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Part I

INTRODUCTION AND
THEORETICAL FOUNDATIONS





�e main motivation for working in chiral
dynamics is that it is fun. . .

—Heinrich Leutwyler [1]
1

MOTIVATION AND OVERVIEW

�e strong interaction is one of the four fundamental forces in physics
known today, besides gravitation, the weak interaction, and electro-
magnetism. It was �rstly postulated as a short-ranged counterforce to
explain the stability of nuclei as bound states of neutrons and protons
since the latter are subject to electromagnetic repulsion due to their
positive charge. Later, it was discovered in scattering experiments that
nucleons are not fundamental particles but consist of point-like quarks
and gluons [2, 3, 4]. In fact, quarks had already been discussed as hy-
pothetical particles to explain the observed particle spectrum prior to
their experimental discovery [5, 6]. Besides the leptons and the gauge
bosons of electroweak theory, quarks and gluons are constituents of
the Standard Model of particle physics and are therein described by an
SU() gauge theory called quantum chromodynamics (QCD) [7, 8, 9].
It bears its name from the analogy to quantum electrodynamics (QED)
that quarks interact with each other through gluons representing the
gauge bosons. In contrast to QED, quarks carry three di�erent color
charges and the eight gluons themselves are color-charged. Due to the
latter, three- and four-vertex gluon self-interactions arise.
QCD exhibits two intriguing features. So far, no free isolated quarks

have been observed experimentally, although they are the constituents
of matter. Only color-neutral bound states of quarks, so-called hadrons,
seem to appear in nature. It is still an open question of high interest
how to derive this phenomenon known as color con�nement fromQCD
[10].�e second remarkable phenomenon, called asymptotic freedom,
might be related to con�nement [7, 10, 11]. It states that the running
coupling constant g of QCD decreases for increasing energies. �is
implies that a perturbative treatment as an expansion in g is feasible and
successfully describes experiments for energies higher than Λ ≈ GeV.
On the other hand, the coupling g diverges for lower energies, which
corresponds roughly speaking to larger distances, and thus could explain
con�nement.
Hence, in the low-energy regime, a perturbative treatment is meaning-

less and an analytical solution of QCD is yet unknown.�erefore, one
could resort to a numerical approach called Lattice QCD, which is cur-
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4 motivation and overview

rently limited by available computing power. Another option—pursued
in this work—is an e�ective �eld theory (EFT) where the degrees of free-
dom are not gluons and quarks anymore but pions, kaons, vectormesons
and baryons, i.e. the low-energy degrees of freedom of the strong interac-
tion.�is approximation to the fundamental theory can be formulated
as a quantum �eld theory, if Lorentz invariance and the cluster-decom-
position principle hold.�e cluster-decomposition principle states that
su�ciently separated experiments do not in�uence each other [12]. Fur-
thermore, the most general Lagrangian is only required to be consistent
with the assumed symmetries of the underlying theory [13]. In general,
this implies that the corresponding Lagrangian contains an in�nite num-
ber of interaction terms, each accompanied by an unknown low-energy
constant (LEC). Note that if one had solved the fundamental theory,
one could calculate these LECs in principle. However, in order to give
the e�ective theory predictive power, two concepts are necessary. First,
the results of an EFT are obtained as a perturbative series in q/Λ up
to a certain order, where q denotes a small quantity such as the pion
mass or momentum.�is renders the EFT only applicable for energies
su�ciently below the intrinsic scale Λ, otherwise the series would not
make any sense. Second, only terms in the Lagrangian which contribute
in this �nite series of small quantities are taken into account.�us, one
is le� with a �nite number of unknown LECs, which can be determined
by comparison with experimental data if the fundamental theory is
unknown. Since the LECs are independent of the particular physical
process fromwhich they have been determined, one can describe several
physical processes with the same set of LECs, at least up to a certain
accuracy.
In the case of chiral perturbation theory (ChPT), which is an e�ective

�eld theory for Goldstone bosons only,1 these concepts work reasonably
well [14].�ere exists a correspondence between the number of loops
of a Feynman diagram and its lowest possible chiral order. In this sense,
one can systematically neglect contributions of higher order. �is so-
called power counting scheme was �rstly developed by Weinberg [15]
and has been successfully used for various calculations.�ough, there
are two subtleties concerning this concept. First, due to the arbitrary
negative mass dimension of the LECs, an EFT is not renormalizable

1 In this work, the term ChPT is distinguished from the term chiral e�ective �eld theory.
�e latter includes heavy degrees of freedom such as vector mesons. Moreover, the
term Goldstone bosons is used for pions and additional kaons if the �avor symmetry
is irrelevant in the particular context.
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in the traditional sense, i.e. divergences stemming from loop integrals
cannot be absorbed in a �nite number of coupling constants. Never-
theless, this problem is simply overcome by requiring renormalizability
for an EFT in a modern sense, i.e. appearing divergences are absorbed
only up to the �nite order of the calculation [12]. Second, the question
arises whether the series in the small quantities converges. Naïvely, one
would expect a correction factor of q/Λ for the next order not taken
into account. In ChPT, where the order of q is given by the pion mass
and Λ ≈ GeV, this rough estimate of about  seems accurate.2
�e inclusion of heavy degrees of freedom such as nucleons and

vector mesons is obviously desirable, since it extends the applicability
of an EFT in two ways. Not only the energy regime is increased but
also a wider range of hadronic processes can be described. On the
other hand, it introduces several novel problems, which have been �rstly
encountered in the case of nucleons [16]. In the chiral limit, in which
the masses of the light quarks and thus the masses of the Goldstone
bosons vanish, the nucleon mass stays �nite.�ereby, one introduces an
intrinsic large scale in the theory, which is the main reason that a simple
power counting as in ChPT fails. It follows that diagrams containing
heavy degrees of freedomcontribute to a lower chiral order than a naïvely
adapted power counting would imply. Nevertheless, one can recover
power counting by the price of a more complicated renormalization
scheme. Basically, the parameters of a Lagrangian are rede�ned by �nite
quantities in order to absorb the power-counting-violating terms of
the diagrams. Several manifestly Lorentz-invariant renormalization
schemes have been developed to cover this issue. In this work, the
commonly used infrared regularization [17] in its reformulated version of
[18] is employed. Moreover, if heavy degrees of freedom are included, the
convergence of the expansion in small quantities is worse in comparison
to ChPT, even a�er renormalization. For example, some quantities in
the nucleon sector receive large higher-order corrections, which renders
the validity of the series expansion questionable.
�is thesis deals with describing strongly interacting spin-one par-

ticles, so-called vector mesons, in the low-energy regime up to GeV.
�ey were postulated in the late 1950’s in order to explain the charge
distribution of protons and neutrons [24] and were discovered as res-
onances in various scattering experiments from 1961 to 1963 [25]. In
this work, mainly the lightest vector mesons are considered: the three

2 Note that in ChPT the series is given in powers of (q/Λ).
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Name I Y JPG Reference

ρ()   −+ [19]
ω()   −− [20]
ϕ()   −− [21, 22]
K∗() / ± − [23]

Table 1.1: Firstly discovered vector mesons (mass in MeV) with their isospin I,
hyperchargeY , and Poincaré transformation properties JPG including
G-parity if applicable.

isovectorial mesons ρ+, ρ, ρ− and the isoscalar meson ω, see table 1.1.
Since the neutral ρ has the same properties as the photon except for
its mass, the inclusion of vector mesons typically improves the calcu-
lation of electromagnetic form factors [26, 27]. In particular, their q
dependence is better described since the quantity q is a measure for
the mass of the virtual photon. �is is re�ected in the vector meson
dominance model, where the interaction of the photon with a hadron is
mostly determined by the direct photon-rho coupling [25].
In comparison to nucleons, the inclusion of vector mesons as heavy

degrees of freedom is further complicated by their decay to pions.�is
leads to diagrams which exhibit a power-counting-violating imaginary
part, which must be compensated by imaginary counter-terms. Fur-
thermore, unstable particles could be implemented in a quantum �eld
theory with a complex mass [28]. Calculations using such a complex
mass renormalization scheme have been performed, e.g. for the mass of
the rhomeson [29]. It leads to the questionwhether the unitarity of the S-
matrix is violated or not by this renormalization scheme order by order.
Additionally, the construction of Lorentz-invariant scalars for vector
meson �elds usually introduces more degrees of freedom than physically
meaningful. Hence, constraints are necessary to reduce the number of
degrees of freedom to the physical number. However, these constraints
must be conserved in time, which represents a self-consistency condi-
tion.�is reasoning implies additional relations among the introduced
LECs in general, e.g. the well-known KSRF relation can be derived with
the help of such a constraint analysis [30].
�is work is organized as follows. In chapter 2, the basic concepts

of QCD with an emphasis on symmetries are presented in order to
motivate the construction of ChPT. Furthermore, ChPT is extended to
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include vector mesons, which is then denoted as a chiral e�ective �eld
theory. In chapter 3, some aspects of power counting and reformulated
infrared regularization are brie�y highlighted. Finally, the methods
of a constraint analysis on a classical level are described in chapter 4,
complemented by considering the free antisymmetric tensor model as
an example. In the second part, an already existing self-consistency
calculation of a general EFT for vector particles is extended to the SU()
sector in chapter 5, which is the only part of this work dealing with �avor
SU(). Next, the quantization of an e�ective �eld theory is investigated
for three massive vector particles using the antisymmetric tensor �eld
formalism including a constraint analysis in chapter 6. Finally, the
magnetic moment of the rho meson is calculated using a chiral e�ective
�eld theory incorporating pions, rho- and omega-mesons in chapter 7.
�e �ndings are summarized and conclusions are drawn in chapter 8.





