′) ≡ 1

2π

∞∫
−∞

f(ν ′)
eiνR

R
eiν(t−t′) (1.36)

so that

H(t) =
1

2π

∞∫
−∞

dt′
∞∫

−∞

dν ′f(ν ′)
eiνR

R
eiν
′t′

∞∫
−∞

dνA(ν)eiνt
′

︸ ︷︷ ︸
=G(t′)

=

∞∫
−∞

dt′L(τ)G(t′)

(1.37)

where we have used that L is obviously linear, L(t, t′) = L(t− t′) =: L(τ). Imposing
the causality condition which is a property of physical amplitudes gives the constraint

L(τ) = 0 for τ < 0. (1.38)

By virtue of Titchmarsh’s theorem, this implies for L(τ) that its Fourier transform
L̃(ν) is analytic in the upper half of the complex energy plane. By comparing the
Fourier relation with the definition of L, eq. (1.36), we find

L(τ) =
1

2π

∞∫
−∞

L̃(ν)e−iντdν (1.39)

⇒L̃(ν) = F (ν)
e−iνR

R
. (1.40)

8



1.3 S-Matrix Formalism and Dispersion Theory

It immediately follows that F (ν) is analytic. Due to the Schwarz reflection principle,
F (ν∗) = F ∗(ν), the amplitude is also analytic in the lower half plane.

1.3.2 Dispersion Relations

For a massive particle, the amplitude F (ν) will have branch cuts along the real axis,
see fig. 1.1. Due to analyticity we can apply Cauchy’s theorem,

F (ν) =
1

2πi

∮
C

dν ′

ν ′ − ν
F (ν ′). (1.41)

The integration path is shown in fig. 1.1. Since we are usually interested in physical

ReF (ν)

ImF (ν)

ν0−ν0

Figure 1.1: Contour of integration in the complex energy plane used to derive the
dispersion relation. The half-circles are blown up to infinity.

energies, we choose to evaluate F (ν) at ν = x+ iε for real x. We can split the integral
into curve integrals along the semicircles of radius R and parts along the real axis. If we
let R→∞, the parts along the contour vanish—assuming a sufficiently well-behaving

9



Chapter 1 Physical method

F (ν) (no-subtraction hypothesis)—and from the integrals along the branch cuts around
the singularities we obtain an unsubtracted dispersion relation,

ReF (ν) =
1

π
P

∞∫
−∞

dν ′
ImF (ν ′)

ν ′ − ν
. (1.42)

The no-subtraction condition necessary for the validity of this dispersion relation is
merely an assumption which is put into the theory. There is no guarantee that it holds.
A more elaborate discussion on the subject of subtractions can be found, among others,
in [Nus72], along with a detailed introduction into the subject of dispersion theory.

As we require symmetry under crossing for physical amplitudes, this dispersion relation
can be rewritten as

ReF (ν) =
2

π
P
∞∫

0

dν ′
ImF (ν ′)

ν ′2 − ν2
. (1.43)

Originally, this relation was derived in the context of dispersion of electromagnetic
waves in sparse media by Kramers and Kroenig. In case of the Kramers-Kroenig
relation, real and imaginary part of F (ν) are related to the real refraction index n(ν)

and the extinction coefficient β(ν),

ReF (ν) = n(ν)− 1 and ImF (ν) = β(ν). (1.44)

Apart from the pure mathematical derivation of the relation, the idea of the application
to particle scattering processes is that of a dispersion relation in the limit of infinitely
sparse media, where the medium effectively contains of a singular discrete scattering
center, i.e., a single target particle, and the dispersion is effectively the asymptotic
interaction with the target.

For a more elaborate treatise on the original Kramers-Kroenig relation and its appli-
cation to Compton scattering, refer to the detailed review by D. Drechsel et al.
[DPV02].
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Chapter 2

Lagrangian Description of Charged
Massive Vector Bosons

In this chapter we consider the field-theoretic description of charged massive spin-1
particles to study its electromagnetic interactions. The purpose of this study is to
derive low-energy theorem for electromagnetic moments from Compton scattering.
The “folk theorem” given by Weinberg and Leutwyler [Wei79, Leu94] states that:

For a given set of asymptotic states, perturbation theory with the most
general Lagrangian containing all terms allowed by the assumed symmetries
will yield the most general S-matrix elements consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetries.

Therefore, if we derive a low-energy expansion from an effective Lagrangian of charged
massive vector bosons consistent with electromagnetic gauge symmetry, we should
be able to obtain the low-energy theorems. In this way we are led to consider the
following general choice of the Lagrangian density:

L = −1

2
W ∗
µνW

µν +M2W ∗
µW

µ − 1

4
FµνF

µν (2.1)

+ ie`1W
∗
µWνF

µν + ie`2W
∗
µνW

α∂αF
µν − ie`2W

∗
αWµν∂

αF µν ,

where `1 and `2 are the magnetic and quadrupole moment constants, respectively,
Wµν := DµWν − DνWµ is the covariant vector boson field strength tensor, and
Fµν = ∂µAν − ∂νAν is the photon field tensor.

The spin-1 constants `i are related to the electromagnetic moments by

µ = (1 + `1)
e

2M
and Q = (`2 − `1)

e

M2
. (2.2)

11



Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

In the following, we will motivate this choice of the effective Lagrangian.

2.1 The Proca Field

First, we will introduce the Proca1 equation, which is the equation of motion for a
free massive vector boson. The representation of particles with spin j = 1 requires
at least a four-dimensional base space. This is due to the fact that j = 1 fields have
three d.o.f.s, i.e. the representation needs at least be three-dimensional. In favor of a
Lorentz covariant notation, we choose the Minkowski space M4 as base space.

A vector boson of mass M is described by a real relativistic spinor field χµ(x), also
known as the Proca field. It obeys the Klein-Gordon equation in each of its four
components, i.e. (

� +M2
)
χµ = 0. (2.3)

The field transforms covariantly under Lorentz transformations aµν ,

χµ (x)→ χ′µ (x′) = aµνχ
ν (x) . (2.4)

Using the free-field Lagrangian

LP = −1

4
χµνχ

µν +
1

2
M2χµχ

µ, (2.5)

where χµν = ∂µχν − ∂νχµ is the corresponding field strength tensor, we recover from
the Euler-Lagrange differential equations the free-field equation of motion (EOM)

[
(� +M2)δνµ − ∂µ∂ν

]
χν(x) = 0, (2.6)

the Proca equation [Tak69]. Note that this equation goes over into the homogeneous
Maxwell equations if M → 0. In contrast to the Maxwell field, however, the Proca field
fulfills the Lorentz condition, ∂µχµ = 0, as can be derived by applying the differential
operator ∂ on the Proca current:

∂µ∂νχ
µν = M2∂µχ

µ !
= 0

⇒ ∂µχ
µ = 0.

(2.7)

1Alexandru Proca, 1897-1955, Romanian Theoretical Physicist [Poe05]
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2.2 Charged Proca Fields

2.2 Charged Proca Fields

In order to describe a massive vector particle with electric charge, we need two real
spinor fields χ(1) and χ(2) which are described by the Lagrangian

LP
(
χ(1)
µ , χ(2)

µ , ∂µχ
(1)
ν , ∂µχ

(2)
ν

)
(2.8)

= L1 + L2

=
2∑
i=1

(
1

4
χ(i)
µνχ

(i)µν +
1

2
M2χ(i)

µ χ
(i)µ
)

where χ(i)
µν := ∂µχ

(i)
ν − ∂νχ(i)

µ .

This can be described equivalently by introducing the complex fields

Wµ =
1√
2

(
χ(1)
µ + iχ(2)

µ

)
and W ∗

µ =
1√
2

(
χ(1)
µ − iχ(2)

µ

)
(2.9)

which obviously fulfill the Proca equation. One can thus find a Lagrangian

L′ = L′
(
Wµ,W

∗
µ , ∂µWν , ∂µW

∗
ν

)
(2.10)

which is equivalent to the real field Lagrangian L
(
χ

(1)
µ , χ

(2)
µ , ∂µχ

(1)
ν , ∂µχ

(2)
ν

)
.

Proof.

LP = L1 + L2

=
2∑
i=1

(
−1

4
χ(i)
µνχ

(i)µν +
1

2
M2χ(i)

µ χ
(i)µ
)

(2.11)

= −1

2
(∂µW

∗
ν ) (∂µW ν) +

1

2
(∂µW

∗
ν ) (∂νW µ)

+
1

2

(
∂νW

∗
µ

)
(∂µW ν)− 1

2

(
∂νW

∗
µ

)
(∂νW µ)

+
M2

4
(W ·W + 2W ·W ∗ +W ∗ ·W ∗ −W ·W + 2W ·W ∗ −W ∗ ·W ∗)

= −1

2
W̃ ∗
µνW̃

µν +M2W ∗
µW

µ.
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Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

Complex Proca Spinors

The spinor for a complex, i.e. charged, Proca field with polarization λ is defined as

W µ(p, λ) :=

(
p · ζλ
M

, ζλ +
p · ζλ

M(M + E)
p

)
, (2.12)

where the ζλ are the polarization vectors for the different polarizations λ,

(ζµ±) =
1√
2

(0,∓1,−i, 0)ᵀ and (ζµ0 ) = ê3. (2.13)

The spinors fulfill the completeness relations∑
r

ζµ(p, r)ζν(p, r) = −gµν +
pµpν
M2

, (2.14)

as well as, in case of Compton scattering which is discussed in this work, the identities
with regard to initial and final momenta p, p′ for the bosons and q, q′ for the photons,

pµW
µ(p) = 0,

qµε
µ(q) = 0,

p′µW
∗µ(p′) = 0,

q′µε
∗µ(q′) = 0.

(2.15)

2.3 Construction of an Effective Lagrangian

In this section, we will construct a general Lagrange density for massive vector bosons
fulfilling Lorentz invariance, gauge invariance and hermiticity. Following the usual
approach of field theory, we start with the Lagrangian for a free particle with spin
j = 1,

L0 = −1

2
W̃ ∗
µνW̃

µν +M2W ∗
µW

µ (2.16)

with the field tensor W̃µν = ∂µWν − ∂νWµ.

The free Lagrangian L0 is invariant under global U(1) gauge transformations

Wµ 7→ W ′
µ = eiαWµ, (2.17)

as will be discussed explicitly below.
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2.3 Construction of an Effective Lagrangian

To achieve invariance under local gauge transformations—meaning that the phase α is
a function of the coordinate x—we introduce a covariant derivative (c.f. section 1.2)
∂µ 7→ Dµ = ∂µ − ieAµ which satisfies

DµW
ν 7→ [DµW

ν ]′ = D′µW
′ν = eiα(x)DµW

ν . (2.18)

For this we need a gauge field Aµ (x), later to be identified with the electromagnetic
field. This definition is also referred to as Gell-Mann–Lévy trick, which is analogous
to the minimal coupling (or minimal substitution) in classical field theory. Hence, for
derivatives of our spinor it follows that

∂µW
ν 7→ DµW

ν = (∂µ − ieAµ (x))W ν , (2.19)

so that we can define the covariant field strength tensor,

DµWν −DνWµ =: Wµν . (2.20)

Let us only regard the field term of the Lagrangian for now:

W ∗
µνW

µν =
(
D∗µW

∗
ν −D∗νW ∗

µ

)
(DµW ν −DνW µ)

= W̃ ∗
µνW̃

µν + ieW̃ ∗
µνT

µν − ieT ∗µνW̃
µν + e2T ∗µνT

µν

= W̃ ∗
µνW̃

µν + 2ieW̃ ∗
µνA

νW µ − 2ieAνW ∗
µW̃

µν (2.21)

+ 2e2A2 |W |2 − 2e2AνW
∗
µA

µW ν ,

where we defined the coupling tensor Tµν := WµAν −WνAµ.
Following from this, the interaction Lagrangian resulting from minimal substitution is
given by

Lint = −ieW̃ ∗
µνA

νW µ + ieW ∗
µAνW̃

µν − e2A2 |W |2 + e2W ∗
µAνW

µAν

In contrast to these coupling terms coming from minimal substitution, higher order
terms in W and A can be deduced by taking into account the symmetries of the
expected field theory. According to Lorcé [Lor09], for a spin-1 particle, we will have
contributions of electromagnetic moments up to 2S + 1 = 3, so there are additional
terms proportional to the anomalous magnetic and quadrupole moments `1 and `2.
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Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

The magnetic dipole term is introduced in the coupling term

L2 = ie`1W
∗
µWνF

µν , (2.22)

which is the only contribution proportional to `1 in this model. For the quadrupole
term, the boson field couples to a derivative of Fµν . Other forms of coupling, such
as polarizabilities, are not included in the theory as we assume that these do not
contribute to GDH and QSR. The most general term involving this coupling is

L3 = ie`2W
∗
µνW

α∂αF
µν − ie`2W

∗
αWµν∂

αF µν . (2.23)

We want to stress that one has to use the covariant field strength tensor Wµν in all of
the terms. Otherwise, one will miss, apart from the interaction terms derived above,
additional quadrupole terms coming from L3:

L3 = ie`2W̃
∗
µνW

α∂αF
µν − ie`2W

∗
αW̃µν∂

αF µν (2.24)

− 2e2`2AµW
∗
νW

α∂αF
µν − 2e2`2W

∗
αAµWν∂

αF µν .