2
QCD AND CHIRAL EFFECTIVE FIELD THEORY

In this chapter, the well-established quantum �eld theory describing
the strong interaction, quantum chromodynamics (QCD), is presented.
In the so-called chiral limit, it reveals symmetries which motivate an
e�ective �eld theory, chiral perturbation theory (ChPT). It can be ex-
tended to a chiral e�ective �eld theory, which includes heavy degrees of
freedom, such as vector mesons.�is introduction is loosely based on
[31, 32, 33].

2.1 quantum chromodynamics

As already mentioned, the strong interaction can be described by an
SU() gauge theory called quantum chromodynamics (QCD).�e full
QCD Lagrangian is given by [34, 35]

LQCD =


∑
f=

q̄ f (iγµDµ −m f )q f −


Tr(GµνG

µν) , (2.1)

where

q f =

⎛
⎜
⎜
⎝

q f ,

q f ,

q f ,

⎞
⎟
⎟
⎠

(2.2)

is the Dirac spinor quark �eld written down as a color triplet for each
of the six quark �avors f , usually denoted up (u), down (d), strange (s),
charm (c), bottom (b) and top (t). In addition, the quantity1

Aµ ≡ A
a
µ

λa


(2.3)

represents the eight gluon gauge �elds and its �eld strength tensor is
given by

Gµν ≡ G
a
µν

λa


= (∂µAa

ν − ∂νA
a
µ − g f abcAb

µA
c
ν)

λa


. (2.4)

1 See section A.1 on page 95 for the notation used.
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10 qcd and chiral effective field theory

Flavor Charge Mass

up / (.–.)MeV
down −/ (.–.)MeV
strange −/ ( ± )MeV
charm / (. ± .)GeV
bottom −/ (. ± .)GeV
top / (. ± .)GeV

Table 2.1: Quark masses and their charge in units of e for each �avor. �e
masses are heavily model dependent due to the experimental fact
that quarks cannot be observed as free particles but only by indirect
measurements of color singlet states. Values are taken from [36].

Finally, one �nds

Dµq f ≡ (∂µ + igAµ)q f (2.5)

as the covariant derivative, which transforms as the object it acts on by
de�nition. Note that the coupling constant g is independent of the quark
�avor.
As indicated earlier, the Lagrangian is constructed such that it is

invariant under a local SU() gauge transformation of the quark �elds
in color space, i.e.

q f (x)→ q′f (x) = exp(−iθ
a(x)

λa


)q f (x) ≡ U(x)q f (x)

(2.6a)
and LQCD → L

′
QCD = LQCD . (2.6b)

�is implies the transformation of the gauge �elds to read

Aµ → A
′
µ = UAµU† +

i
g
∂µUU† (2.7)

and it renders both parts of the Lagrangian in equation (2.1) indepen-
dently invariant. Note that in contrast to quantum electrodynamics, the
Lagrangian contains three-vertex and four-vertex interactions between
the gluon �elds.�is key feature of quantum chromodynamics stems
from the fact that the underlying gauge group SU() is non-abelian.



2.1 quantum chromodynamics 11

�ere exists an accidental global symmetry due to the numerical
values of the so-called current quark masses, see table 2.1. One can
divide the six quark �avors into the „light“ quarks up, down, strange,
and into the „heavy“ quarks charm, bottom, and top.�e splitting scale
of about GeV is justi�ed by themass of the lightest2 strongly interacting
particles, i.e. the rho meson with a mass of MeV, and by the scale
of spontaneous symmetry breaking πF ≈ MeV. �is leads to a
Lagrangian approximately describing low-energy processes of the strong
interaction

LQCD = ∑
f=u,d ,s

q̄ f iγµDµq f −


Tr(GµνG

µν) , (2.8)

where the light quark masses are set to zero and the heavy quarks are
omitted in comparison to equation (2.1).�is approximation is called
chiral limit. By introducing the projection operators,

PR =


( + γ) and PL =



( − γ) , (2.9)

which project the quark �elds q f onto their right-handed qRf = PRq f and
le�-handed qLf = PLq f components, respectively, the Lagrangian can be
rewritten as

LQCD = ∑
f=u,d ,s

(q̄Rf iγ
µDµqRf + q̄Lf iγ

µDµqLf ) −


Tr(GµνG

µν) . (2.10)

Since the covariant derivative Dµ is �avor independent, it follows that
LQCD is invariant under a transformation associated with a U()R ×
U()L symmetry group in �avor space, which is isomorphic to the sym-
metry group SU()R × SU()L ×U()V ×U()A. Here and henceforth,
the basis3 V = R + L and A = R − L with well-de�ned parity + and −,
respectively, is used. Naïvely, one would expect  ×  +  =  conserved
currents according to Noether’s theorem [37]. However, an anomaly in
QCD due to quantum corrections breaks the conservation of the singlet
axial-vector current associated with U()A [38, 39, 40], so that QCD in
the chiral limit possesses the symmetry group

SU()R × SU()L ×U()V , (2.11)

2 �e pseudoscalar pions and kaons are regarded as pseudo-Goldstone bosons and are
therefore treated specially, see section 2.2.

3 Note that this notation is rather symbolic, in some cases a prefactor / or /
√
 is

inserted by convention.
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where the subgroupG = SU()R×SU()L is o�en referred to as the chiral
group.�e conservation of the singlet vector current associated with
U()V corresponds to the conservation of baryon number B observed
in experiments.�erefore, one divides hadrons into mesons with B = 
and baryons with B = .

2.2 chiral effective field theory

In the scope of this thesis, it is su�cient to restrict the following con-
siderations to the case of a global G = SU()R × SU()L symmetry, i.e.
only the up and down quarks are regarded as light, which is a far better
approximation than including the strange quark.

Spontaneous Symmetry Breaking

According to the approximate symmetry of QCD in equation (2.11), one
would expect that observed particle states in a certainmass region can be
arranged approximately in irreducible multiplets of SU() with positive
and negative parity. However, one �nds at the lowest mass scale multi-
plets with positive parity only, e.g. the baryon doublet, and rather light
pseudoscalar pions.�is leads to the conclusion that the chiral group
G = SU()R × SU()L with nG =  generators is spontaneously broken
to the subgroup H = SU()V with nH =  generators. Spontaneous
symmetry breaking means that, although the Hamiltonian is invariant
under G, its physically realized ground state is only invariant under a
subgroup H of G. In this case, Goldstone’s theorem [41, 42] requires
the appearance of nG − nH =  massless and spinless particles. �ese
particles are identi�ed with the pions, whose �nite mass is attributed to
the explicit breaking of chiral symmetry due to the �nite masses of the
light quarks. Note that the symmetry of the system is determined by the
ground state and not by the Hamiltonian, owing to Coleman’s theorem
[43].

Ward Identities and Local Chiral Invariance

Vacuum expectation values of time-ordered products of operators, so-
called Green’s functions, are connected to the physical scattering ampli-
tudes according to the Lehmann-Symanzik-Zimmermann (LSZ) formal-
ism [44, 45].�ereby, they represent the crucial link between theory and
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experimental data in a quantum �eld theory.�e aforementioned global
chiral symmetry leads to relations among di�erent Green’s functions if
promoted to a local one.�is was �rstly discovered in QED with respect
to a U() symmetry and these relations are thus denoted shortly as Ward
identities [46, 47, 48]. Note that chiral Ward identities are still useful in
a modi�ed form if the underlying chiral symmetry is explicitly broken,
i.e. in the physical case of non-vanishing quark masses [49].
Green’s functions can be obtained elegantly by functional derivatives

with respect to external �elds in the path integral formalism. To that
end, the SU()-adapted Lagrangian in equation (2.10) is extended by
such external �elds, which couple to the vector-, axial-vector-, scalar-
and pseudoscalar quark currents as follows:

L = LQCD+Lext = L

QCD+q̄γµ(vµ+



vµ(s)+γaµ)q−q̄(s− iγp)q . (2.12)

�e color-neutral external �elds acting in �avor space are de�ned with
the help of the Pauli matrices4 as

vµ =


∑
i=

τi


vµi , vµ(s) = τv

µ
 , aµ =



∑
i=

τi


aµ
i ,

s =


∑
i=

τisi , p =


∑
i=

τipi .
(2.13)

Note that the vector current possesses an isovectorial and isoscalar part.5
�e original QCD Lagrangian with �nite quark masses can be obtained
by setting s = diag(mu ,md) and v = a = p = . Finally, the generating
functional Z is given by

exp(iZ[v , a, s, p]) = ⟨∣T exp[i ∫ dxLext(x)]∣⟩(chiral limit) . (2.14)

�is functional represents the crucial link between QCD in the low-
energy limit and e�ective �eld theories for the strong interaction.