If these were neglected, gauge invariance of the amplitudes would be broken. In many
of the calculations within this thesis, this might not even be noticed as we are using
natural values, i.e. l2 = 0. However, the derivation of the quadrupole moment sum rule
in the physical field theory would yield an incorrect result. Thus it is very important to
check the intermediate results after each step. Gauge invariance is a decisive property
of the theory. It is also a good test to find out if there occur errors in the calculation,
or if the theory might be incomplete at this order.

2.4 Gauge Invariance

The Lagrangian LEff is, by construction, a gauge theory, i.e. it has to be invariant under
symmetry transformations of the gauge group U(1). To make sure we constructed it
correctly, we explicitly check gauge invariance in this section. The Lagrangian should
thus be invariant under the simultaneous translations

Wµ → eiα(x)Wµ and Aµ → Aµ +
1

e
∂µα(x). (2.25)

We look at the Lagrangian LEff term-by-term:
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2.5 Feynman Rules for LEff

• Wµν transforms covariantly (c.f. section 1.2), hence the quadratic term in the
field strength tensor is invariant;

• Fµν is invariant by construction;

•
(
W ∗
µW

µ
)′

= e−iα(x)W ∗
µe

iα(x)W µ = W ∗
µW

µ since W and e±iα(x) commute;

•
(
W ∗
µνW

µ
)′

= e−iα(x)W ∗
µνe

iα(x)W µ = W ∗
µνW

µ.

As all appearing terms are gauge invariant, so are linear combinations. It follows that
LEff is invariant under U(1) gauge transformations.

2.5 Feynman Rules for LEff

In order to describe interactions with the newly-constructed effective Lagrangian LEff,
we need to derive the corresponding Feynman rules. In this theory, two types of
vertices appear: the 3-point vertex γWW and the 4-point contact vertex γγWW . In
order to recover the correct Feynman rules, the states have to be contracted with the
fields coming from the Lagrangian, or more precise, the action (c.f. section 1.3). For a
quick overview over the resulting Feynman rules, see App. A.1.

A Taylor expansion of the S-Matrix yields the interaction part

S = 〈f |T exp (i

∫
dxLEff)|i〉 (2.26)

=���
�:0〈f |1|i〉 + i

∫
d4x〈f |LEff|i〉

which corresponds to a Feynman rule describing the transition from the initial state |i〉
to the final state |f〉 6= |i〉. The contraction is evaluated using the plane-wave expansions
which can be found in App. A.2.1. There, we have also derived the contraction relations.
In the following we will neglect the integration

∫
d4x; however, it is still implied in

this symbolic notation.
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Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

Propagator The propagator for a massive vector boson is that of the Proca fields

∆αβ
P (p) = − gαβ − pαpβ/M2

p2 −M2 + i0+
. (2.27)

By calculating the appropriate Feynman rule for the free field, one recovers the inverse
propagator, which confirms that this is the correct definition:

〈Wα(p)|W ∗
µνW

µν |W β(p)〉 = −gαβ
(
p2 −M2

)
+ pαpβ (2.28)

ν

β α

(a) 3-point vertex γWW

ν q µ
q′

pβ
p′

α

(b) contact vertex γγWW

Figure 2.1: Massive vector boson scattering vertices for derivation of Feynman rules

γWW–Vertex To provide a better overview, we will calculate the vertices term-by-
term. Crossing symmetry implies here that the same Feynman rules will be obtained
whether the photon is initial or final. The vertex is defined as

Γαβµ := 〈Wα(p′)|LEff|W β(p)Aµ(q)〉, (2.29)

which contains the following four sub-terms:

ie
1

2
〈Wα|

(
T ∗ρτW

ρτ
∣∣W βAµ〉 − ie

1

2
〈Wα|W ∗

ρτ T
ρτ )
∣∣W βAµ〉 (2.30)

= i
e

2
〈0|
(
δαρ δ

µ
τ − δατ δµρ

) (
−ipρ gτβ + ipτ gρβ

)
|0〉

− i
e

2
〈0|
(
ip′ρ δ

α
τ − ip′τ δ

α
ρ

) (
gρβgτµ − gτβgρµ

)
|0〉

= e
(
pαgµβ + p′

β
gµα − P µgαβ

)
,

ie`1〈Wα|W ∗
ρWτF

ρτ
∣∣W βAµ〉 = ie〈0|δαρ δβτ (−iqρ gτµ + iqτ g

ρµ) |0〉 (2.31)

= e(qαgβµ − qβgαµ),
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2.5 Feynman Rules for LEff

ie`2〈Wα|W ∗
ρτWσ∂

σF ρτ
∣∣W βAµ〉 (2.32)

= ie`2

((
ip′ρ δ

α
τ − ip′τ δ

α
ρ

)
δβσ(−iqσ) (−iqρgτµ + iqτgρµ)

)
〈0|0〉

= 2e`2

(
p′ · q gαµ − p′µqα

)
qβ,

−ie`2〈Wα|W ∗
σWρτ∂

σF ρτ
∣∣W βAµ〉 (2.33)

= −ie`2

(
δασ
(
−ipρδβτ + ipτδβρ

)
(−iqσ) (−iqρgτµ + iqτgρµ)

)
= 2e`2

(
p · q gβµ − pµqβ

)
qα.

So, put together, this results in the 3-vertex Feynman rule

⇒ Γαβµ(p, p′) = − e
(
gαβP µ − p′βgαµ − pαgβµ

)
(2.34)

+
(
qβgαµ − qαgβµ

)
`1

− 2
(
qαqβP µ − p · qqαgβµ − p′ · qqβgαµ

)
`2,

where P µ = pµ + p′µ.

γγWW–Vertex

Γαβµν(p′, p) := 〈Wα(p′), Aν(k)|LEff|W β(p)Aµ(q)〉 (2.35)

First, we focus on the direct interaction parts. Note that we have to consider crossing,
which means here that the photons can couple to both the initial and the final state.

−e2〈Wα(p′)Aµ|A2W ∗
τW

τ
∣∣W βAν〉 = −2e2

(
gµνgαβ

)
, (2.36)

e2〈Wα(p′)Aµ|AρW ∗
τA

τW ρ
∣∣W βAν〉+ e2〈Wα(p′)Aµ|AρW ∗

τA
τW ρ

∣∣W βAν〉 (2.37)

= e2
(
gαµgβν + gανgβµ

)
,

e2`2
1

2
〈WαAµ|T ∗ρτWσ∂

σF ρτ
∣∣W βAν〉+ e2`2

1

2
〈WαAµ|T ∗ρτWσ∂

σF ρτ
∣∣W βAν〉 (2.38)

= −e2`2

(
2qαqβgµν − qβqµgαν − qβqνgαµ

)
,
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Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

e2`2
1

2
〈WαAµ|W ∗

σTρτ∂
σF ρτ

∣∣W βAν〉+ e2`2
1

2
〈WαAµ|W ∗

σTρτ∂
σF ρτ

∣∣W βAν〉 (2.39)

= −e2`2

(
2qαqβgµν − qαqµgβν − qαqνgβµ

)
,

⇒ Γαβµν(p, p′) =−
(
2gαβgµν − gαµgβν − gανgβµ

)
e2 (2.40)

−
(
4qαqβgµν − qαqµgβν − qαqνgβµ

−qβqµgαν − qβqνgαµ
)
e2`2.

For the photon, we simply use the familiar photon propagator and the appropriate
contractions (see App. A.2.2 for reference).

2.6 Electromagnetic Moments and Natural Values

The `i are a way to parametrize the electromagnetic moments. Following closely the
paper by Lorcé [Lor09], we give a short introduction on anomalous electromagnetic
moments for particles of any spin, followed by a presentation of the concept of natural
values.

In general, a particle of spin j, has 2j + 1 electromagnetic moments corresponding
to the total number of independent covariant vertex structures if Lorentz, parity and
time-reversal symmetries are respected. Due to parity, the particle has only even
electric and odd magnetic multipoles. The electromagnetic moments can be obtained
via multipole decomposition of the electromagnetic current

Jµ(q) =

∫
d3reiq·rJµ(x) ≡ e

2M
〈p′, j|Jµ(0)|p, j〉. (2.41)

For the electric moments, the multipole decomposition in the Breit frame is

ρ(q) ≡ J0(q) = e

2j∑
l=0

l even

(−τ)
l/2

√
4π

2l + 1

l!

(2l − 1)!!
GEl(Q

2)Yl0(0) (2.42)

= e

[
GE0(Q2)− 2

3
τGE2(Q2) + . . .

]
, (2.43)

where we used τ ≡ Q2/4M2 and Q2 ≡ −q2 is the momentum transfer squared. Similarly,
the magnetic moments are obtained from a decomposition of the magnetic density
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2.6 Electromagnetic Moments and Natural Values

which is related to the charge current J(q) by

ρM(q) ≡ J(q) = ie
√
τ

2j∑
l=1
l odd

(l + 1)(−τ)
(l−1)/2

√
4π

2l + 1

l!

(2l − 1)!!
GMl(Q

2)Yl0(0) (2.44)

= 2ie
√
τ

[
GM1(Q2)− 4

5
τGM3(Q2) + . . .

]
(2.45)

The electromagnetic moments are defined as the low-energy constants of the multipole,
or Sachs form factors at zero momentum transfer, i.e. Q2 = 0. The lth electric moment
Ql is thus given by

Ql =
e

M l

(l!)2

2l
GEl(0), (2.46)

while the lth magnetic moment is defined as

µl =
e

M l

(l!)2

2l−1
GMl(0). (2.47)

For j = 1, the most general electromagnetic interaction current is

Jµ(1) = −W ∗
α(p′, λ′)

[
gαβP µF1(Q2) + (gµβqα − gµαqβ)F2(Q2)

− qαqβ

2M2
P µF3(Q2)

]
Wβ (p, λ).

(2.48)

The interaction is thus described in terms of the independent covariant vertex structures

− gαβP µ,

gµβqα − gµαqβ, and

qαqβ

2M2
P µ.

(2.49)

Fixing λ = λ′ = +1, we can obtain the relation between the Sachs form factors and
the form factors Fi corresponding to these structures. For the electric moment, the
charge density evaluates to

J0
(1) = 2p0

(
F1(Q2) + τ(F1(Q2)− F2(Q2) + (1− τ)F3(Q2)) sin2 θ

)
(2.50)

with θ the scattering angle, while for the magnetic part, we get

∇ ·
(
J (1) × q

)
= i
√
τ2p0F2(Q2)2

√
4π3Y10(0). (2.51)
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Chapter 2 Lagrangian Description of Charged Massive Vector Bosons

Hence, we can make the identifications

GE0(Q2) =
√

1 + τ

(
F1(Q2) +

2

3
τGE2(Q2)

)
, (2.52a)

GE2(Q2) =
√

1 + τ
(
F1(Q2)− F2(Q2) + (1 + τ)F3(Q2)

)
, and (2.52b)

GM1(Q2) =
√

1 + τF2(Q2). (2.52c)

The natural value of an electromagnetic moment of any particle is the value obtained
for an elementary particle. It can be obtained under the assumption that at tree-
level and Q2 = 0, the light-cone helicity is conserved [Lor09]. The deviation from
the natural value is an indicator for the internal structure of non-elementary, i.e.
composite, particles which is measured by anomalous moments. The natural values for
an elementary particle with unit electric charge Z = +1 up to the quadrupole moment
are given by Lorcé [Lor09] as

GE0(0) = 1, (2.53a)

GM1(0) = 2j, and (2.53b)

GE2(0) = −j(2j − 1). (2.53c)

For a spin-1 particle, the natural electromagnetic moments are

µ =
e

2M
and Q =

e

M2
(2.54)

which implies in terms of our electromagnetic moment constants `i

`1 = 1 and `2 = 0. (2.55)
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Compton Scattering and Sum Rules

γ(q, σ) γ(q′, σ′)

p, λ p′, λ′

Figure 3.1: Complete real forward Compton scattering diagram for polarized scattering
off particles with arbitrary spin j. The wavy lines are the photons of
momentum q and polarization σ probing the polarized target which is
depicted by the bold lines. The grey circle denotes all possible intermediate
states.