4 �e de�nition is given in equation (A.5) on page 95.
5 �e isoscalar vector current plays an important role in the SU() sector and is hence
included explicitly.�e isoscalar axial-vector current has an anomaly and is hence
omitted [14, 50].
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Furthermore, the Lagrangian L in equation (2.12) is invariant under a
local chiral transformation if the external currents behave as

(vµ + aµ)→ VR(v
µ + aµ)V †R + iVR∂

µV †R ,
(vµ − aµ)→ VL(v

µ − aµ)V †L + iVL∂
µV †L ,

(s + ip)→ VR(s + ip)V †L ,
(s − ip)→ VL(s − ip)V †R ,

(2.15)

where (VR(x),VL(x)) ∈ G = SU()R × SU()L. Promoting the global
chiral symmetry to a local one serves two purposes. First, in absence of
anomalies, the chiral Ward identities are equivalent to the invariance
of the generating functional under a local chiral transformation, i.e.
the e�ective Lagrangian reproducing the Green’s functions resulting
from equation (2.14) is invariant under a local chiral transformation.
�is imposes strong constraints on the construction of an e�ective �eld
theory [51]. Second, local invariance allows for a coupling of the ef-
fective degrees of freedom to external gauge �elds. For example, the
electromagnetic four-vector potential Aµ is implemented as

vµ(s) = −
e

Aµ , vµ = −

e


τAµ . (2.16)

Weinberg’s Power Counting

As already indicated, an e�ective Lagrangian contains an in�nite num-
ber of interaction terms and, hence, an in�nite number of Feynman
diagrams contribute to a physical process even up to one-loop level.
�erefore, a power counting scheme, which assigns to each diagram a
so-called chiral order D, is necessary. In the case of pions, this scheme is
called Weinberg’s power counting [15] and allows for neglecting higher-
order contributions in a systematic way. Consequently, the interaction
terms of a Lagrangian are ordered by the number of derivatives6 and
powers of pion masses,

L = L +L +L + . . . . (2.17)

As explained later, only even orders Ln occur. In particular, the chiral
order D is de�ned by the behavior of the invariant amplitudeM(p,mq)

6 �e derivatives can act on pion �elds as well as on external ones. Of course, the latter
are also assigned a chiral order which needs to be considered.
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corresponding to some diagram under a linear rescaling of the external
pion momenta, pi → tpi , and a quadratic rescaling7 of the quark masses,
mq → tmq, as

M(p,mq)→M(tp, tmq) = tDM(p,mq) . (2.18)

�e chiral order is then given by

D =  +
∞

∑
n=
(n − )Nn + NL

= NL − NI +
∞

∑
n=
nNn ,

(2.19)

where Nn is the number of vertices from Ln, NL the number of loop
integrations and NI the number of internal pion lines. Referring to
equation (2.19), a loop integration counts as D = , an internal pion
propagator as D = − and a vertex from Ln as D = n. In conclusion,
the importance of diagrams decreases with increasing chiral order D,
which is directly proportional to the number of loops.�us, by taking
only diagrams into account up to a certain maximum chiral order, one
approximates the invariant amplitude in a consistent way.
If vector mesons as heavy degrees of freedom are included and appear

as external particles, the power counting scheme is necessarily extended
and needs to be accompanied with a suitable renormalization scheme.
�is complicates matters signi�cantly, as detailed in chapter 3.

Chiral Perturbation�eory

�e next step is to construct an e�ective Lagrangian following [53, 54].
�e pion �elds π+, π, π− are represented by an unimodular unitary ×
matrix,

U(x) = exp(
i
F



∑
a=

τaπa(x)) , with


∑
a=

τaπa =
⎛

⎝

π
√
π+

√
π− −π

⎞

⎠
,

(2.20)

where F is associated with the pion decay constant in the chiral limit.
�e local chiral transformation of U is implemented as a non-linear
realization,

U(x)→ VRU(x)V †L , (2.21)

7 �is rescaling can be motivated by the Gell-Mann, Oakes, and Renner relations [52].
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where (VR(x),VL(x)) ∈ G = SU()R × SU()L. Note that the ground
state, represented by U = 1, is only invariant if VR = VL, which corre-
sponds to the subgroupH ≅ SU()V as desired.�e covariant derivative,
which transforms as U itself, is de�ned as

DµU = ∂µU − irµU + iU lµ , (2.22)

where the external currents rµ = vµ + aµ and lµ = vµ − aµ transform
consistently according to equation (2.15). Eventually, the quantity

χ = B(s + ip) (2.23)

represents the scalar and pseudoscalar sources transforming as U .�e
constant B is related to the quark condensate ⟨q̄q⟩ = −FB in the chiral
limit.�e chiral order of the building blocks in equations (2.21) to (2.23)
is given by

U ∼ O(q) , DµU ∼ O(q) , χ ∼ O(q) . (2.24)

Finally, the e�ective Lagrangian implementing local chiral invariance,
spontaneous symmetry breaking and explicit breaking by the non-van-
ishing quark masses up to order two reads [14]

L =
F


Tr[DµU(DµU)

†
] +

F


Tr(χU† +U χ†) . (2.25)

Other possible terms are excluded due to Hermiticity as well as parity
and charge conjugation invariance. Note that the pion mass at leading
order is given byM = Bm̂, where m̂ = (mu +md)/ is the average of
the current quark masses [14]. By example of equation (2.25), only even
chiral orders can appear in ChPT due to Lorentz invariance, since all
Lorentz indices need to be fully contracted. Furthermore, F and B are
the only LECs up to order two.
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2.3 inclusion of vector mesons

In this section, themere construction of a leading-order e�ective Lagran-
gian describing spin-one particles is presented, whereas the di�culties
concerning power counting are addressed in chapter 3.
Heavy degrees of freedom, such as vector mesons, are also termed

resonances reminding of their short lifetime. In principle, such reso-
nances are already implicitly included in chiral perturbation theory by
the numerical values of the LECs.�is can be illustrated by expanding
the propagator of the resonance with heavy massMR as


q −M

R
= −


M

R
[ + (

q

M
R
) + (

q

M
R
)

+ . . . ] , (2.26)

where the Lorentz structure is omitted for simplicity. Consequently, the
contributions are absorbed order by order in the corresponding LECs. In
contrast, the explicit inclusion of resonances replaces the �nite expansion
in equation (2.26) by its exact expression, which can be advantageous.
�is is denoted as resummation of higher-order terms and an example
concerning nucleon form factors is given in [26].
Phenomenological Lagrangians including the interaction of vector

mesons have already been discussed in the late 1960’s [55, 56, 57]. Fur-
thermore, it has been known for a long time that vector mesons play
an important role in low-energy hadron physics, e.g. in the successful
description of the pion form factor in terms of the vector meson dom-
inance model, see [58, 59] for a review.�eir experimental properties
are given in table 1.1 on page 6.�us, the approximation that both reso-
nances included here possess the same mass, MR = Mρ ≈ Mω, is valid
within the accuracy of this work. In the framework of a chiral e�ective
theory, several ways of implementing vector mesons exist [60]. Here, the
Lorentz vector �eld representation is chosen for the description of rho
and omegamesons. Additionally, only external vector currents are taken
into account, i.e. aµ =  and rµ = l µ = vµ. In this case, it is convenient to
introduce the following additional building blocks:

χ+ = u†χu† + uχ†u , Γµ =


[u†∂µu + u∂µu† − i(u†vµu + uvµu†)] ,

uµ = iu†(DµU)u† , Γµν = ∂µΓν − ∂νΓµ + [Γµ , Γν] ,

Fµν = ∂µvν − ∂νvµ , f µν
+ = uFµνu† + u†Fµνu ,

(2.27)
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where u is de�ned as the square root of U , u = U .�eir chiral order is
given as usual by

χ+ ∼ O(q) , Γµ ∼ O(q) , uµ ∼ O(q) ,
Γµν ∼ O(q) , Fµν ∼ O(q) , f µν

+ ∼ O(q) .
(2.28)

�e building blocks in equation (2.27) transform with the exception of
Γµ homogeneously, e.g.

uµ → KuµK† , (2.29)

with respect to the so-called compensator

K(VR,VL,U) = (
√
VRUVL)

−
VR

√
U , (2.30)

which is unitary, K† = K−. Note that Γµ transforms inhomogeneously
as

Γµ → KΓµK† − ∂µKK† (2.31)

and thus cannot be used separately in the construction of the Lagrangian.
Next, the rho mesons—combined as an isotriplet—are represented by
an SU()-valued Lorentz vector, which leads to the building blocks

V µ =


∑
a=

τa

V µ
a ,

Vµν = ∇µVν −∇νVµ with ∇µVν = ∂µVν + [Γµ ,Vν] .
(2.32)

�ese transform homogeneously according to equation (2.29). At this
point, the most general Lagrangian for rho mesons with massMρ rele-
vant to the magnetic moment can be written as

L = −


Tr(VµνV µν) + [M

ρ + cx Tr(χ+)/]Tr(VµV µ)

+ ig Tr(VµVν∇
µV ν) + g Tr(VµVν)Tr(V µV ν)

+ g Tr(VµV µ)Tr(VνV ν) + idx Tr(VµνΓµν)