The purpose of this study is to derive low-energy theorems for Compton scattering
(i.e. elastic photon scattering) from a target with spin 1. The real forward Compton
scattering (RFCS) amplitude of a polarized photon γ(q, εσ) off a (massive) particle
with arbitrary spin j is depicted in fig. 3.1, where the grey circle in the center denotes
a sum over all possible intermediate states. The CS amplitude can be written as a
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function of only the external photon lines:

T = e2ενε
∗
µT

µν

= e2ενε
∗
µ i
∫
d4xeiq·x〈p, λ|T Jµ(x)Jν(0)|p, λ〉,

where ε and ε∗ are the polarization vectors of the photon. Here, we use circularly
polarized photons exclusively. Compton scattering (CS) is a useful means to gain an
insight into the electromagnetic properties of a particle. Real scattering means that

Q2 ≡ −q2 = 0. (3.1)

3.1 Decomposition of the Polarized Amplitude

The polarization of the amplitude depends solely on the spin states of the photon,
denoted by polarization vectors (ε, ε∗), and the target, denoted by the spin vector S.
For the spin vectors, we can use the properties of the underlying spin algebra, which
we will discuss briefly in the following.

3.1.1 Spin Algebra for Vector Particles

The spin group for particles of arbitrary spin j is an n = 2j + 1-dimensional repre-
sentation of the spin symmetry algebra su(2). For a given spin j, 2j + 1 relevant
electromagnetic moment structures appear, as Lorcé [Lor09] has pointed out (c.f.
section 2.6).

The structures which appear can be decomposed into structures proportional to

ε · ε∗, [S · ε∗,S · ε] (S · q)2n−1 , and {S · ε∗,S · ε} (S · q)2n−2 , (3.2)

where 0 ≤ n ≤ 2j − 1. Here, S is the spin operator.

For example, in the case j = 1/2 only the first two structures appear, where n = 0:

T (ν) = W † [ε · ε∗f0(ν) + νf1(ν)iS · (ε∗ × ε)] . (3.3)
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3.1 Decomposition of the Polarized Amplitude

The decomposition for arbitrary j, where j > 1/2, is

T (ν) = W †
[
ε · ε∗f0(ν) (3.4)

+ ν

j∑
n∈{N+ 1

2
}

f2n(ν) [S · ε∗,S · ε] (S · q)2n−1

+ ν2

j∑
n∈N

f2n(ν) {S · ε∗,S · ε} (S · q)2n−2
]
W,

where the fi are the e.m. structure functions. The spin vector S can be constructed
via its relation to the Clebsch-Gordan coefficients [Sch07]. To accomplish this, it is
helpful to construct the (2j + 1)× (2j + 1) polarization matrices

(
C(S)
σ

)
λ′+j+1,λ+j+1

=
√
j(j + 1)C(1σ, jλ; jλ′), (3.5)

where
C(j1m1, j2m2; jm) ≡ 〈j1j2m1m2 |j1j2jm〉 (3.6)

are the Clebsch-Gordan coefficients. The indices run as σ = (−1, 1) and λ = (−s, s).
The components of the spin vector are given by

S1 =
1√
2

(C+1 − C−1) , (3.7a)

S2 =
i√
2

(C+1 + C−1) , (3.7b)

S3 = C0. (3.7c)

It can be easily confirmed that these matrices satisfy the spin algebra su(2), [Sk, Sl] =

iεklmSm. They also fulfill the additional properties of a spin operator,

S2 = j(j + 1) and (S3)λ′λ = λ δλ′λ. (3.8)

We choose the 3-axis as the direction of propagation for the photons. The photon
momentum is q = νê3. Since we are using circular polarized photons with respect to
the 3-direction, the polarization vectors are defined as

ε = − 1√
2

(ê1 + iê2) , (3.9)
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Chapter 3 Compton Scattering and Sum Rules

and the commutator and anticommutator can be rewritten as

[S · ε∗,S · ε] = iS · ε∗ × ε, (3.10)

{S · ε∗,S · ε} = S2 − S2
3 , (3.11)

respectively. The first relation is familiar, so we will prove only the latter:

Proof. We can define operators

S+ := S · ε = − 1√
2

(S1 + iS2) (3.12a)

S− := S · ε∗ = − 1√
2

(S1 − iS2). (3.12b)

Thus it follows

{S · ε∗,S · ε} = {S−, S+}

=
1

2
(S1 − iS2)(S1 + iS2) +

1

2
(S1 + iS2)(S1 − iS2)

= S2
1 + S2

2 +
���

���
���

���:0
i
2

([S1, S2] + [S2, S1])

≡ S2 − S2
3 .

3.1.2 Decomposition

In terms of the target polarization λ, the decomposition can be rewritten as

T
(S)
λ (ν) =

e2

M

2j∑
n=0

f ′n(ν)

(
λν

jM

)n
. (3.13)

We consider three cases explicitly: First, the decomposition for the historical case,
j = 1/2, is performed. Next, the spin-1 amplitude will be decomposed which is the
focus of this work. In addition to this, the case j = 3/2 is considered to make a point on
further applications. As we will see, due to the decomposition, an additional term will
appear for every half-spin step, each corresponding to a higher-order electromagnetic
moment (c.f. e.g. Lorcé [Lor09]).
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3.1 Decomposition of the Polarized Amplitude

Nucleons: j = 1/2

For this case the original GDH was derived. The amplitude (here, the χ are the Dirac
spinors for fermions) has the decomposition in terms of the spin matrices

T (ν) = χ† [ε · ε∗f0(ν) + νf1(ν)iS · (ε∗ × ε)]χ. (3.14)

In terms of Eq. (3.13), it follows that (note that the prefactors e2

M
and

(
1
M

)n are from
now on embedded into the f ′i)

T
(1/2)
±1/2 (ν) = f ′0 ± νf ′1. (3.15)

Massive vector bosons: j = 1

The focus of this work is the description of massive vector bosons W . In terms of the
spins, the amplitude is written as

T (ν) = W ∗ [ε · ε∗f0(ν) + νf1(ν)iS · (ε∗ × ε) + ν2f2(ν)
(
S2 − S2

3

)]
W, (3.16)

leading to a decomposition in terms of the helicity,

T
(1)
±1 = f ′0 ± νf ′1 + ν2f ′2, (3.17a)

T
(1)
0 = f ′0.

Note how an additional parameter f ′2 appeared, which is the structure function leading
to the electric quadrupole moment.

Rarita-Schwinger particles: j = 3/2

Rarita and Schwinger have developed a representation of j = 3/2 particles as a
tensor product of j = 1/2 spinors and spin-1 polarization vectors. Proceeding as before,
we obtain the following equations:

T
(3/2)
±1/2 (ν) = f ′0 ±

ν

3
f ′1 +

ν2

9
f ′2 ±

ν3

27
f ′3, (3.18a)

T
(3/2)
±3/2 (ν) = f ′0 ± νf ′1 + ν2f ′2 ± ν3f ′3. (3.18b)
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Chapter 3 Compton Scattering and Sum Rules

Using these decompositions we will be able to derive the structure functions from
the Compton scattering diagrams. In order to accomplish this, we need to choose an
appropriate frame of reference. Therefore, we will first briefly discuss the kinematics
of real Compton scattering, or more generally, scattering processes with two particles
in the initial and final states (2→ 2) in the following section.

3.2 Scattering Kinematics

In this section we will discuss the kinematics of Compton scattering as a special case
of a 2→ 2 scattering process in different frames of reference. We will start from an
invariant description and discuss how to transfer to and between the laboratory system
(LS), also known as lab frame, and the center-of-momentum system (CMS). While
all frames of reference are equivalent, calculations can be of different magnitudes of
complexity depending on the choice of the frame. A good introduction to this subject
is the work by Byckling and Kajantie [BK73].

The general 2 → 2 scattering process is depicted in fig. 3.2. In case of Compton
scattering, we identify pa = p, pb = q, p1 = p′, and p2 = q′, where p(′) and q(′) are the
initial (final) target particle and photon momenta, respectively.

pa

pb

p1

p2

Figure 3.2: Kinematics for 2→ 2 scattering processes.

It is possible to describe scattering kinematics invariantly using the invariant variables
introduced by Mandelstam [Man58]. For Compton scattering, these are defined as

s = (p+ q)2 = (p′ + q′)2,

t = (p− p′)2 = (q − q′)2,

and u = (p− q′)2 = (q − p′)2.

(3.19)

s, u, and t are related to three different reaction channels: s is the invariant mass, of
the incoming and outgoing particles, t is the momentum transfer, and u is the crossed
momentum transfer.
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3.2 Scattering Kinematics

A generalized parametrization of the 4-momenta is

p = (E,p), p′ = (E ′,p′),

q = (ω, q), q′ = (ω′, q′),
(3.20)

where E(′) and ω(′) are the initial-(final-)state target particle and photon energies in a
given frame, respectively. In all frames, the energy-momentum conservation holds:

pµ + qµ = p′
µ

+ q′
µ
. (3.21)

Due to the on-shell condition for external particles, the Mandelstam variables are
constrained by the relation

s+ t+ u =
∑
i

m2
i = 2M2 (3.22)

In general, the differential cross section for unpolarized 2→ 2 scattering is defined as

dσ(s) =
1

8π2λ
1
2 (s,m2

a,m
2
b)

∫
d3p1

2E1

d3p2

2E2

δ(4) (pa + pb − p1 − p2) |Mfi|
2
. (3.23)

Here, |Mfi|
2
is the averaged sum over all spin states of the matrix element,

|Mfi|
2

:=
1

4j

∑
si,ri

|Mfi|2 . (3.24)

The cross section contains the kinematic triangle function, which is defined as

λ
(
s,m2

a,m
2
b

)
:=

((√
m2
a +

√
m2
b

)2
)(

s−
(√

m2
a −

√
m2
b

)2
)
, (3.25)

The relativistically covariant integral over the final state momenta is the N-body phase
space integral which has the form

R2(s;m2
1,m

2
2) :=

∫
d4p1d4p2δ(p

2
1 −m2

1)δ(p2
2 −m2

2)δ(4)(pa + pb − p1 − p2). (3.26)

After integrating over p2 and identifying pa ≡ p, pb ≡ q, p1 ≡ p′ as above, we obtain

R2(s) =

∫
d3p

2E
δ(s+ p′

2 − 2(p+ q) · p′) (3.27)

29



Chapter 3 Compton Scattering and Sum Rules

Laboratory system (LS)

In the LS, the target particle is initially at rest. Thus we have the following initial
and final momenta, where ν is the photon energy:

initial final

p = (m,0) , p′ = (E, k sinφ, 0, k cosφ) , (3.28a)

q = (ν, 0, 0, ν) , q′ = (ν ′, ν ′ sin θ, 0, ν ′ cos θ) . (3.28b)

We consider only real Compton scattering, which implies the on-shell conditions for
initial and final state,

p2 = M2 = p′
2 and q2 = 0 = q′

2
. (3.29)

The Mandelstam variables are related to the LS by

s = M2 + 2νM = M2 + 2ν ′ (E − k cos (θ + φ)) ,

t = 2M2 − 2EM = −2νν ′ (1− cos θ) ,

u = M2 − 2ν ′M = M2 − 2ν (E − k cosφ) .

(3.30)

From these relations we can deduce Compton’s formula for the shift in the photon
wavelength:

ν ′ =
ν

1 + ν
M

(1− cos θ)
. (3.31)

Note that in this frame, the photon energy ν is related to s by ν(s) = s−M2

2M
. Hence,

the LS prefactor is given by

ϕ (ν) =
1

64πν2M2
. (3.32)

The angles θ and φ in the LS are related in a complicated manner. Deriving the
amplitude in this frame requires involved calculations. It is much more convenient if
we choose the CMS for our calculations.

Center-of-Momentum System (CMS)

In the CMS, both particles are initially travelling towards each other with equal
absolute 3-momenta. After the collision, both will deviate from their former course by
a scattering angle ϑ, while maintaining their velocity.
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3.2 Scattering Kinematics

ϑ

Figure 3.3: Compton scattering in the center-of-momentum frame.

Expressed as initial and final 4-momenta, this is written as

initial final

p = (Ecm, 0, 0,−ω) , p′ = (E ′cm,−ω sinϑ, 0,−ω cosϑ) , (3.33a)

q = (ω, 0, 0, ω) , q′ = (ω, ω sinϑ, 0, ω cosϑ) . (3.33b)

Note that in the CMS, the photon energy is ω ≡ ωcm (s) = s−M2

2
√
s
. The CMS prefactor

ϕ(s) in terms of ω is

ϕ (ω) =
1

64π (2Eω3 + 2ω4 + ω2M2)
. (3.34)

With regard to the CMS, we can write the differential cross section as

dσ
dΩcm

1

=
1

4π

1

8π2λ
1
2 (s,M2, 0)

∫
d3pcm
2Ecm

d3q′cm
2ω

δ(4)(p+ q − p′ − q′)|Mfi|
2

=
1

64π2s

|p′cm|
|pcm|

|Mfi|
2
.