+ fV Tr(Vµν f
µν
+ ) + igρπ Tr(VµVν f

µν
+ ) + . . . ,

(2.33)

where cx , g, g, g, dx , fV , gρπ are unknown LECs. Here, the relevant
linear terms in Vµ have been taken from [61]. Furthermore, terms with
LECs having higher negative mass dimensions have been assumed to
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be suppressed by the intrinsic scale Λ. Regarding interactions of vector
�elds only, the Lagrangian is equivalent to the hidden-gauge formalism
[59]. However, it is still an open question how to construct a consistent
Lagrangian with interactions among pions and more than one vector
�eld. In this sense, the term proportional to gρπ should be regarded as a
�rst attempt to address this issue.
In [62], it was shown that starting from the most general Lagrangian

for three massive vector particles one is led to a locally SU() invariant
theory with an additional mass term by requiring global U() invariance,
self-consistency, and renormalizability .�is simpli�es the Lagrangian
in equation (2.33) with respect to the LECs g, g, g and they can be re-
expressed by a single LEC g. Additionally, employing a �eld rede�nition

Vµ = ρµ −
i
g
Γµ (2.34)

and using the KSRF relation [63, 64]

M
ρ = gF , (2.35)

rho meson �elds are transformed into the so-called Weinberg parame-
trization [57], which yields the Lagrangian in a form where renormal-
izability has been shown [30]. Note that the �elds ρµ transform inho-
mogeneously with respect to the compensator. Eventually, taking the
isosinglet omega meson ωµ with massMω into account,8 the Lagrangian
reads

L = −


Tr(ρµνρµν) + idx Tr(ρµνΓµν) + fV Tr(ρµν f

µν
+ )

+
M

ρ + cx Tr(χ+)/
g

Tr[(gρµ − iΓµ)(gρµ − iΓµ)]

+ i
gρπ

g
Tr[(gρµ − iΓµ)(gρν − iΓν) f

µν
+ ]

−



ωµνωµν +
M

ω


ωµωµ +

F

gωρπєµναβων Tr(ραβuµ) ,

(2.36)

where

ρµ =


∑
a=

τa


ρµ
a ,

ρµν = ∂µρν − ∂νρµ − ig [ρµ , ρν] ,
ωµν = ∂µων − ∂νωµ .

(2.37)

8 �is interaction term can be found in [29]. However, there is a factor F missing in the
Lagrangian Lωρπ in order to de�ne the LEC gωρπ with mass unit eV−.





3
POWER COUNTING AND REGULARIZATION

3.1 power counting with vector mesons

Implementing a consistent power counting scheme including the vector
mesons as heavy degrees of freedom is a non-trivial task.�ey introduce
a mass scaleMρ ≈ Mω, which is much larger than the pion massM or
typical energies of processes described by ChPT. Furthermore, the vector
mesons as unstable particles should be implemented with a complex
mass, i.e.M

ρ = (Mχ − iΓχ/), whereMχ and Γχ denote the pole mass
and width of the vector meson in the chiral limit, respectively. �e
implementation of unstable particles in a renormalizable quantum �eld
theory was �rstly discussed in [65].�ere, it was shown that the S-matrix
connecting stable particles only is unitary and causal. In perturbative
calculations, one method of dealing with unstable particles is termed
complex-mass renormalization scheme [66] and it has been applied in
chiral e�ective �eld theories [29]. Recently, the perturbative unitarity
of the S-matrix in the complex-mass scheme has been shown at the
one-loop level [67].
Weinberg’s power counting relies on the fact that only light degrees

of freedom appear in loops and therefore the momentum integration
undergoes a so� cut-o� [15].�is assumption does not hold anymore
if the theory contains vector mesons since then „hard“ poles at large
momenta contribute signi�cantly. Hence, loop diagrams with a previ-
ously assigned order give contributions which have a lower order than
expected. Fortunately, it turns out that these contributions are analytic
in M = Bm̂, i.e. in the quark mass expansion, as well as in the exter-
nal momenta [68].�erefore, the so-called power-counting-violating
terms can be absorbed by the rede�nition of the bare parameters of the
Lagrangian, e.g.

g = gR + δg = gR + ξ
²
=g̃R

+ δg − ξ
²
=δ g̃

. (3.1)

Here, the bare g stays real whereas the renormalized part gR as well as
the counter-term part δg can be complex. Furthermore, the splitting in
equation (3.1) is not unique with respect to �nite terms ξ as indicated

21
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and thus the splitting depends on the used renormalization scheme. In
conclusion, using an appropriate renormalization scheme enables us to
restore a consistent power counting including heavy degrees of freedom.
�e extended power counting rules, which allow for assigning a chiral

order to each diagram, read as follows. First, the list of small quantities,
collectively denoted as q, needs to be extended by the expression K −
M

R = O(q) if K is a large momentum since the resonance is regarded
as nearly on-shell, K ≈ M

R. Next, it is necessary to investigate every
possible �ux of the external momenta through each diagram. For each
given �ux the order of vertices and propagators are determined and
summed up as detailed below. Finally, the lowest order resulting from
the various �ux assignments is de�ned to be the chiral order of the
diagram. �e order of the vertices can be read o� the corresponding
Feynman rules taking into account the previously assigned �ux of large
external momentum. Additionally, one considers that the pion mass
counts as O(q), that the vector meson masses count as O(q), and
that each loop integration counts as O(q), as usual.�e order of the
propagators for small and large momenta can be read o� the following
table:

Momentum π ρ or ω

Small O(q−) O(q)
Large O(q) O(q−)

Table 3.1

�is can be motivated by the following approximative considerations of
the typical pole structure of a propagator:


k −M ≈


M = O(q−) ,


K −M ≈


K

= O(q) ,


k −M

ρ
≈

M

ρ
= O(q) ,


K −M

ρ
= O(q−) (see text above) ,

(3.2)

where k represents a small momentum and K a momentum with at least
one large component, say the zeroth, corresponding to the large mass of
a rho meson.
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3.2 reformulated infrared regularization

�is section illustrates the calculation of the analytic subtraction terms
following [18].�ey are necessary to renormalize the one-loop integrals
such that they satisfy the power counting. As an example, the following
one-loop scalar integral is considered,

H = i ∫ dnk
(π)n


[(k − p) −m + i+][k −M + i+]

, (3.3)

where m denotes the large mass of the resonance, M the small pion
mass and n the number of space-time dimensions. For example, this
integral appears in the calculation of the two-point function of the rho
meson with external momentum p. Here and henceforth, the method
of dimensional regularization, whose key feature is preserving the Ward
identities, is employed [69, 70]. Using the standard Feynman parametri-
zation formula [71]


ab

= ∫




dz

[az + b( − z)]
 , (3.4)

with a = (k − p) − m + i+ and b = k − M + i+, interchanging
the order of integrations and carrying out the integration over dnk, the
integral in equation (3.3) reads

H = −


(π)n/
Γ( − n/) ∫




dz[A(z)]

n/−
, (3.5)

where

A(z) = −p( − z)z +mz +M( − z) − i+ (3.6)

and Γ(z) is the well-known Gamma function. According to the infrared
(IR) regularization scheme of Becher and Leutwyler [17], the integral
H = I + R is divided into the IR singular part I and the regular part R
de�ned as

I = −


(π)n/
Γ( − n/) ∫

∞


dz[A(z)]

n/−
, (3.7)

R =


(π)n/
Γ( − n/) ∫

∞


dz[A(z)]

n/−
. (3.8)

It can be shown that the IR singular part I obeys power counting and
that the IR regular part R is analytic in the square of the pion mass and
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external momenta.�erefore, one can simply replace the integral H by
its IR-regularized part

HIR = H − R = I , (3.9)

considering that the part R can be compensated by rede�ned parameters
of the most general Lagrangian. Note that the splitting might introduce
additional divergences in I and R which cancel in the sum I + R. In
general, in�nities are neglected according to the so-called M̃S renorma-
lization scheme, i.e. terms proportional to the in�nite quantity

λ =

π

{


n − 
−


[ln(π) + Γ′() + ]} (3.10)

are set to zero, arguing that they also can be absorbed in counter-terms of
themost general Lagrangian.�e part R in equation (3.9) is also denoted
subtraction term since the regularized integral is obtained by subtracting
R from the original integral. Furthermore, the regular part R satis�es
the Ward identities separately from I and, hence, the IR regularization
preserves the symmetries of the theory.
In the original approach of Becher and Leutwyler [17], the crucial step

is to calculate the singular part I directly in order to obtain the regular-
ized integral, see also [68].�is turns out to be di�cult in generalized
situations. However, the subtraction terms can also be obtained order
by order by expanding the integrand in equation (3.5) directly in small
Lorentz-invariant quantities, say M and p − m, and interchanging
the series and the integration. It has been shown that this procedure is
equivalent to the original approach order by order, see [18] for details. In
the following, this approach is termed reformulated IR regularization.
In practical calculations, the reformulated procedure provides an

easier method of �nding the renormalized version of the results.�is
concerns the integration as well as the identi�cation of R, e.g. in two-loop
calculations. A�er a standard Passarino-Veltman reduction [72, 73] in n
space-time dimensions, the scalar integrals containing only pion masses
and small momenta, such as the external photon momentum, are kept,
whereas integrals containing only large masses and external momenta
are discarded. �is implies that diagrams with loops containing only
heavy degrees of freedom can be discarded directly. Next, integrals
which contain both scales are calculated in n dimensions as explained
above up to a su�cient order in the small invariant quantities. Finally,
the subtraction terms are obtained by the expansion around n = ,
neglecting divergences according to M̃S scheme. Note that even a�er
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expressing the integrals in Feynman parametrization and expanding the
integrand, the analytic integration and subsequent expansion around
n =  might turn out to be a formidable problem. Additionally, due to
the Passarino-Veltman reduction, small quantities might appear in the
denominator as so-called Gram determinants, which necessitates the
calculation of subtraction terms with a higher order than the desired
accuracy of the results. �ese subtleties are detailed in chapter 7 by
means of an explicit example.