(3.35)

However, we want to express the differential cross section in an invariant manner.
Therefore, we change the integration variable to the Mandelstam variable t. Its
differential is related to the CMS differential solid angle via the substitution

dt = 2 |pcmb | |pcm2 | dcosϑ =
1

π
|pcmb | |pcm2 | dΩcm

2

= 2ω2dcosϑ,
(3.36)

so that we finally obtain the invariant cross section

dσ
dt

=
1

16πλ(s,M2, 0)︸ ︷︷ ︸
=ϕ(s)

|Mfi(s, t)|
2
. (3.37)

31



Chapter 3 Compton Scattering and Sum Rules

3.3 Low-Energy Theorems

3.3.1 Original Theorem for Spin 1/2

In 1954, Low [Low54], Gell-Mann and Goldberger [GMG54] derived a low-energy
theorem (LET) for nuclei, i.e. particles with spin S = 1/2. The LET states that to first
order in the perturbation expansion in the photon energy ν, the amplitude T (ν) is
equal to the Born contribution,

T (LO)(ν) = TBorn(ν). (3.38)

In the limit ν → 0, the Born term is the exact solution to the amplitude functions fi
(c.f. section 3.1).
In the nucleon vertex, two underlying structures γµ and σµν appear which correspond
to the electromagnetic moments, i.e. to the aforementioned structure functions fi.
The structure γµ corresponds to the electric dipole, the structure σµν leads to the
anomalous magnetic moment.

For the nuclei, the Born terms are therefore

fBorn(ν) ≡ f0(0) = −Z
2α

M
and (3.39)

gBorn(ν) ≡ f1(0) = −µ
2
a

2π
= − ακ2

2M2
, (3.40)

where the right-hand side of f0(0), found by Thirring [Thi50], is the classical Thomson
limit, and f1(0) is the anomalous magnetic moment LET [Low54, GMG54].

Validity of the LETs As Pantfoerder [Pan98] points out, it is worth mentioning
that this LET is only a fictitious LO-in-α contribution to the anomalous magnetic
moment. This is in contrast to the Thirring LET which is exact in all orders of α.
This is due to the fact that there are no radiative corrections to the physical electric
charge. The anomalous magnetic moment LET, on the other hand, is not guaranteed
to hold in all orders of the expansion; in analogy to the smallness of the Schwinger
correction to the lepton anomalous magnetic moment, we assume that higher order
corrections are also small, so that in principle the LET holds. Cheng [Che68, Che69]
and Roy and Singh [SR70] showed that this is the case up to NLO; still, higher order
contributions to κ might necessitate modifications to eq. (3.40).
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3.3 Low-Energy Theorems

3.3.2 LET for Massive Vector Bosons

In order to derive the LET values for the structure functions, we first need to calculate
the tree-level forward scattering amplitude. As there are, for arbitrary spin j, 2j + 1

elecromagnetic structure functions, we will have three structure functions f0, f1, and
f2 for massive vector bosons, i.e. j = 1.

ν µ

β α

(a) s-channel contribution

ν µ

β α

(b) crossed (u-channel) contribution

ν µ

β α

(c) seagull vertex

Figure 3.4: Born diagrams for polarized Compton scattering off massive vector bosons

At tree level, the three scattering diagrams found in (fig. 3.4) contribute to the
electromagnetic moments (the formulas to these diagrams are given in App. C.1). In
order to identify which structure from the calculated amplitude corresponds to which
electromagnetic moment from the decomposition, it is useful to know that the massive
vector boson spinors are related to the spin operators by

W ∗
i Wj −W ∗

jWi = [Si, Sj] and (3.41a)

W ∗
i Wj +W ∗

jWi = 2δij − {Si, Sj} . (3.41b)

In the rest frame of the target we obtain for fixed photon polarization the correspondence

W ∗ ·W ε∗ · ε = 1, (3.42a)

W ∗ · ε∗W · ε−W ∗ · εW · ε∗ = [Si, Sj] ε
∗
i εj, (3.42b)

W ∗ · ε∗W · ε+W ∗ · εW · ε∗ = {Si, Sj} ε∗i εj, (3.42c)

W · qW ∗ · q ε∗ · ε = −ν2
(
1− (S3)2

)
, (3.42d)
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which can be directly related to the target helicity using

[Si, Sj] ε
∗
i εj = −S3 = −λ, (3.43a)

{Si, Sj} ε∗i εj = (S3)2 = λ2, (3.43b)

−ν2
(
1− (S3)2

)
= −ν2(1− λ2). (3.43c)

Without further ado, the result for the tree-level forward Compton scattering amplitude
using our effective Lagrangian is given by:

Tfi =− e2

M
W ∗ ·W ε∗ · ε (3.44)

− e2ν

4M2
(`1 − 1)2(W ∗ · ε∗W · ε−W ∗ · εW · ε∗)

− e2

M3
`2W · qW ∗ · q ε∗ · ε

− e2

M

3ν2

4M2
(`1 − 1)`2(W ∗ · ε∗W · ε+W ∗ · εW · ε∗)

− e2

M

ν

16M3
`2

2ν
2(W ∗ · ε∗W · ε−W ∗ · εW · ε∗),

from which we can deduce the specific expressions for the functions fn,

f0(ν) = −1− ν2

M2
`2, (3.45)

f1(ν) = − 1

4M
(1− `1)2 +

ν3

16M3
`2

2, (3.46)

f2(ν) =
3ν2

4M2
(1− `1)`2. (3.47)

In the low-energy limit ν → 0, we finally obtain the LET values of the structure
functions:

f0(0) = −1, (3.48)

f1(0) = − 1

4M
(`1 − 1)2 = − 1

4M
κ2, (3.49)

f2(0) =
3ν2

4M2
(`1 − 1)`2 =

3ν2

4M2
κ(κ+Qa). (3.50)
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3.4 Optical Theorem

3.4 Optical Theorem

The optical theorem relates the absorptive part of the amplitude, AbsT , to the total
photoabsorption cross section,

σ(ν) =
4π

ν
AbsT (ν) =

e2

2Mν
ε∗µενAbsT

µν . (3.51)

A derivation of the optical theorem can be found in [Pan98]. Using the decompositions
in sect. 3.1, we obtain for the polarized forward Compton scattering amplitude, via
eq. (3.15) and (3.18a), the optical theorems for j = 1/2 and j = 1, respectively:

Optical Theorem for Spin 1/2

Imf0(ν) =
ν

8π

(
σ 1

2
(ν) + σ 3

2
(ν)
)
, (3.52a)

Imf1(ν) =
1

8π

(
σ 1

2
(ν)− σ 3

2
(ν)
)
. (3.52b)

Optical Theorem for Massive Vector Bosons

Imf0(ν) =
ν

8π
(σ+1(ν)− σ0(ν) + σ−1(ν))︸ ︷︷ ︸

=:σT(ν)

, (3.53a)

Imf1(ν) =
1

8π
(σ−1(ν)− σ+1(ν))︸ ︷︷ ︸

=:∆σ(ν)

, (3.53b)

Imf2(ν) =
1

16πν
(2σ0(ν)− (σ−1(ν) + σ+1(ν)))︸ ︷︷ ︸

=:σQ(ν)

. (3.53c)

3.5 Derivation of Forward Dispersion Relations

We have now laid the foundation to be able to derive sum rules for the electromagnetic
moments from our theory: We have expanded our general Compton scattering am-
plitude in terms of the target helicity λ (c.f. section 3.1, eqs. (3.4) and (3.18a)). We
have then constructed a gauge invariant phenomenological effective Lagrangian LEff
to describe our interactions (section 2.3) and have derived Feynman rules from it
(section 2.5). Based on this, we have derived the low-energy theorems (LETs) for the
structure functions from LEff, including a new quadrupole LET.
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Chapter 3 Compton Scattering and Sum Rules

Now we will use the properties of physical scattering amplitudes to derive the GDH
and quadrupole sum rules. We base our argument on the decomposition of the j = 1

forward scattering amplitude,

T (ν) = W ∗ [ε · ε∗f0(ν) + νf1(ν)iS · (ε∗ × ε) + ν2f2(ν)
(
S2 − S2

3

)]
W. (3.54)

Physical scattering amplitudes possess the properties of analyticity and unitarity. Since
T (ν) is causal, so are the decomposition components fi(ν), which means they are
holomorphic in the upper half of the complex energy plane, by virtue of Titchmarsh’s
theorem. From unitarity, i.e. Parseval’s theorem, we can deduce the validity of the
Schwarz reflection principle fi(ν∗) = f ∗i (ν), so that the integration can be continued
into the lower half plane. Thus, we can derive for the fi dispersion relations between
absorptive and reflective part of the fi,

Re fi(ν) =
1

π
P

∞∫
−∞

dν ′
Im fi(ν

′)ν ′

ν ′2 − ν2
, (3.55)

analogous to the derivation in sect. 1.3, where we also have discussed the matter of
integration paths. P denotes the Cauchy principal value.Due to the crossing symmetry
of the amplitude, the fi have the following properties under crossing:

f0(−ν) = f0(ν), (3.56a)

f1(−ν) = −f1(ν), (3.56b)

f2(−ν) = f2(ν), (3.56c)

so we can rewrite the dispersion relations as

Re fi(ν) =
2

π
P
∞∫

0

dν ′
ν ′Im fi(ν

′)

ν ′2 − ν2
, (3.57)

which is the Kramers-Kroenig relation. Note that the physical amplitude is proportional
to the real part of the functions fi, so in the following, we will suppress the Re , so
that fi(ν) implicitly means Re fi(ν).
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Applying the optical theorem on all of the dispersion relations, we obtain

f0(ν) =
1

4π2

∞∫
0

dν ′
ν ′2σT(ν ′)

ν ′2 − ν2
, and (3.58a)

f1(ν) =
1

4π2

∞∫
0

dν ′
ν ′∆σ(ν ′)

ν ′2 − ν2
, (3.58b)

which are valid in this form for both the j = 1/2 and j = 1 case; additionally, for
massive vector bosons we obtain the dispersion relation

f2(ν) =
1

4π2

∞∫
0

dν ′
σQ(ν ′)

ν ′2 − ν2
. (3.58c)

The Born terms are equal to the amplitude in the low-energy limit in the lowest
order, ν → 0, and replacing the fi(0) with their respective LETs, we finally obtain the
electromagnetic moment sum rules:

− e2

M
=

1

π

∞∫
0

dν ′σT(ν ′) +

∫
C

dν ′σT(ν ′) (3.59)

for the Thomson limit; this is not a real sum rule. As the integral over the contour C
at infinity does not vanish, the no-subtraction hypothesis is not valid here. To recover
the finite Thomson limit one has to include the full path. Next, we obtain the GDH
sum rule,

− e2

M
κ2 =

1

π

∞∫
0

dν ′
∆σ(ν ′)

ν ′
; (3.60)

and finally, a novel sum rule for spin-1 particles, the quadrupole sum rule (QSR):

3e2

4M2
κ(κ+Qa) =

∞∫
0

dν ′
σQ(ν ′)

ν ′2
. (3.61)

At the order of the QSR integrand, polarizabilities might contribute due to quadratic
terms in the energy to the QSR at tree level. If this is indeed the case, the Lagrangian
would have to be expanded by appropriate polarizability terms. Through this, the

37



Chapter 3 Compton Scattering and Sum Rules

polarizability might even contribute to the tree-level value of any electromagnetic
moment. Consequently, we need to check the sum rules at tree-level to ascertain if
this is the case. As the GDH has been confirmed for j = 1, we should recover this
result. For the quadrupole, this has not been done yet, so we will check if the theory
is sufficient to derive a complete quadrupole sum rule. In the following part, we will
evaluate the sum rules at LO and NLO to test our theory.
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Testing the Sum Rules in QFT

We have now successfully derived the GDH sum rule from our effective Lagrangian,
as well as a new quadrupole sum rule (c.f sect. 3.5) which we will now put to test
in a QFT. We use a perturbative approach. Due to the properties of the dispersion
relations, this corresponds directly to a perturbative expansion of the sum rules. Hence,
at every order of the expansion both sides of the sum rules should agree.

To recapitulate, the sum rules are

−2πα

M2
κ2 =

1

π

∞∫
0

dν

ν
∆σ(ν), (4.1a)

πα

M2
κ(κ+Qa) =

1

2π

∞∫
0

dν

ν2
σQ, (4.1b)

where κ is the anomalous magnetic moment and Qa is the anomalous quadrupole
moment, and

∆σ(ν) = σ−1 − σ+1 and (4.2)

σQ = 2σ0(ν)− σ−(ν)− σ+(ν) (4.3)

are the linear combinations of the doubly polarized cross section. We assume no
contributions from polarizabilities to the sum rules.

The most convenient way to test the sum rules is to assume that the target particles are
point-like, i.e. elementary particles. This implies that we will perform the calculations
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Chapter 4 Testing the Sum Rules in QFT

in the limit of natural values for the electromagnetic moments (c.f. sect. 2.6). Then,
the anomalous electromagnetic moments κ and Qa should vanish at tree-level,

κ = Qa = 0. (4.4)

For the verification, this means that we should recover that the right-hand side, i.e.
the spectral integrals in eq. (4.1b), evaluate to zero if there are indeed no contributions
from polarizabilities.