4
CLASSICAL CONSTRAINT ANALYSIS

4.1 preliminary remarks

�e inclusion of massive particles with non-zero integer spin in an e�ec-
tive quantum �eld theory necessitates non-trivial considerations even
on a classical level. Naturally, one prefers to use objects with a well-
de�ned behavior under Lorentz transformations in order to construct
Lorentz-invariant Lagrangian densities L. For example, a four-vector
Vµ, which is used to describe a spin-one particle, transforms under a
Lorentz transformation Λ as

Vµ → V ′
µ = Λ ν

µ Vν . (4.1)

Consequently, the building block VµV µ is convenient for the construc-
tion of L since it is invariant under Λ, i.e.

VµV µ → V ′
µV ′µ . (4.2)

However, a four-vector �eld V µ has four degrees of freedom or an anti-
symmetric tensor �eldW µν has six degrees of freedom, but a spin-one
particle1 has only × +  = . Hence, one inevitably introduces more de-
grees of freedom than are physically realized. In canonical quantization,
this leads to the appearance of so-called primary constraints in deriving
the Hamiltonian density, i.e. equations of the form2

ϕ(V , Π) ≈  , (4.3)

from which some of the velocities V̇ are not solvable. Here, V denotes
the �elds—neglecting the Lorentz structure—and Π = ∂L/∂V̇ denotes
the corresponding canonically conjugated momenta. In equation (4.3),
the condition holds only a�er the evaluation of Poisson brackets.�is is
termed a weak equation in Dirac’s sense [74].�ere is a crucial di�er-
ence between particles with and without mass.�e former is the case
discussed here and thus the constraints in equation (4.3) belong to a

1 �e irreducible S+ dimensional representations of SU() are interpreted as particles
with spin S.

2 Note that the Lorentz structure and internal indices are suppressed and therefore ϕ
can represent several non-equivalent expressions.
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system of so-called second-class constraints. For the latter, so-called
�rst-class constraints appear, which requires the introduction of addi-
tional constraints, i.e. gauge �xing terms. A well-known example for
the massless case is Maxwell’s theory for classical electrodynamics. In
[75], a thorough review of these issues is available.
Next, the non-solvable velocities are simply regarded as unknown

phase space functions z(V , Π) and the Hamiltonian density is obtained
by Legendre transformation,

H = ϕz +H , (4.4)

whereH depends on the particular form ofL.�e unknown functions z,
which can also be interpreted as generalized Lagrangian multipliers, can
eventually be determined by the physical requirement that the constraints
are conserved in time, i.e. the Poisson bracket of the Hamiltonian with
the constraint must vanish,

{H, ϕ} = {ϕ, ϕ} z + {H, ϕ} ≈  , (4.5)

where H() = ∫ dxH(). In general, the parameters a of the Lagrangian
specify the properties of the „matrix“ {ϕ, ϕ}. �us, the parameters
determine if the unknown functions z, interpreted as a „vector“, can be
solved from the „linear system of equations“ in (4.5). In this manner, one
should keep in mind how many constraints are physically meaningful,
i.e. the number of constraints plus the number of physical degrees of free-
dom must equal the number of degrees of freedom3 in the Hamiltonian
H, in short

(#DoF inH) − (#Constraints) = (#DoF of particles) . (4.6)

�is reasoning can lead to di�erent options for conditions among the
parameters a and further second-class constraints ϕ, ϕ, . . . can appear.
Of course, they themselves must ful�ll the physical requirement of con-
servation in time, which might in turn lead to more conditions for the
parameters a.�is procedure is illustrated as a cycle of the �owchart in
�gure 4.1.�ere, the term „depends on a“ exactly refers to the case if
the unknown functions z can only be solved for a certain choice of a.
Additionally, an example is provided in section 4.2, which also prepares
the concepts for the antisymmetric tensor model describing massive vec-
tor particles in chapter 6. In summary, the crucial result of a constraint
analysis is to impose conditions on the parameters a and thus to restrict
the variety of e�ective �eld theories to self-consistent ones.

3 �at equals the number of �elds plus the number of canonically conjugated momenta
in the Hamiltonian formalism.
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Formulate Lorentz-invariant Lagrangian
L(V , V̇) with parameters a.

Determine HamiltonianH(Π,V)

by solving for V̇ .

Self-consistent
theory.

#DoF inHminus
#Constraints
equals #DoF of
particles?

Non-physical
theory.

Retry with other
choice for a.

Introduce Lagrange multiplier z for
unknown V̇ and primary constraints ϕ.

Some V̇ not solvable.

YesNo

Require
conservation in
time for ϕi .
Solve for z.

Choose a.
Introduce
secondary
(tertiary, . . . )
constraints ϕ
(ϕ, . . . ).

depends on a

Figure 4.1: Constraint analysis as a �owchart.�e number of degrees of free-
dom is abbreviated with #DoF.�e physical requirement that the
constraints are conserved in time is crucial for the resulting con-
ditions on the parameters a.�e case that no primary constraints
appear is trivial. Note that one can obtain a non-physical theory
even though L is the most general Lagrangian. Refer to section 4.1
for further explanation, especially for the option „depends on a“.
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4.2 constraint analysis of the
free antisymmetric tensor model

As an example for the previous remarks, the Lagrangian density

L = a ∂µWµν∂ρW ρν + b ∂ρWµν∂ρW µν + cWµνW µν (4.7)

of an antisymmetric tensor �eldWµν = −Wνµ is considered, analogous
to [76, app. A]. In the Hamiltonian formalism the particle is described by
six pairs of canonically conjugated variables (Wµν , Πµν), hence twelve
degrees of freedom, which must be reduced to the six physical degrees
of freedom of a spin-one particle by six independent constraints.�is
requirement leads to conditions for the parameters a, b, c.
Henceforth, a non-covariant formulation is employed for practical

reasons.�is means explicitly that the Lagrangian is expressed in the
six �elds

W, W, W, W, W, W (4.8)

by exploiting the antisymmetryWµν = −Wνµ.�is choice can be made
without loss of generality and leads to

L = a[ẆẆ − Ẇ jẆ j − (∂iWiẆ − ∂iWi jẆ j)

+ ∂iWi∂ jW j − ∂iWik∂ jWjk]

+ b[ẆẆ − ∂kW∂kW − ẆiẆi + ∂kWi∂kWi

− Ẇ jẆ j + ∂kW j∂kW j + Ẇi jẆi j − ∂kWi j∂kWi j]

+ c[WW −WiWi −W jW j +Wi jWi j]

= a[−Ẇ jẆ j + (∂iWi jẆ j − ∂ jWi jẆi) + ∂iWi∂ jW j

− ∂iWik∂ jWjk + ∂iWki∂ jWjk + ∂iWik∂ jWk j − ∂iWki∂ jWk j]

+ b[−Ẇ jẆ j + ∂kW j∂kW j + Ẇi jẆi j − ∂kWi j∂kWi j]

+ c[−W jW j +Wi jWi j] ,

(4.9)

where Latin indices i , j, k range from  to . In the last step, the con-
vention was introduced that a factorWi j (including Ẇi j) restricts any
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implicit sum involving i or j to i < j.�is convention will be kept from
now on. As a result, the six canonically conjugated momenta read

Π j =
∂L
∂Ẇ j

= −(a + b)Ẇ j + a(∂iWi j − ∂iWji) , (4.10a)

Πi j =
∂L
∂Ẇi j

= bẆi j , i < j . (4.10b)

Next, four cases of parameter choices need to be distinguished, of
which two are easily seen to be physically meaningless.�ese read:

b = , a = −b = : �is corresponds to a Lagrangian without a kinetic
term. All momenta vanish.

b ≠ , a ≠ −b: Here all velocities are solvable from equations (4.10a)
and (4.10b) and no constraints reduce the twelve degrees of free-
dom. Hence, not only a spin-one particle is described, which is
not desired here.

In the following sections both the remaining, physically meaningful
cases are discussed.

�e Case b = , a ≠ −b = 

From equation (4.10b) one obtains on the one hand, due to i < j, three
primary constraints

ϕi j = Πi j ≈  , (4.11)

and from equation (4.10a) on the other hand three solvable velocities

Ẇ j = −

a
Π j + ∂iWi j − ∂iWji . (4.12)

�e Hamiltonian density is found by a Legendre transformation to be

H = Π jẆ j +Πi jẆi j −L

= ϕi jzi j −

a
Π jΠ j − a∂iWi∂ jW j

+ c(W jW j −Wi jWi j) ,

(4.13)

where the solvable velocities have been replaced and unknown functions
zi j ≡ Ẇi j have been introduced.
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Next, these unknown functions should be determined iteratively by
the physical requirement that the Poisson bracket of the constraints and
theHamiltonian functionH = ∫ dxH vanishes, i.e. that the constraints
are conserved in time.�is leads to

{ϕlm(t, y⃗),H(t)} = cWlm(t, y⃗)
+ ∂yl Πm(t, y⃗) − ∂

y
mΠl(t, y⃗) ≈  ,

(4.14)

where the canonical equal-time commutation relations

{Wi j(t, y⃗), Πlm(t, x⃗)} = δi lδ jmδ()( y⃗ − x⃗) , (4.15a)
{W j(t, y⃗), Πm(t, x⃗)} = δ jmδ()( y⃗ − x⃗) , (4.15b)

have been used. As usual, all other Poisson brackets of the �elds and mo-
menta vanish. Furthermore, Poisson brackets containing the unknown
functions {. . . , zi j} can be ignored since these are always factors of a
„weakly“ vanishing constraint.
From equation (4.14) three secondary constraints result, namely

ϕlm = cWlm + ∂lΠm − ∂mΠl ≈  , (4.16)

where the arguments of the functions are discarded here and henceforth
for clarity. Imposing conservation in time again yields

{ϕlm ,H} = c[zlm − (∂lWm − ∂mWl)] ≈  , (4.17)

so that the unknown functions can be determined to zlm = ∂lWm −

∂mWl if c ≠ . In the end, a self-consistent theory with  constraints
and  −  =  physical degrees of freedom is found as desired.