Applying the natural limit to the effective Lagrangian, the Feynman rules reduce to

⇒ Γαβ,µ(p, p′) = − e
(
gαβP µ − p′βgαµ − pαgβµ

)
(4.5)

+ e
(
qβgαµ − qαgβµ

)
for the 3–point vertex, and

⇒ Γαβ,µν(p, p′) =−
(
2gαβgµν − gαµgβν − gανgβµ

)
e2 (4.6)

for the seagull. In this limit, we actually obtain a truncated massive Yang-Mills theory.
In the following section we will describe an SU(2) Yang-Mills theory for the massive
vector bosons inspired by the electroweak unification.

4.1 QFT: Yang-Mills Theory

4.1.1 Motivation

For a moment, let us interpret the previously discussed theory of massive vector bosons
in the framework of a well-known example: the theory of electroweak interaction.
The original theory, set aside fermion interactions, is an SU(2)×U(1) theory with
four gauge boson fields, namely the three W bosons and the B0 boson [BRS95]. Of
those, W± are real bosons which appear in charged current reactions, measured e.g.
at HERA [Kuz99, Kuz08]. The W 0 and the B0 are unphysical fields. The massless
photon and the massive Z0, the latter being responsible for neutral current reactions,
are superpositions of the W 0 and B0 with a mixing angle θW, also called Weinberg
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4.1 QFT: Yang-Mills Theory

angle [Wei72]. The Weinberg angle is a free parameter of the electroweak theory. In
consequence, it is valid to choose

θW = 90◦, or sin(θW) = 1, (4.7)

so that the two neutral bosons coincide with the fields,

|γ〉 = |W 0〉 and |Z0〉 = |B0〉. (4.8)

The mass of the Z0 is related to the W± mass via MZ = MW/cos θW, hence in this case
it diverges, MZ →∞. Thus, the Z0 decouples. Furthermore, g′ →∞, and from the
definition of the electric charge we find

e ≡ gg′√
g2 + g′2

= g. (4.9)

We therefore obtain a Yang-Mills theory containing three bosons, i.e. two (massive)
bosons W and a (massless) photon. Note that the non-zero mass breaks the SU(2)

gauge symmetry down to U(1). One could introduce the mass without breaking
the symmetry explicitly, i.e. through the Higgs mechanism, see e.g. [BD65, PS95].
However, this point is not relevant to our forthcoming discussion. In what follows
we consider the electroweak theory for θW = 90◦ and examine to which extent it
coincides with our previously constructed Lagrangian. It will be seen that the latter is
a truncated YM, as it lacks the boson self-interaction term.

4.1.2 Yang-Mills Theory

In sect. 1.2 we introduced SU(N) Yang-Mills theories. We will now concentrate on
the case N = 2. The generators of this group, in matrix notation, are

T aij = − i
2

(τa)ij (4.10)

and fulfill the algebra

[
T a, T b

]
=

1

4
[τa, τb] = ifabcTc. (4.11)
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Chapter 4 Testing the Sum Rules in QFT

The coupling constant of the theory g is obtained from the commutator of the covariant
derivative. In case of the sin θW = 1 electroweak theory, g is the electric charge, g = e.
The structure constants of the theory are

fklm = εklm. (4.12)

Since the YM Lagrangian contains, besides quadratic, also terms cubic and quartic in
the gauge field, the YM field Aµ can be self-interacting. This will play an important
role in the following.

In the SU(2) case of Yang-Mills theory, the Lagrangian is of the form

LYM = −1

4

3∑
a=1

FaµνFa,µν (4.13)

where Faµν is the field density (note that Aaµ are real fields, and hence Fa are real
tensors):

Faµν = ∂µAaν − ∂νAaµ︸ ︷︷ ︸
=:Gaµν

+eεabcAbµAcν . (4.14)

4.1.3 Derivation of the Yang-Mills Lagrangian

In analogy to the complex Proca fields (see sect. 2.2), we express our charged vector
boson fields in terms of the real YM fields Aa, as follows:

Wµ =
A1
µ + iA1

µ√
2

, W ∗
µ =
A2
µ − iA2

µ√
2

, Aµ = A3
µ. (4.15)

With the definition (4.14) we obtain the field strength tensors

F1
µν = G1

µν + gε1bcAbµAcν (4.16a)
(4.17)
=

1√
2

(
W̃µν + W̃ ∗

µν − ig
(
Tµν − T ∗µν

))
=

1√
2

(
Wµν +W ∗

µν

)
,

F2
µν = G2

µν + gε2bcAbµAcν (4.16b)

=
−i√

2

(
W̃µν − W̃ ∗

µν − ig
(
Tµν − T ∗µν

))
,
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4.1 QFT: Yang-Mills Theory

and

F3
µν = Fµν , (4.16c)

where W̃µν = ∂µWν − ∂νWµ and we introduced the tensors

Tµν := WµAν −WνAµ, (4.17)

The Gaµν are the free-field tensors,

G1
µν =

1√
2

(
W̃µν + W̃ ∗

µν

)
,

G2
µν =

−i√
2

(
W̃µν − W̃ ∗

µν

)
, (4.18)

G3
µν = Fµν ,

so we can derive the free-field contribution to the Yang-Mills Lagrangian:∑
a

GaµνGa,µν = W̃ ∗
µνW̃

µν + FµνF
µν . (4.19)

With Wµν = DµWν −DνWµ the full YM Lagrangian is given by

LYM =− 1

2
W ∗
µνW

µν − 1

4
FµνF

µν (4.20)

+
1

2
ieW ∗

µWνF
µν +

1

2
e2
(
|W ·W |2 − |W |4

)

4.1.4 Vertex for W −W Interaction

The propagator for the W -fields is the familiar Proca propagator. The Feynman rules
for the γWW and γγWW vertices are listed in the following (c.f. the derivation of
the Feynman rules for the effective Lagrangian in sect. 2.5):

Γαβµ(p′, p) = −
(
gαβP µ − p′αgµβ − pβgµα

)
(4.21)

− 2
(
qαgµβ − qβgµα

)
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and

Γαβµν = −e2
(
2gαβgµν − gαµgβν − gανgβµ

)
. (4.22)

The two vertices are identical to those for the effective Lagrangian in the natural
limit, c.f. eqs. (4.5) and (4.6). In addition to those, a new vertex describing the W
self-interaction appears. The Feynman rule for it is:

〈W ρW τ |
∫
d4xe2

(
W ·WW ∗ ·W ∗ − |W |4

)
|WαW β〉

= e2
(
2gαβgρτ − gατgρβ − gαρgτβ

)
=: ΓαβρτYM . (4.23)

The additional bosonic self-interaction term does not contribute to the tree-level
Compton scattering amplitude. Consequently, an ambiguity arises between the effective
and YM Lagrangians with regard to the tree level. However, the self-interaction does
contribute to Compton scattering at loop-level through the tadpole graph, as will be
discussed in the following chapter. Before we come to that we will compute the sum
rules at tree level in the following sections.

4.2 Gauge Invariance: Ward-Takahashi Identities

Ward-Takahashi identities (WTIs) [Tak57] are a translation of Noether’s theorem into
the framework of QFT. They are a generalization of the Ward identity [War50] which
ensures the on-shell condition of the external particles. For example, for a physical
QED process with one external photon, the photon has to be transversal. Translated
into a Ward identity, the condition

kµMµ
fi(k) = 0 (4.24)

has to be fulfilled, which implies that longitudinal photons are unphysical and should
not contribute to the scattering matrix. This is an equivalent formulation of the
principle of gauge invariance.

In these calculations, we check the U(1) Ward identities to ensure that we correctly
derived the Feynman rules gauge invariantly. As the test of the sum rules is done in
the natural limit of the theory (see sect. 2.6), we calculate the WTIs with natural
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4.3 Tree-Level Verification

values `1 = 1 and `2 = 0. The Feynman rules can be found in app. A.1. The WTI for
the tree level 3-point vertex (fig. 2.1(a)) in the off-shell case is

q · Γαβ =
(
∆−1(p′)−∆−1(p)

)αβ
, (4.25)

where ∆−1 is the inverse propagator,

∆−1
αβ(p) := −gαβ

(
p2 −M2

)
+ pαpβ (4.26)

which yields identity if contracted with the propagator,

∆−1
αβ(p)∆βτ (p) = δτα. (4.27)

One can easily see that this WTI reduces to zero if initial and final state are assumed
to be on shell, i.e. p2 = p′2 = M2, and it is contracted with the initial and final state
polarization vectors:

W ∗
α(p′)

(
q · Γαβ

)
Wβ(p)

= W ∗
α(p′)

(
∆−1(p′)−∆−1(p)

)αβ
Wβ(p)

= −W ∗
α(p′)

(
gαβ���

���
(
p′

2 −M2
)
− p′α′pβ

)
Wβ(p)

+W ∗
α(p′)

(
gαβ���

���
(
p2 −M2

)
− pαpβ

)
Wβ(p)

=���
���:

0
W ∗
α(p′)p′

α
p′
β
Wβ(p)−W ∗

α(p′)pα���
��:0

pβWβ(p),

(4.28)

where in the last line, we used the transversality property of the spinors, c.f. sect. 2.2.
It then follows that on shell,

q · Γ = 0. (4.29)

4.3 Tree-Level Verification

In order to obtain the tree level contribution to the GDH, we have to calculate the
polarized scattering cross sections σλ(s). In what follows we fix the photon helicity at
σ = σ′ = 1, and directly use the target helicity amplitude

Tλλ′ = W ∗
α (p′, λ′) ε∗µ (q′)Mαβ,µν (p, p′, q, q′)Wβ (p, λ) εν (q) . (4.30)
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The polarized cross section for the helicity λ is defined in the CMS as

dσ (ω)

dΩ
=

dt
dΩ

1

16πλ(s,M, 0)
|T |2 =

ω2

π

1

16π (s−M2)2 |T |
2

=
1

16π2

1

4s

1

2(2j + 1)

∑
λλ′

|Tλλ′ |2 ,
(4.31)

where TΛΛ′ is the helicity amplitude. On tree level, the amplitude consists of the three
diagrams shown in fig. (3.4). The Feynman amplitudeM is thus defined as:

Mαβ,µν = Γασ,µ (p′, p+ q) ∆σρ(p+ q)Γρβ,ν (p+ q, p) (4.32)

+ Γασ,ν (p′, p− q) ∆σρ(p− q)Γρβ,µ (p− q′, p)

+ Γαβ,µν (p, p′) ,

which is the sum of s-channel, u-channel and seagull term, see section 2.5 and App. A.1.

As already noted in section 2.2, we use the following definitions for the boson polariza-
tion vectors:

ζµ± =
1√
2

(±1,−i, 0) ≡ ε±, ζ0z = ê3, and (4.33a)

W µ
λ (p) :=

(
p.ζλ
M

, ζλ +
p.ζλ

M(M + E)
p

)
. (4.33b)

The cross section calculation is performed in the CMS (c.f. section 3.2). Hence, we
define the initial and final momenta

p = (En, 0, 0,−ω) ,

q = (ω, 0, 0, ω) ,

p′ = (En,−ω sin θ, 0,−ω cos θ) ,

q′ = (ω, ω sin θ, 0, ω cos θ) .
(4.34)

The respective energies of photon and massive vector boson are

ω =
s−M2

2
√
s

and En =
s+M2

2
√
s
. (4.35)

After evaluating eq. (4.30) and forming its absolute square, we can integrate the
polarized cross sections. The sum rules are integrated in the lab frame. The analytical
expression for the polarized cross section difference ∆σ is

∆σ(ν) =

(
5 + 2 ν

M

)
ν2

log
(

2
ν

M
+ 1
)
−

2(M + ν)
(

15M + 66ν + 76 ν
2

M

)
3ν (M + 2ν)3 . (4.36)
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Plotted over the lab photon energy ν (fig. 4.1), one can suspect from the form of the
integrand that the integral will vanish, as the integration over the complete spectrum
shows. For the GDH integral, we obtain

∞∫
0

∆σ(ν)

ν
dν = −

((
5M
ν

+ 4
)

log
(

2ν
M

+ 1
)
− 10

2νM
+

1 + 8
3
ν
M

(M + 2ν)2

)∣∣∣∣∣
∞

ν=0

= 0 (4.37)

which corresponds to the expected tree-level value for the anomalous magnetic moment.

For the quadrupole sum rule, the case is different. The quadrupole LET is linear in the
quadrupole moment, but it also contains a contribution linear in κ. The right-hand side
integrand has a so-called tensorial structure (due to the structure of the contributing
cross section polarizations). The result for this tensorial cross section is

σQ(ν) =− (18M5 + 99M4ν + 183M3ν2 + 132M2ν3 + 52Mν4 + 24ν5)

3M2ν2 (M + 2ν)3

+
(6M2 + 3νM + 2ν2)

2ν3M3
log
(

2
ν

M
+ 1
)
.

(4.38)

Calculation of the integral in Mathematica yields

∞∫
0

σQ(x)

x2
dx = − 1

M4
. (4.39)

Seemingly, the QSR contains polarizability contributions, as it yields a non-zero result.
It is an interesting point for further discussion to find how exactly this relation is
defined and how the Lagrangian would have to be modified in order to obtain a pure
quadrupole sum rule, i.e. one which vanishes at tree level. However, it is vital to note
that the QSR without any polarizability contributions does not hold.
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0.1 10 1000

Ν

-0.10

-0.05

0.05

0.10

DΣ@ΝD

Figure 4.1: Logarithmic plot of the GDH integrand ∆σ(ν) over the lab photon energy
spectrum up to high energies. The mass is chosen as unit mass, M ≡ 1.
One can see that the integrand converges in both high and low energy
regimes.
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Figure 4.2: Logarithmic plot of the quadrupole sum rule integrand over the photon
energy spectrum up to high energies using a unit mass M ≡ 1. It is easily
concluded that despite the convergence in the high-energy limit, the integral
will yield a non-zero result.
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Chapter 5

Quantum One-Loop Corrections:
Symmetry of the Theory

For the one-loop calculation, we use derivatives of the sum rules to simplify calculations,
an approach which has been proposed by Pascalutsa et al. [PHV04]. For reasons
explained below, we will test the sum rules in the framework of two quantum field
theories:

(i) charged massive point-like vector bosons (described by the effective Lagrangian
of Chapter 2 in the natural limit),

(ii) SU(2) Yang-Mills theory, partially massive (electroweak theory with θW = 90◦

considered in the previous chapter).

The ambiguity of these theories is investigated, and the result prefering the YM
case is obtained. In order to verify the GDH at loop level, we have to calculate the
anomalous magnetic moment κ from both vertex correction and the GDH integral.
The calculation for the vertex correction (for spin 1/2 known as Schwinger correction)
is quite straightforward, only the three graphs shown in fig. 5.3 contribute. As we will
see in sect. 5.4, this is not sufficient to obey the GDH sum rule; a tadpole diagram
from boson self-interaction has to be considered.

The right-hand side of the GDH, i.e. the integral, requires more involved calculations.
The reason for this is that the left-hand side is proportional to κ2, and hence of
order O(α3). Therefore, higher order diagrams have to be considered, such as one-
loop correction to the Compton scattering cross-sections, as well as pair production
processes. For electrons, this has been done by Dicus and Vega [DV01]. Alternatively
one can use an approach called the derivative GDH, in short δGDH. We will discuss
this in the following section.
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5.1 Derivative GDH

In 2004, Pascalutsa, Vanderhaeghen and Holstein derived a sum rule with a
linear relation between anomalous magnetic moment and a derivative of the photoab-
sorption cross section [PHV04].

Starting from the GDH for arbitrary spin j,

− πα

jM2
κ2 =

1

π

∞∫
0

dν

ν
∆σ(ν), (5.1)

a “classical” value κ0 of the anomalous magnetic moment is introduced such that

κ = κ0 + δκ. (5.2)

At level of the field theory, this implies that the Lagrangian acquires an explicit term
containing the classical anomalous magnetic moment, in analogy to the Pauli term
from the classical description of the nucleon. Although we use a tree-level coupling
term only similar to Pauli’s idea, we call it Pauli coupling to emphasize the analogy.
In the spin-1 case, the additional term is

Lclass = i
eκ0

4M
WµW

∗
νF

µν . (5.3)

ν µ

β α

ν µ

β α

Figure 5.1: Pauli-like anomalous magnetic moment coupling in the left and right scat-
tering 3-point vertices at tree level. Note that we also have to consider the
crossed terms. The seagull, in contrast, is not affected by the coupling.

The Pauli coupling is added to one of the 3-point vertices in any of the respective
scattering processes, c.f. fig. 5.1. It is important to note that this tree-level value is
not physical and cannot be observed in experiment; however it provides a means to
calculate the anomalous magnetic moment equivalently to NLO calculations.
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5.1 Derivative GDH

Substituting eq. (5.2) into (5.1) for the j = 1 case, we obtain:

− πα
M2

[
κ2

0 + δκ2 + 2κ0δκ
]

=
1

π

∞∫
0

dν

ν
∆σ(ν;κ0). (5.4)

Note the explicit dependence on κ0 of ∆σ. Now, if we differentiate the sum rule by κ0

at κ0 = 0, we obtain

−2πα

M2
δκ

(
1 +

[
∂

∂κ0

δκ

]
κ0=0

)
=

1

π

∞∫
0

dν

ν

(
∂

∂κ0

∆σ(ν;κ0)

∣∣∣∣
κ0=0︸ ︷︷ ︸

=:∆σ1(ν)

)
, (5.5)

which, as it has been derived non-perturbatively, must be valid at any order. Hence,
at leading order, with δκ→ κ we obtain a new relation linear in κ,

−2πα

M2
κ =

1

π

∞∫
0

dν

ν
∆σ1(ν). (5.6)

The calculation of the integral in eq. (5.6) is analogous to the calculation in sect. 4.3.
We obtain:

∆σ1(ν) =
3(4 ν

M
+ 15) log(2 ν

M
+ 1)

6ν2
−

2 ν
M

(
188 ν3

M3 + 396 ν2

M2 + 237 ν
M

+ 45
)

6ν2(2 ν
M

+ 1)3
, (5.7)

and hence
κ =

5α

3π
. (5.8)

One might argue that this is not an explicit proof as the results have not been obtained
by the calculation of the loop-level GDH integral. On the other hand, the Pauli
coupling has historically been an ansatz to explain the experimentally confirmed
deviation of the anomalous magnetic moment from its tree-level expectation, i.e. g = 2.
Additionally, the δGDH has been validated in QED by Pascalutsa et al. [PHV04],
as they could recover the results obtained from the loop calculations performed by
Dicus and Vega [DV01]. In the same publication, Pascalutsa et al. also have used
the δGDH in chiral effective theories for the nucleon to further verify its validity.

This result now has to be compared to the one-loop contribution to κ which is obtained
through the vertex correction. First, we will test the gauge invariance of the loop-level
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graphs via WTIs. After gauge invariance has been confirmed we will perform the loop
calculations.

5.2 Gauge Invariance

p− k

β
p k

α
p

Figure 5.2: Self energy diagram for massive vector bosons

First, let us introduce the massive vector boson self energy, defined as

Σ(p)αβ =

∫
dk̃ Γαρξ(p, k)∆ρτ (k)Γτβζ(k, p)Dξζ(p− k) (5.9)

as depicted in fig. 5.2. The vertex function (see below, fig. 5.3) in tensor notation is

Λµαβ =

∫
dk̃ Γαρζ (p′, k′) ∆ρτ (k′) Γτσµ (k′, k) ∆ση (k) Γηβξ (k, p)Dξζ (p− k) . (5.10)

where we have used the loop integration measure

dk̃ :=
dDk

(2π)D
. (5.11)

When we apply the WTI, i.e. contract Λ with the incoming photon vector qµ, this
expression can be reduced to the tree-level vertex WTI q · Γαβ:

q · Λαβ =

∫
dk̃ Γαρζ (p′, k′) ∆ρτ (k′) (q · Γτσ) ∆ση (k) Γηβξ (k, p)Dξζ (p− k) . (5.12)

As we know from sect. 4.2, the WTI for the tree level vertex is

q · Γ = ∆−1(p′)−∆−1(p), (5.13)

which reduces to zero for on-shell particles. In the vertex function, however, q · Γ is
off-shell, yielding a non-zero contribution. Thus, we can finally write the WTI for the
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vertex function (using the abbreviations Γαρζ ≡ Γαρζ (p, k) and Γ′αρζ ≡ Γαρζ (p′, k′)) as

q · Λ =

∫
dk̃ Γ′

αρζ
∆ρτ (k + q)

(
∆−1(k + q)−∆−1(k)

)τσ
∆ση (k) ΓηβξDξζ (p− k)

(5.14)

=

∫
dk̃ Γασζ∆ση (k) Γ′

ηβξ
Dξζ (p− k)−

∫
dk̃ Γ′

αρζ
∆ρη (k + q) ΓηβξDξζ (p− k) ,

which is of the expected form. On-shell, the WTI reads q · Λ = 0. We verified this
using FORM by explicit contraction with the boson polarization vectors. However,
it is useful to further investigate to find a more general proof. To compute q · Λ, it
is vital to know how the propagator and the 3-point vertex transform under shifts
p→ p′ = p+ q and k → k′ = k + q:

Γαβµ (p′, k′) = Γαβµ (p, k)− 2gαρqµ + gµρqα + gµαqρ, (5.15)

∆ρτ (k′) = ∆ρτ (k)

(
1− 2k · q + q2

(k + q)2 −M2

)
+

qρkτ + qτkρ + qρqτ

M2
(
(k + q)2 −M2

) . (5.16)

Using these relations, it is possible to rewrite the 3-point vertex function WTI as the
difference of the self energies Σ (eq. (5.9)) at different momenta, plus a remainder:

q · Λ = Σαβ (p′)− Σαβ (p) +Rαβ (q) , (5.17)

where

Rαβ (q) :=

∫
dk̃ Γµ,αβ (p′, k′) ∆ρτ (k′)

(
−2gτρqµ + δρµq

τ + δτµq
ρ
) 1

(p′ − k′)2

+

∫
dk̃ (−2gαρqµ + gµρqα + gµαqρ) ∆ρτ (k) Γτβµ (k, p)

1

(p− k)2
.

The sum of left- and right-hand WTI yield exactly −Rαβ, cancelling the remaining
tensor in eq. (5.17). The complete vertex correction for massive vector bosons is the
sum of vertex function and left- and right-hand seagull correction. Owing to that, the
complete off-shell vertex correction WTI reduces to

q · Λ = Σ (p′)− Σ (p) . (5.18)

The on-shell self energy is independent of the momentum, as can be quickly shown, so
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the difference of both self energy contributions vanish on-shell:

Σαβ(p′)− Σαβ(p) = 0. (5.19)

Following this, the remainder Rαβ itself has to vanish on-shell. Under contraction with
the polarization vectors, this is indeed the case:

W ∗
αR

αβWβ = 0. (5.20)

Hence, we have confirmed that we have derived all diagrams correctly. We will now
continue by testing the sum rules at loop-level. Additionally, the ambiguity between
effective Lagrangian and YM theory is investigated.

5.3 Vertex Correction

In order to calculate the full vector boson Compton scattering amplitude perturbatively,
higher order (loop) contributions have to be taken into account. These corrections
determine the anomalous electromagnetic moment. At one-loop, the 3- and 4-point
interaction vertices Γαβµ and Γαβ,µν receive vertex corrections as depicted in fig. 5.3.
From these corrections, the anomalous magnetic moment can be determined. The
corrections are calculated in the forward limit, i.e. t = 0. The left- and right-hand
3-point vertex corrections (3LCC, 3RCC, see fig. 5.3) are easy to calculate and can be
done by hand. However, we have also done the calculations in FORM [Ver00], together
with the third diagram, the 3-point vertex term (3VC) which is familiar from QED.
The latter could be calculated by hand as well. However this would be quite tedious
due to a large number of terms in the numerator.

The 3-point vertex term is given by

T3V C = W ∗
α(p′)Γαρζ(p′, l′)∆ρτ (l

′)Γτηµ(l′, l)∆ησ(l)Γσβξ(l, p)εµDξζ(p− l)Wβ(p). (5.21)

We combine the left- and right-handed corrections to the contact correction (CC):

TCC = W ∗
α(p′)Γαρζ(p′, k′)∆ρτ (k

′)Γτβµξ(k′, p)εµDξζ(p
′ − k)Wβ(p) (5.22)

+W ∗
α(p′)Γαρµζ(p′, k)∆ρτ (k)Γτβξ(k, p)εµDξζ(p− k)Wβ(p).
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β α

µ

(a) Left-handed contact correction (3LCC)

β α

µ

(b) Right-handed contact correction (3RCC)

β α

µ

(c) 3-point vertex term (3VC)

Figure 5.3: Vertex corrections to vector boson-photon interactions
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The calculation is performed in the limit of natural values, i.e. `1 = 1 and `2 = 0. All
three diagrams contain one loop-momenta which have to be integrated over. These
diagrams are UV- and IR-divergent. To handle the UV divergence, we will use
the method of dimensional regularization. For an overview of the concept refer to
App. B.1. First, however, we have to concern ourselves with the denominators of the
integrals. We use the parametrization method of Feynman and Schwinger to bring
all denominators into this form (c.f. App. B.2). This is then followed by shifting the
loop momenta such that all denominators become of the required form

`2 −M2, (5.23)

where ` is the loop momentum (not to be confused with the electromagnetic moment
constants `i !) andM is the shifted mass. Here, we have

M = xM. (5.24)

The corresponding momentum shifts are given in table C.2 in App. C.2. After the
integrals are handled, we simplify the terms using the transversality conditions

W · p = 0, (5.25a)

p′ ·W ∗ = 0, (5.25b)

q · ε = 0, (5.25c)

and the resulting additional identities

ε · p′ = ε · p, (5.26a)

W · p′ = W · q, (5.26b)

W ∗ · p = −W ∗ · q. (5.26c)

Since we are considering only real scattering, initial and final state particle satisfy the
on-shell conditions, i.e.

q2 = 0,

p2 = M2 = p′
2
,

p · q = 0 = p′ · q,

p′ · p = M2.
(5.27)

Once this has been done, using L as defined in eq. (B.14) we obtain the following
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5.4 Yang-Mills Tadpole Contribution

expressions:

T3V C = e3

(
1085

72
− 41

12
L+ 8 lnω

)
GE0 + e3

(
229

48
+

3

8
L

)
T2 + e3 4

9
T3, (5.28)

TCC = e3

(
−1085

72
+

89

12
L

)
GE0 + e3

(
−159

16
+

33

8
L

)
T2, (5.29)

where we have used the definitions

GE0 = T1 − T2, (5.30a)

T1 = W ∗ ·Wε · p, (5.30b)

T2 = W ∗ · εW · q −W ∗ · qW · ε, (5.30c)

T3 =
1

M2
W ∗ · qW · qε · p. (5.30d)

GE0, T2, and T3 represent the charge, magnetic moment, and quadrupole moment
terms, respectively. The vertex correction then is the sum of the two contributions
above:

T = e3

(
[4L+ 8 lnω]GE0 +

[
−31

6
+

9

2
L

]
T2 +

4

9
T3

)
. (5.31)

As can be seen, the charge has UV-divergent (L) and IR-divergent (lnω) contribu-
tions. They are expected to be cancelled by the charge renormalization and soft
bremsstrahlung contributions, respectively. There is also an infinity L contributing
to the anomalous magnetic moment. This is an unfortunate result, since we have no
counterterm to renormalize this infinity away. In a sensible theory, the anomalous
magnetic moment contribution should be finite, as indicated by the δGDH sum rule
result (c.f. 5.1).