�e Case b ≠ , a = −b

�is case is analogously calculated to the one before, however, it is slightly
more complicated. Here, equation (4.10a) yields the three constraints

ϕ j = Π j + b(∂iWi j − ∂iWji) ≈  , (4.18)

as well as equation (4.10b), which yields the three solvable velocities

Ẇi j =

b
Πi j . (4.19)
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�e Hamiltonian density reads via Legendre transformation

H = Π jẆ j +Πi jẆi j −L

= ϕ jz j +

a
Πi jΠi j + c(W jW j −Wi jWi j)

+ b(∂iWi∂ jW j − ∂kW j∂kW j + ∂kWi j∂kWi j

− ∂iWik∂ jWjk + ∂iWki∂ jWjk + ∂iWik∂ jWk j

− ∂iWki∂ jWk j) ,

(4.20)

where again three to be determined functions were introduced and the
constraints in equation (4.18) were identi�ed.
�e following Poisson brackets are calculated as usual, except for

the fact that an integration by parts is carried out with respect to the
integral of the Hamiltonian function H = ∫ dxH if necessary. From
the conservation in time one obtains

{ϕl ,H} = b∂l∂iWi − b∂k∂kWl + cWl + ∂nΠnl − ∂nΠln

≡ ϕl ≈  .
(4.21)

At this point the convention in use shall be stressed again, e.g. it holds for
l =  that ∑n< ∂nΠn =  in equation (4.21). Furthermore, one cannot
solve for the unknown functions and thus equation (4.21) represents
three more secondary constraints, as indicated in the second line of
equation (4.21).
In order to calculate the conservation in time of ϕl , the intermediate

result

{Πnl ,H} = cWnl − b(∂n∂iWi l − ∂n∂iWl i

− ∂l∂iWin + ∂l∂iWni − ∂k∂kWnl)
(4.22)

is useful, which �nally leads to

{ϕl ,H} = b∂l∂izi − b∂k∂kzl + czl
− c(∂nWln − ∂nWnl) + b∂n∂n(∂iWl i − ∂iWi l) .

(4.23)

�is di�erential equation (4.23) is solved by zl = ∂nWln − ∂nWnl , since
∂izi =  holds in this choice. Moreover, the condition c ≠  is necessary
to ensure invertibility of the di�erential operator in equation (4.23).
As in the previous case, one is led eventually to a self-consistent the-

ory with the correct number of degrees of freedom. In both the self-
consistent cases, the remaining non-vanishing parameter associated
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with a or b can be eliminated by an appropriate normalization of the
Lagrangian to obey the canonical commutation relations. Consequently,
it can be shown that the parameter c ≠  is connected to the mass of
the free particle.�us, it is crucial that amassive free particle has been
considered.
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APPLICATIONS AND CALCULATIONS





5
SU()-INVARIANT GENERAL LAGRANGIAN

In this chapter, a short excursion to the SU() sector is undertaken.
Mostly, the calculations have been carried out to implement the neces-
sary algorithms on a computer while still having a cross-check with the
very similar calculations in [62]. Here, an e�ective Lagrangian density
for eight vector particles with same massM including only interactions
with dimensionless coupling constants g and h is considered, namely

LA = L +L +L , (5.1)

where

L = −


V a
µνV aµν +

M


V a
µ V aµ , (5.2a)

L = −gabcV a
µ V b

ν ∂µV cν , (5.2b)

L = −habcdV a
µ V b

ν V cµV dν , (5.2c)

with the usual notation V a
µν = ∂µV a

ν − ∂νV a
µ . All Latin indices of the

beginning of the alphabet range from  to .�e aim of the following
is the derivation of a consistent theory with a global SU() invariance
assumed a priori. �is theory could describe the vector mesons in
�gure 5.1 on the next page, however, the global SU() invariance is
broken due to the larger mass of the strange quark in comparison with
the masses of the up- and down-quarks.�e physical �elds with well-
de�ned quantum numbers in �gure 5.1 are related to the Cartesian �elds1
as usual [76],


√




∑
a=

λaV a =

⎛
⎜
⎜
⎝

ρ/
√
 + ω/

√
 ρ+ K⋆+

ρ− −ρ/
√
 + ω/

√
 K⋆

K⋆− K⋆ −ω/
√


⎞
⎟
⎟
⎠

.

(5.3)

Under a global in�nitesimal SU() transformation the Cartesian �elds
behave as

V a
µ → V a

µ + єb f bcaV c
µ . (5.4)

1 See also section A.1 on page 95 for the notation used.

37



38 su(3)-invariant general lagrangian

ρ+ρ− ρ

Y

I−/ /ω

−


K⋆ K⋆+

K⋆− K⋆

Figure 5.1:�e vector meson octet as physical �elds in a diagram of isospin
three-component I versus hypercharge Y = B + S. �e variable
S denotes the strangeness and the baryon number B vanishes for
mesons.

Inserting equation (5.4) in equation (5.2b), thereby obtaining L′, and
demanding δL = L′ − L =  + O(єa), one �nds constraints for the
coupling constants gabc.�ese constraints can be used to parametrize
L with only two independent coupling constants γ and γ,

gabc = γ f abc + γdabc . (5.5)

�e explicit form of equation (5.5) is derived by contracting the SU()-in-
variant trace Tr(VαVβ∂γVδ) of matrices Vµ ≡ V a

µ λa with Lorentz-invari-
ant tensors of suitable rank.2 An analogous consideration for L leads
to three independent coupling constants η, η, and η with

habcd = ηδacδbd + ηδabδcd + η f abe f cde , (5.6)

where other possible terms are equivalent due to the permutation sym-
metry of the Lorentz structure in equation (5.2c).
�e constraint analysis is carried out identically to [62, sec. III], since

the parameter range of the indices a, b, c, d is irrelevant there. In this
manner, the canonically conjugated momenta read

πa
 =

∂L
∂V̇ a

= −gbcaV b

 V c
 , (5.7)

πa
i =

∂L
∂V̇ a

i
= V a

i + gbcaV b
 V c

i , (5.8)

2 Under the additional assumption that the resulting scalars should be even under
parity.
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and the three primary constraints are obtained as

ϕa
 = πa

 + gbcaV b
 V c

 ≈  . (5.9)

�eHamiltonian densityH is constructed as in equation (4.4) on page 28
and conservation in time yields a linear system of equations

{ϕa
 ,H} = Aabzb + χa ≈  , (5.10)

where χa are eight z-independent phase space functions and the crucial
 ×  matrix is given by

Aab = (gbca + gcba − gacb − gcab)V c
 . (5.11)

Furthermore, to obtain the correct number of constraints, equation (5.10)
must not be solvable for z. �is reasoning leads to three secondary
constraints

ϕa
 = χa ≈  , (5.12)

which are also required to be conserved in time, i.e.

{ϕa
 ,H} =Mabzb + Y a ≈  . (5.13)

Here, the crucial  ×  matrix in equation (5.13) is given by

Mab = Mδab − (gbca + gcba)∂iV c
i

− (gace gbde − hacbd)V c
i V d

i

− (habcd + hacbd + hadcb)V c
V d


(5.14)

andY a are some irrelevant functions. At this point it shall be emphasized
that [62] gives a shortened form of equation (5.14).�ere, the relation
only holds if the coupling constants obey the permutation conditions

habcd = hbcda = hcdab = hdabc

= hcbad = hadcb = hdcba = hbadc ,
(5.15)

which, in particular, are not satis�ed by the parameter choice in equa-
tion (5.6) and by the Yang-Mills parametrization

gabc = g f abc ,

habcd =


gabe gcde .

(5.16)
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No. Fields Factor in detM Inequality

1 ∂iV i = x M − γx γ ≤ 

2 V  = x, M + (η + η)x η + η ≥ 
V i ≡ y − (η + η)y η + η ≤ 

Table 5.1: Determinant ofM in detail. For a given choice of �elds all other �elds
are set to zero. Here, only the relevant factors of the determinant are
displayed. Each step depends on the previous ones.

For example, consider the case a = b =  and c = d =  in equation (5.15),
i.e. h = h, whereas in equation (5.16) h =  but h = −g/
holds. �is appears also in section 6.2 for the four-�eld interaction.
It boils down to the fact that one is allowed to use the permutation
symmetry as in equation (5.15) only a�er implementing the a priori
assumed symmetry, e.g. global SU() or U().
In order to obtain a consistent theory, the parameters need to be

chosen such that the determinant of A vanishes and the determinant
ofM is not equal to zero. Owing to the symmetry properties of f abc
and dabc, it is easy to see that Aab ≡  and hence detA =  is obviously
satis�ed. �e analysis of detMab ≠  is carried out using that detM
must not vanish for all �elds.�is is detailed in table 5.1 and one obtains

η = −η and γ =  , (5.17)

besides several insigni�cant inequalities.
In order to carry out the renormalizability analysis, a general vector

particle model has been implemented in FeynArts, see also section B.1.
In this manner, the above derived relations for the coupling constants
are employed in completely arbitrary three- and four-particle Feynman
rules resulting from equations (5.2b) and (5.2c). Since h =  holds, the
in�nite parts of the one-loop contribution to the four-vertex function
of V V V V  must necessarily vanish.�e relevant one-loop Feynman
diagrams are topologically the same as in �gure 6.2 of the next chapter.
�e calculation can be substantially simpli�ed by neglecting terms which
contain pµ’s as part of their Lorentz structure, since at tree level only gµν
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structures appear. Finally, this reasoning leads to the necessary, but not
su�cient, condition

 = η − η(γ − η) + (γ − η)


= (γ − η −



η)

+ η ,

(5.18)

which is equivalent to

γ = η and η =  . (5.19)

Comparing equations (5.16) and (5.19), one is led from a globally SU()-
invariant theory to a locally SU()-invariant one concerning the inter-
action terms—also known as a Yang-Mills theory with an additional
mass term—only by requiring self-consistency of the constraints and
perturbative renormalizability.





6
MASSIVE VECTOR PARTICLES IN THE
ANTISYMMETRIC TENSOR MODEL

�is chapter presents a detailed analysis of the antisymmetric tensor
model for three massive vector particles including the interaction terms
with coupling constants of mass unit eV and eV. First, all available
Lorentz structures relevant to three- and four-�eld interactions are de-
rived. Consequently, the U() invariance is employed to reduce the
number of free coupling constants. Next, a constraint analysis is used to
impose self-consistency on the coupling constants. Finally, conditions
for the renormalizability of the theory are calculated.

6.1 available lorentz structures of the interaction
terms

From the Lagrangian density of the free tensor model in equation (4.7)
on page 30 withmass unit eV one derives1 that the antisymmetric tensor
�eldW µν has mass unit eV. Using the fact that all Lorentz indices in the
interaction terms must be completely contracted, interaction terms with
coupling constants possessing mass unit eV−n, where n = , , , . . . ,
can be constructed. In the following, all available Lorentz structures for
the cases n = , i.e. three �elds, and n = , i.e. four �elds, are motivated.
Note that the derivative operator ∂µ—with mass unit eV—needs not to
be taken into account since possible terms
(1) must contain an even number of derivatives,
(2) must not represent a total divergence, and
(3) must not be equal to the kinetic term.

�e Case n = :�ree Fields

A general interaction term has the form of a rank-six tensor

Wa αβWb αβW c αβ , (6.1)

1 �e parameters a and b in equation (4.7) are dimensionless in order to be consistent
with the fundamental commutation relations in canonical quantization.
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where a, b, c ∈ {, , } denote the necessary internal indices for three
particles.�is expression can be contracted with all Lorentz-invariant
rank-six tensors.�ese read—up to index permutations—

gαβ gαβ gαβ (6.2a)
and

єαβαβ gαβ , (6.2b)

where (gαβ) = diag(,−,−,−) denotes the metric tensor and єαβγδ de-
notes the totally antisymmetric Levi-Civita symbol with the convention
є = −є = .�ereby, all ! =  index permutations of (6.2a) and
(6.2b) are contracted with expression (6.1), additionally introducing a
new coupling constant gabc for each tuple (a, b, c).
�is work has been carried out using a computer program, see sec-

tion B.2, and one obtains for the case (6.2a) the term

L = −gabcWa
µν Wb µλW c ν

λ . (6.3)

�e resulting terms for the case (6.2b) read

єβγδεWa αβWb γ
α W c δε , єβγδεWa αβWb γδW c ε

α ,
єαβδεWa αβWb γδW c ε

γ .
(6.4)

However, these terms—which all are equivalent due to the suppressed
coupling constants g̃abc—are discarded in the further discussion since
they are odd under parity transformation owing to the single Levi-Civita
symbol.�e latter statement can be seen as follows: Under the symmetry
transformation parity P the �elds behave asW µν P

Ð→Wµν, whereas the
Levi-Civita symbol behaves as єαβγδ P

Ð→ −єαβγδ.�is results in a change
of sign, which shows the proposition.

�e Case n = : Four Fields

A general interaction term has the form of a rank-eight tensor

Wa αβWb αβW c αβWd αβ , (6.5)

with the same conventions as in the case n = .�e invariant Lorentz ten-
sors (up to permutations) which do not lead to odd-parity interactions
read

gαβ gαβ gαβ gαβ (6.6a)
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and
єαβαβєαβαβ . (6.6b)

�is time, ! =  permutations of Lorentz indices need to be
considered for each term, which results for the case (6.6a) in six di�erent
terms:

Wa αβWb
αβ W

c γδWd
γδ , Wa αβWb γδW c

αβ W
d

γδ ,

Wa αβWb γδW c
γδ W

d
αβ ,

(6.7a)

Wa αβWb
αγ W c

βδ W
d

γδ , Wa αβWb
αγ W c γδWd

βδ ,

Wa αβWb γδW c
αγ Wd

βδ .
(6.7b)

Note that the three terms in (6.7a) are structurally equivalent if taking
the coupling constants into account, analogously to the terms in (6.4).
�e same reasoning holds for the terms in (6.7b). Hence, only two struc-
turally independent interaction terms with arbitrary coupling constants
are obtained:

L = −habcd
 Wa αβWb γδW c

αβ W
d

γδ , (6.8a)

L = −habcd
 Wa αβWb γδW c

αγ Wd
βδ . (6.8b)

In the case (6.6b), the same procedure yields eleven terms of which three
are structurally independent. Including arbitrary coupling constants,
these read

L = −habcd
 єαβγδєµνλσWa

αβ W
b
γδ W

c
µν Wd

λσ , (6.8c)

L = −habcd
 єαβγµєδνλσWa

αβ W
b
γδ W

c
µν Wd

λσ , (6.8d)

L = −habcd
 єαγµλєβδνσWa

αβ W
b
γδ W

c
µν Wd

λσ . (6.8e)

At this point, it should be mentioned that the three Lagrangians in
equations (6.8c) to (6.8e) do not have a linearly independent Lorentz
structure from the �rst two in equations (6.8a) and (6.8b).�is can be
seen by virtue of the relation [77]

єµναβєλρστ = −det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

gλµ gλν gλα gλβ

gρµ gρν gρα gρβ

gσµ gσν gσα gσβ

gτµ gτν gτα gτβ

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (6.9)

which expresses an arbitrary product of two Levi-Civita symbols in
terms of metric tensors. However, all Lagrangians are kept in order to
provide a cross-check for the algorithm of the following section 6.2.
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Summary

Altogether, the following Lagrangian density

L = L +Lint (6.10)
with

L = −


∂µWa

µν ∂ρWa ρν +
M

a


Wa µνWa

µν (6.11)

and
Lint = L +L


 +L


 +L


 +L


 +L




will be considered, referring to equations (6.3) and (6.8a) to (6.8e). Ad-
ditionally, the choice a = −/, b =  and c = M/ has been made for
the free Lagrangian L, including the generalization that the �eldsW  µν

andW µν have the mass parameter M = M = M and the �eldW µν

has the mass parameter M.2 In the following sections, three physical
requirements are employed:

1. invariance under U() transformations of the �elds, i.e. conserva-
tion of charge,

2. self-consistency of the constraints with respect to their conserva-
tion in time, and

3. absorbability of the in�nite parts in the vertex functions into the
coupling constants.

Typically, these requirements reduce the number of the independent
 +  ×  =  coupling constants.3

6.2 requirement of the u(1) invariance

�e �eldsWa µν behave under an in�nitesimal U() transformation as

Wa µν →W ′a µν =Wa µν − ε єabWb µν . (6.12)

�e free part of the Lagrangian density is obviously invariant under
this transformation, i.e. δL = L′ − L = , whereas the invariance

2 Strictly speaking, the mass term should be written with the help of a diagonal mass
matrix (M

ab) = diag(M
 ,M ,M

), according to the sum convention.
3 As detailed in the following, this number does not account for the permutation
symmetry due to the Lorentz structure.
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of the interacting part imposes conditions on the coupling constants.
�ese have been derived systematically with computer programs, see
section B.2. In the following, the one three-�eld interaction and the �ve
four-�eld interactions are discussed separately.

�e Interaction Term L

�e interaction term

L = −gabcWa
µν Wb µλW c ν

λ (6.3)

can be expressed using only one parameter g owing to the antisym-
metry of the �eld W µν. In fact, if one carries out the summation in
equation (6.3) exploiting the aforementioned antisymmetry by replacing
W µν → V µν − V νµ, one �nds that each prefactor of a non-vanishing
three-�eld term has the form

g − g − g + g + g − g . (6.13)

Furthermore, this part of the Lagrangian is invariant under equa-
tion (6.12) up to �rst order in ε if

(gabdєdc + gadcєdb + gdbcєda)Wa
µν Wb µλW c ν

λ =  (6.14)

holds.�is condition is trivially satis�ed owing to the antisymmetry of
the �elds.
Equation (6.13) justi�es that the coupling constants gabc can be ex-

pressed using only one parameter as follows:

g = g . (6.15)

All other constants gabc are set to zero without loss of generality.