To recapitulate, our first theory—the truncated YM—while reproducing the GDH sum
rule at tree-level, fails to so at NLO. Since we confirmed that there is no anomaly by
checking the WTIs for all terms in detail (see sect. 5.2), all there is left to do about
this remarkable finding is examining the full YM case.

5.4 Yang-Mills Tadpole Contribution

So far we used the truncated Yang-Mills theory of the effective Lagrangian by virtue
of the natural limit. However, the complete YM contains an additional self-interaction
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Chapter 5 Quantum One-Loop Corrections: Symmetry of the Theory

vertex which contributes at NLO through the so-called tadpole graph (see fig. 5.4)
which is effectively a boson loop (i.e. a particle/antiparticle intermediate state). We use

µ

β α

Figure 5.4: YM tadpole loop graph from WWWW self-interaction vertex as resulting
from complete Yang-Mills theory of γW interaction

the Feynman rules as derived in sect. 4.1.4 to calculate the tadpole. The corresponding
matrix element reads

TYM = W ∗
α(p′)ΓαβτρYM Dτζ(h

′)∆ξρ(h)Γζξµ(h′, h)εµWβ. (5.32)

Before we do the actual calculations, we routinely check the gauge invariance of the
tadpole. Of course, since the Yang-Mills theory is invariant, so is this graph and it
fulfills a WTI of its own:

q · ΛTadpole
!

= 0 (5.33)

⇐ q · ΛTadpole =

∫
d4k̃∆ (k′) q · Γ (k′, k) ∆ (k)

=

∫
d4k̃∆ (k′)

[
∆−1 (k)−∆−1 (k)

]
∆ (k)

=

[∫
d4k̃∆ (k′)−

∫
d4k̃∆ (k)

]
= 0 (5.34)

where in the last line, we substituted k → k − q in the left-hand integral.

The tadpole graph calculation is performed analogous to sect. 5.3. However, the
momentum shift in this case is

h→ `− xq h′ = h+ q (5.35)
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which leads to the shifted mass simply being the original mass, M = M . After
handling the loop integrals, the tadpole contributes

TYM = T2e
3

(
−9

2
− 9

2
L

)
. (5.36)

Adding the tadpole value to the prior result, we obtain

T = e3 (4L+ 8 ln(ω))GE0 − e3 20

3
T2 + e3 4

9
T3. (5.37)

As we can see, the divergence of the magnetic moment has vanished. This is a very
intriguing result. The ambiguity which appears at tree-level is resolved at one-loop: only
if the full SU(2) symmetry is considered and consequently the bosonic self-interaction
term is included does the theory obey the GDH sum rule at one-loop level..

This implies an intricate relation between the gauge symmetry and fundamental
principles of space-time continuum, such as causality and unitarity, which go into the
derivation of sum rules.

5.5 Discussion

To validate the GDH at one-loop level, we have to make sure that both sides of the
derivative GDH (eq. (5.6)) are identical. In sect. 5.1, we have seen that a sum rule
linear in κ can be derived by introducing a classical anomalous magnetic moment κ0,

−2πα

M2
κ =

1

π

∫
dω

ω
∆σ1 (ω) , (5.38)

where (c.f. sect. 5.1)

∆σ1(ω) =
∂

∂κ0

∆σ(ω)

∣∣∣∣
κ0=0

. (5.39)

The vertex correction calculation yields the contribution

δκ(loop) = − e2

(4π)2

(
−20

3

)
=

5α

3π
≈ 0.004, (5.40)

which is more than three times larger in magnitude than the value obtained by
Schwinger for the spin-1/2 case, κ = α/2π. For the deuteron which is practically
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the only spin-1 system with well-measured anomalous magnetic moment, the value is
[A+08a, MT00]

κd = −0.143. (5.41)

However, since we obtain for κ the value mentioned above, our one-loop correction
evaluates to the value in eq. (5.40) which is significantly smaller than the measured
quantity.

This is not surprising as most of the anomalous magnetic moment contribution will be
due to the internal structure of the deuteron. Pion production and other contributions
are not even considered here. Our result should be seen as a theoretic expectation
value for a pure electromagnetic theory of massive vector bosons.

The theory could also be used to give an approximation for a charged spin-1 particle
without internal structure, exemplified byW gauge bosons. In the standard electroweak
theory it is required that at tree level GM(0) = 2 and GQ(0) = −1. For elementary
particles, any deviations from these values would indicate new, beyond standard model,
physics, and will show up in the presence of anomalous WWγ couplings, usually
parameterized in terms of two new couplings κγ and λγ, appearing in an effective
Lagrangian. In terms of those parameters, the W magnetic dipole moment and
quadrupole moment take on the values [HPZH87]:

µW =
e

2MW

{2 + (κγ − 1) + λγ} , (5.42)

QW = − e

MW2
{1 + (κγ − 1)− λγ} , (5.43)

with MW the W -boson mass. In the Standard Model, GM(0) = 2 and GQ(0) = −1

equivalently correspond with κγ = 1, λγ = 0 at tree level. The measurement of the
gauge boson couplings and the search for possible anomalous contributions due to
the effects of new physics beyond the Standard Model have been among the principal
physics aims at LEP-II. The anomalousWWγ couplings have been prominently studied
at LEP-II in the e+e− → W+W− process through an s-channel virtual photon exchange
mechanism. The most recent PDG fit for the anomalous WWγ couplings based on an
analysis of all LEP data is given by [A+08b] :

κγ = 0.973+0.044
−0.045 λγ = −0.028+0.020

−0.021. (5.44)

The result for κγ is well in conformance with our tree-level result. At one-loop, our
estimate of the deviation ∆κγ = δκ from the tree-level value is below one percent,
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5.5 Discussion

κγ +δκ ≈ 1.004. In fig. 5.5 which was taken from [A+06], we have marked our result for
κγ which is well within the prediction region. However, the value of κγ is non-trivially
related to the value for the electric quadrupole, λγ. So, in order to make a coherent
prediction for the anomalous magnetic moment, a theory consistent up to NLO with
regard to the QSR has to be found first.
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Figure 5.5: The ellipse is the 95% C.L. (confidence level) limit contour in κγ − λγ
space. The red dashed line marks our determined value in terms of κγ of
κγ ≈ 1.004. Plot taken from Review of Particle Physics [A+06].
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Chapter 6

Conclusion and Outlook

We have constructed an effective Lagrangian for massive vector bosons from which
we derived the well-established GDH sum rule. Additionally, we derived a novel
quadrupole sum rule (QSR). We then have tested the sum rules in two different
quantum field theories. One is obtained by minimal coupling of the electromagnetic
field to a massive spin-1 field (Proca field), and then setting the magnetic moment
of that field to the natural value, µ = e/M. The latter step ensures the absence of the
anomalous magnetic moment at tree-level, which is crucial for testing the sum rule.
The second theory is obtained by considering the gauge boson sector of the electroweak
theory with the Weinberg angle taken at 90◦, such that Z0 decouples. The resulting
theory describes massive W± bosons interacting with the electromagnetic field, and
includes self-interaction.

The tree-level Compton scattering for the two theories is equivalent, and therefore
yields identical results for the sum rules test. Namely, the left-hand side is trivially zero,
while the right-hand side has been computed with the usual techniques of calculating
the cross sections. The GDH could be confirmed at tree-level. The QSR, on the other
hand, yields a non-zero result due to non-trivial polarizability contributions. As we
can see, even at tree-level polarizabilities can contribute due to the order of the QSR
integrand being quadratic in energy.

At one-loop level, the two theories yield dramatically different results. The derivation
of the theory used for the derivation of the sum rules was constructed based on
fundamental principles like causality, crossing symmetry and unitarity. Nevertheless,
this has proven to be unsufficient to describe the GDH coherently at NLO. The test was
performed in QFT in the natural limit. QFTs, by definition, satisfy the aforementioned
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principles. The higher symmetry of the YM theory, motivated from electroweak
theory, is a plausible formulation for the W bosons which avoids the UV divergence
in the anomalous magnetic moment. The breakdown if the SU(2) symmetry is not
considered might imply that one of the fundamental principles is violated, for example
microcausality. The case might be different for other massive bosons, e.g. if we wanted
to apply the sum rules to the deuteron. The QFT without boson self-coupling seems to
have worse UV behaviour. A possible explanation is that the no-subtraction hypothesis
is violated. A method recently developed to handle this kind of UV divergences is UV
completion. It might be possible to derive a theory based on this which does not need
additional symmetries. This is a subject which could be investigated.

In a follow-up study, the polarizability contribution to the quadrupole sum rule at
tree-level needs to be examined further. It is our conjecture that the left-hand side of
the QSR is incomplete as further polarizability terms need to be considered for the
Lagrangian. These would make the Lagrangian complete with respect to the QSR and
would lead to a modification of the left-hand side of the QSR. We presume that the
additional contributions are the origin of the non-zero tree-level result.

Another interesting point of study would be the derivation of higher-order sum rules
for higher-spin particles. The next plausible ansatz would be the S = 3/2, or Rarita-
Schwinger particles. A first goal would be to recover the GDH; then, quadrupole and
octupole sum rules could be derived. However, the situation for spin 3/2 is even more
complicated. Not only do we expect to have polarizabilities contribute to the tree-level
value of quadrupole and octupole, but the additional constraints posed on the fields
due to the superfluous d.o.f.s from the compositeness (Rarita-Schwinger particle wave
functions are composed from spin-1 polarization vectors and spin-1/2 spinors) make for
a non-trivial description of the interactions (see e.g. [Lor09]).
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Appendix A

Feynman Rules

A.1 Feynman Graphs

In this appendix, the Lagrangian of the two QFTs and the corresponding Feynman
rules and diagrams for the massive vector bosons are presented for convenient reference.

Propagators

β α
p ∆αβ

P (p) = −i(gαβ−
pαpβ/M2)

p2−M2+i0+ .Boson

µ ν
q

Dµν(k) = − gµν
k2+i0+ .Photon

Yang-Mills Theory

The Lagrangian for the full Yang-Mills theory reads:

LYM =− 1

2
W ∗
µνW

µν − 1

4
FµνF

µν (A.1)

+
1

2
ieW ∗

µWνF
µν +

1

2
e2
(
|W ·W |2 − |W |4

)
where Wµν = DµWν −DνWµ is the covariant field tensor. The corresponding Feynman
rules are given in Table A.1.
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ν

β α

Γαβµ(p′, p) = −e2
(
gαβP µ − p′αgµβ − pβgµα

)
−2e2

(
qαgµβ − qβgµα

)
ν q µ

q′

pβ p′
α Γαβµν = −e2

(
2gαβgµν − gαµgβν − gανgβµ

)
ρ τ

β α

ΓαβµνYM = e2
(
2gαβgµν − gαµgβν − gανgβµ

)
Table A.1: Feynman graphs and corresponding rules for the Yang-Mills theory

Effective Lagrangian

The effective Lagrangian for massive vector bosons reads:

LEff =− 1

2
W ∗
µνW

µν +M2W ∗
µW

µ − 1

4
FµνF

µν (A.2)

+
1

2
ie`1W

∗
µWνF

µν

+ ie`2W
∗
µνW

α∂αF
µν − ie`2W

∗
αWµν∂

αF µν .

The corresponding Feynman rules are given in Table A.2

ν

β α

Γαβµ(p, p′) = −e
(
gαβP µ − p′βgµα − pαgµβ

)
+
(
qβgµα − qαgµβ

)
`1

−2
(
qαqβP µ − p · qqαgµβ − p′ · qqβgµα

)
`2

ν q µ
q′

pβ p′ α

Γαβµν(q) = −
(
2gαβgµν − gαµgβν − gανgβµ

)
e2

−
(
4qαqβgµν − qαqµgβν − qαqνgβµ

−qβqµgαν − qβqνgαµ
)
e2`2

Table A.2: Feynman graphs and corresponding rules for the effective Lagrangian
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A.2 Plane Wave Expansions

In the following we will define the plane wave expansions of the particle fields, along
with useful relations the expansions fulfill.

A.2.1 Massive Spin-1 Particles

First, we define the plane wave expansion of the massive vector boson fields and its
derivative. For this we introduce the momentum-space creation operators a(p, r) and
the polarization vectors ζ(p, r), where p is the momentum and r is the polarization.

W µ(x) =
1

(2π)3

∫
d3p√
2p0

3∑
r=0

(
a(p, r)ζµ(p, r)e−ip·x

)
(A.3a)

W †µ(x) =
1

(2π)3

∫
d3p√
2p0

3∑
r=0

(
a†(p, r)ζ∗µ(p, r)eip·x

)
(A.3b)

∂νW µ(x) =
−ipν

(2π)3

∫
d3p√
2p0

3∑
r=0

(
a(p, r)ζµ(p, r)e−ip·x

)
(A.3c)

∂νW †µ(x) =
ipν

(2π)3

∫
d3p√
2p0

3∑
r=0

(
a†(p, r)ζ∗µ(p, r)eip·x

)
(A.3d)

Commutation and Completeness Relations The momentum operators of the
fields fulfill the following commutation relations:

[a(p, r), a†(p′, s)] = (2π)3δrsδ
(3)(p− p′), (A.4a)

[a, a] = [a†, a†] = 0 (A.4b)

while the polarization vectors fulfill the completeness relation∑
r

ζµ(p, r)ζν(p, r) = −gµν +
pµpν
M2

(A.5)

Contractions with States In order to derive the Feynman rules, we contract the
plane-wave expansions with the states.

Wµ(x)|W (p)〉 = ζµ(p, r)e−ip·x|0〉 (A.6a)

∂νWµ(x)|W (p)〉 = −ipνζµ(p, r)e−ip·x|0〉 (A.6b)
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〈W (p′)|W †(x) = ζ∗µ(p, r)eip·x〈0| (A.6c)

〈W (p′)|∂νW †(x) = ipνζ
∗
µ(p, r)eip·x〈0| (A.6d)

We introduce the following tensors for the field strength and the photon-boson coupling:

The covariant field strength tensor reads

and the coupling tensor is given by

Wµν := DµWν −DνWµ

Tµν := WµAν − AµWν .
(A.7)

For convenience, the contraction of these tensors with the fields is given in the following:

Wµν(x)|Wp〉 = −i
(
pµζν(p, r)e

−ip·x − pνζµ(p, r)e−ip·x
)
|0〉, (A.8a)

〈W (p′)|W †
µν(x) = i

(
pµζ

∗
ν (p, r)eip·x − pµ〈0|ζ∗ν (p, r)eip·x

)
〈0|, (A.8b)

Tµν(x)|Wpγ(k, σ)〉 =
(
ζβ(p, r)ερ(k, σ)e−ip·x − ζρ(p, r)εβ(k, σ)e−ip·x

)
|0〉. (A.8c)

A.2.2 Photon Fields

The photon field can be written as a plane wave as well. Note that due to the photon
mass being zero, the photon is its own antiparticle. The plane-wave expansion is given
by

Aµ(x) =
1

(2π)3

∫
d3k√
2p0

3∑
σ=0

(
b(p, σ)εµ(p, σ)e−ik·x + b†(p, σ)ε∗µ(p, σ)eik·x

)
. (A.9)

Commutation and Completeness Relations The photon fields also fulfill com-
mutation and completeness relations as given by

[b(k, r), b†(k′, s)] = δrsδ
(3)(k − k′), (A.10a)

[b, b] = [b†, b†] = 0, (A.10b)

and ∑
σ

εµ(k, r)ε∗ν(k, r) = −gµν . (A.11)
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Contractions with States The contractions of the photon fields with the states
are given by

Aµ(x)|γ(k, σ)〉 = εµ(p, σ)e−ik·x|0〉, (A.12a)

∂νAµ(x)|γ(k, σ)〉 = −ikνεµ(p, r)e−ik·x|0〉, (A.12b)

〈γ(k, σ)|Aµ(x) = εµ(p, σ)eik·x|0〉, (A.12c)

and 〈γ(k, σ)|∂νAµ(x) = −ikνεµ(p, r)eik·x|0〉. (A.12d)
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Loop Integration

B.1 Tensor Loop Integrals

Integrals of the type

Jn
(
M2

)
=

∞∫
−∞

d4`

(2π)4

1

(`2 −M2 + iε)n
(B.1)

are divergent for n ≤ 2 in the UV regime due to the upper limit. In order to evaluate
these integrals a method of regularization has to be used. Here, we resort to dimensional
regularization: The integral is evaluated in a fractional dimension D = 4− 2ε in which
it is still convergent. Afterwards, a Taylor expansion around ε = 0 yields the solution
of the integral.

In euclidian space, integrals of the type in eq. (B.1) can be reduced to the Euler
Gamma function. However, the denominator is defined with respect to the Minkowski
metric, i.e.

`2 ≡ `2
0 − `2. (B.2)

The denominator has poles at

`0 = ±
√
`2 +M2 − iε. (B.3)

Hence, the solution to the scalar integral can be derived using the equivalence of
Minkowski and Euclidian metric if we allow `0 to take complex values (analytic
continuation). The transition `0 → i`0 is called Wick rotation, see fig. B.1.
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Re l0

Im l0

Figure B.1: Integration path of the Wick rotation.

In D-dimensional euclidic space we can rewrite the differential dD` in polar coordinates,

∞∫
−∞

dD` =

∞∫
−∞

dl lD−1

2π∫
0

dφ
π∫

0

dϑ1 sinϑ1 · · · dϑD−2 sinϑD−2 (B.4)

with l = |`|, so that we obtain

Jn(M2) = 2π
D
2 i

(−1)n

Γ(D
2

)

∞∫
0

dl
(2π)D

lD−1

(l2 +M2 − iε)
. (B.5)

There are no angular dependencies so that a direct evaluation is possible. Using the
relations to the Euler Gamma function,

π∫
0

dϑ sink ϑ =
√
π

Γ(k+1
2

)

Γ(1 + k
2
)

and
∞∫

0

dt2x−1 1

(1 + t2)x+y
=

Γ(x)Γ(y)

2Γ(x+ y)
, (B.6)

we find in the limit D → 4

Jn
(
M2

)
= i

(−1)n

(4π)2

Γ (n− 2)

Γ (n)
M−2(n−2) (B.7)

From the scalar integral, we can iteratively derive the formulas for higher order tensor
integrals, that is for integrals with loop momenta ell in the numerator. In this work,
integrals up to order O(`4) appear. Odd integrals vanish due to the symmetry under
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B.1 Tensor Loop Integrals

`→ −`. The scalar and 2– and 4–tensor loop integrals are given by∫
dD`

(2π)D
1

(`2 −M2)n
= Jn

(
M2

)
, (B.8a)∫

dD`

(2π)D
`µ`ν

(`2 −M2)n
=

1

2(n− 1)
gµνJn−1

(
M2

)
, (B.8b)∫

dD`

(2π)D
`µ`ν`ρ`τ

(`2 −M2)n
(B.8c)

=
1

4(n− 1)(n− 2)
Jn−1

(
M2

)
(gµνgρτ + gµρgντ + gµτgρν) .

The derivation is straightforward: The 2–tensor integral is of the form∫
d˜̀ `α`β

(`2 −M2)n
= gαβA, (B.9)

where A is a constant. To determine A, we contract both sides with gαβ, using g2 = D,

DA =

∫
d˜̀ `2

(`2 −M2)n

=

∫
d˜̀
(

1

(`2 −M2)n−1
+

M2

(`2 −M2)n

)
= Jn−1(M2) +M2Jn(M2) =

D

2(n− 1)
Jn−1(M2),

(B.10)

where in the last line, we have used

Jn(M2) = Jn−1(M2)(−1)
n− 1− D

2

n− 1
M−1. (B.11)

Thus, we obtain eq. (B.8b). The 4–tensor integral is obtained in a similar manner.
Here, we have to consider that the tensor is completely symmetric,∫

d˜̀ `µ`ν`ρ`τ

(`2 −M2)n
= B (gµνgρτ + gµρgντ + gµτgρν) . (B.12)

contraction⇒ B(D2 + 2D) =

∫
d˜̀ `2`2

(`2 −M2)n

=
1

4(n− 1)(n− 2)
Jn−2(M2)

(
D2 + 2D

)
,

(B.13)

so that we finally obtain eq. (B.8c).
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Appendix B Loop Integration

It is useful to rewrite Jn for n = 1, 2 evaluating the Euler-Gammas such that

J1

(
M2

)
=
−iM2

(4π)2

(
2

D − 4
+ γE − 1 + ln

M2

4π

)
(B.14a)

J2

(
M2

)
=
−i

(4π)2

(
2

D − 4
+ γE + ln

M2

4π

)
︸ ︷︷ ︸

=:L

. (B.14b)

where D = 4→ D = 4− = 4− 2ε. Here, L is a symbolic notation for renormalizable
divergences.

B.2 Feynman-Schwinger Parametrization

Often, the denominator of an interaction integral is inconvenient to integrate. However,
Feynman invented a method to rewrite the denominator such that the calculation
is greatly simplified, based on a parametrization by Schwinger. In principle, this
corresponds to a substitution applying the parametric differentiation rule.
For a discussion of this concept, refer to [PS95], p.189 ff.

The general Feynman parametrization for n denominators is given by

1

A1A2 . . . An
=

1∫
0

dx1dx2 . . . dxnδ
(∑

xi − 1
) (n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]n
. (B.15)

The formulas we need in our work are:

• For two propagation terms

1

AB
=

1∫
0

dx
1

[Ax+B(1− x)]2
(B.16)

• For three propagators

1

ABC
=

1∫
0

dx

x∫
0

dy
2

[Ay +B(x− y) + C(1− x)]3
(B.17)
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Appendix C

Diagrams

C.1 Tree-level Diagrams

The tree level diagrams are given by the following diagrams:

ν q µ
q′

p̃s
pβ p′ α

≡ W ∗
α(p′)ε∗(q′)Γαρµ(p′, p̃s)∆ρτ (p̃s)Γ

ατν(p̃s, p)εν(q)Wβ(p)

ν
q

µ

q′

p̃s
pβ p′ α

≡ W ∗
α(p′)ε∗(q)Γαρν(p′, p̃u)∆ρτ (p̃u)Γ

ατµ(p̃u, p)εν(q
′)Wβ(p)

ν q µ
q′

pβ
p′

α ≡ W ∗
α(p′)ε∗(q′)Γαβµν(p′, p)εν(q)Wβ(p)

C.2 Vertex Correction Diagrams

p− k

β
p k

α
p

W ∗
α(p′)ε∗(q′)Γαρµ(p′, p̃s)∆ρτ (p̃s)Γ

ατν(p̃s, p)εν(q)Wβ(p)
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Appendix C Diagrams

p− k

β
p k k′

α
p′

µ

q

W ∗
α(p′)ε∗µ(q)Γαρξ(p′, p− k)∆ρτ (k

′)Γτηµ(k′, k)∆ησ(k)Dσβ(p− k)Γτηµ(k, p)Wβ (p)

p′ − k′

β
p k′

α
p′

µ

q

W ∗
α(p′)Γαρξ(p′, p′ − k′)∆ρτ (p

′ − k′)Dξζ(k
′)Γβτζµ(p′ − k′, p)εµ(q)Wβ (p)

p− k

β
p p

α
p′

µ

q

W ∗
α(p′)εµ(q)Γαρξ(p′, p− k)∆ρτ (p− k)Dξζ(k)Γβτζµ(p− k, p)Wβ (p)

µ

q

β p αp′

k′ p− k

W ∗
α(p′)ΓαβσηYM (p′, p)∆στ (k

′)Γτηµ(k′, k)∆ητ (p− k)ε∗µ(q)Wβ (p)
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C.3 Momentum Shifts

C.3 Momentum Shifts

The denominators are all reduced to the same type, 1
(`2−M2)n

, withM2 = x2M2, by
using the Feynman trick and appropriate shifts of the loop momenta.

Diagram Denominator Shift

(k2 −M2)(k′2 −M2)(p− k)2 k → `+ (1− x)p− yq

(l′2 −M2)(p− l)2 l→ `+ (1− x)p′

(l2 −M2)(p− l)2 l→ `+ (1− x)p

(h′2 −M2)(p− h)2 h′ → `+ (1− x)q

Table C.2: Vertex correction contributions and corresponding momentum shifts
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