�e Interaction Terms L to L

In the following, the sum of all four-�eld interactions needs to be con-
sidered:

L = L

 +L


 +L


 +L


 +L




=


∑
i=

habcd
i tαβγδµνλσ

i Wa
αβ W

b
γδ W

c
µν Wd

λσ .
(6.16)
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Here, tαβγδµνλσ
i corresponds to a Lorentz tensor directly given by the �ve

four-�eld Lagrangians Li
 for i = , . . . , . Consequently, by applying

the transformation in equation (6.12) to equation (6.16), one obtains the
condition



∑
i=

(hebcd
i єea + haecd

i єeb + habed
i єec + habce

i єed)

× tαβγδµνλσ
i Wa

αβ W
b
γδ W

c
µν Wd

λσ = 
(6.17)

up to order ε, which must hold for all �elds Wa
µν. �is results in 

independent equations for the coupling constants h, . . . , h and, hence,
reduces the number of independent parameters from  ×  =  to
.
As for the three-�eld interaction, one respects the antisymmetry by

replacing the antisymmetric tensor �eld with an arbitrary tensor �eld,
Wµν → Vµν −Vνµ, and carries out the summation over all indices in equa-
tion (6.16). Additionally, one eliminates  coupling constants owing to
equation (6.17) in order to respect U() invariance.�e resulting expres-
sion can be collected by the �elds V , which yields prefactors consisting
of linear combinations of the remaining couplings h, . . . , h. In order to
determine the truly independent parameters in this expression, which
still respects U() invariance due to the prior elimination, one executes
the following iterative replacement procedure:

1. Choose an arbitrary prefactor and replace it by a new parameter
θ.�is yields a relation of the form

θ = ξ(hi) , (6.18)

where ξ(hi) denotes a linear combination in the coupling con-
stants h, . . . , h. Equation (6.18) can be solved uniquely for an
arbitrarily chosen coupling constant, which is replaced in all other
prefactors. In general, this introduces θ in these other prefactors
but eliminates the chosen coupling constant completely.

2. Choose the next prefactor which is not independent of the cou-
pling constants h, . . . , h—if any le�—and replace it by a new
parameter θ. In general, this yields a relation of the form

θ = ξ(hi , θ) . (6.19)

Again, solve for one arbitrarily chosen coupling constant and
replace it in all other prefactors.
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3. Repeat step 2 until all coupling constants are replaced by new
parameters θ j, j = , . . . ,N . Eventually, one obtains N linear
equations of the form θ j = ξ j(hi , θ i) which are used to replace N
coupling constants by new parameters. All remaining coupling
constants which cannot be replaced are set to zero without loss of
generality.

As a trivial example, the above algorithm can be applied to the case of
L discussed in the previous section.�ere, only one prefactor structure
given in equation (6.13) exists and one solves for g.�e newly intro-
duced variable is θ ≡ g according to equation (6.15).�e subsequent
replacement automatically eliminates all other coupling constants gabc
which are thus set to zero without loss of generality.
Note that these two steps „satisfying the U() invariance“ and „elimi-

nating super�uous parameters“ do not commute in general, which has
already been mentioned in chapter 5. In this manner, the presented al-
gorithm was cross-checked against parametrizations used in the vector
�eld formalism.
Finally, this reasoning leads to N =  truly independent parameters

for the four-�eld interaction.�e resulting choice of parameters reads:

h = h = d ,
h = (d − d) ,
h = h = d ,
h = d ,
h = h = d ,
h = d ,
h = h = (d − d) ,
h = (d − d + d + d) ,
h = h = −(d − d + d + d) ,
h = −(d + d) ,
h = h = (d − d) ,
h = (d − d) .

(6.20)

All other constants are set to zero without loss of generality, which
simpli�es the following calculations signi�cantly. Note that the parame-
trization for h is equivalent to the one in [62] and that Lorentz structures
of the last three interaction terms L, . . . ,L can be completely incorpo-
rated by the �rst two owing to equation (6.9).
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Interaction
Term

Number of
Parameters

Symbol

L  g in (6.15)

L + ⋅ ⋅ ⋅ +L

  di in (6.20)

Table 6.1: Summary of the coupling constants a�er requiring U() invariance.
Note that only the truly independent parameters are counted.

Summary

Finally, the number of coupling constants have been reduced from  to
 +  =  by requiring U() invariance and exploiting the permutation
symmetry including the antisymmetry of the �elds. An overview is
given in table 6.1. In the vector-�eld formalism, one �nds analogously
 parameters for the three-�eld interaction and  parameters for the
four-�eld interaction, which is in total  parameters [62].

6.3 constraint analysis

�e constraint analysis can be carried out analogously to section 4.2,
however, the interaction terms are taken into account and the �elds
carry an additional internal index. Again, the same non-covariant for-
malism with its choice of �elds is applied, but the parametrization in
equation (6.20) is used only if bene�cial.
�e following calculations have been carried out with a FORM pro-

gram, see section B.2, and have mostly been cross-checked by hand.
Initially, the �rst four parts of the Lagrangian density of equation (6.10)
are given in this formalism by

L = −


[∂iWa

i∂ jWa
 j − Ẇa

kẆ
a
k + (∂iW

a
ik − ∂iW

a
ki)Ẇ

a
k

− ∂iWa
ik∂ jWa

jk + ∂iW
a
ki∂ jWa

jk + ∂iW
a
ik∂ jWa

k j

− ∂iWa
ki∂ jWa

k j] +
M

a


(−Wa

 jW
a
 j +Wa

i jW
a
i j) ,

(6.21a)
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L = −gabc(−Wa
iWb

ikW
c
k +Wa

kW
b
ikW

c
i +Wa

i jW
b
iW c

 j

−Wa
i jW

b
 jW

c
i +Wa

 jW
b
kW

c
jk −Wa

kW
b
 jW

c
jk

−Wa
i jW

b
ikW

c
jk +Wa

jiW
b
ikW

c
jk +Wa

i jW
b
kiW

c
jk

−Wa
jiW

b
kiW

c
jk +Wa

i jW
b
ikW

c
k j −Wa

jiW
b
ikW

c
k j

−Wa
i jW

b
kiW

c
k j +Wa

jiW
b
kiW

c
k j) ,

(6.21b)

L = −habcd
 (Wa

 jW
b
lW

c
 jW

d
l −Wa

 jW
b
lW

c
 jW

d
l

−Wa
 jW

b
lW

c
 jW

d
l +Wa

 jW
b
lW

c
 jW

d
l) ,

(6.21c)

L = −habcd
 [Wa

iW c
iWb

 jW
d
 j

+ (Wa
iW c

il −Wa
iW c

l i)(W
b
l jW

d
 j −Wb

jlW
d
 j)

+ (Wa
ikW

c
i −Wa

kiW
c
i)(Wb

 jW
d
k j −Wb

 jW
d
jk)

+ (Wa
kW

c
l −Wa

ikW
c
il +Wa

kiW
c
il

+Wa
ikW

c
l i −Wa

kiW
c
l i)

× (Wb
lW

d
k −Wb

l jW
d
k j +Wb

jlW
d
k j

+Wb
l jW

d
jk −Wb

jlW
d
jk)] ,

(6.21d)

�e term for L is similar to equation (4.9). �e lengthy expressions
for L, L, and L have been omitted for clarity, since they consist of
, , and  terms, respectively, and cannot be simpli�ed signi�cantly.
Anyway, they vanish for the parameter choice in equation (6.20) due to
equation (6.9).
Owing to the absence of derivatives in the interaction terms, the

canonically conjugated momenta can easily be determined from equa-
tion (6.10) to

Πe
m =

∂L
∂Ẇ e

m
=

∂L
∂Ẇ e

m
= Ẇ e

m − (∂iW e
im − ∂iW e

mi) (6.22a)

and

Πe
mn =

∂L
∂Ẇ e

mn
=

∂L
∂Ẇ e

mn
=  , (6.22b)
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where equation (6.22b) is not solvable for the velocities Ẇ e
mn and there-

fore represents nine constraints

ϕemn = Πe
mn ≈  , m < n . (6.23)

�e Hamiltonian density can be derived via Legendre transformation,
namely,

H = ϕai j z
a
i j +


Πa
 jΠ

a
 j +Π

a
 j(∂iW

a
i j − ∂iW

a
ji) +



∂iWa

i∂ jWa
 j

+
M

a


(Wa

 jW
a
 j −Wa

i jW
a
i j) −Lint(W

a
 j,W

a
i j)

(6.24)

with yet to be determined functions zai j. Requiring conservation in time
of the primary constraints yields4

{ϕemn ,H} = M
eW e

mn + ∂mΠe
n − ∂nΠe

m − {Πe
mn , Lint}

=∶ ϕemn ,
(6.25)

which represents nine secondary constraints, since the unknown func-
tions zai j cannot be solved in this step of the iteration. Again, requiring
conservation in time of the secondary constraints yields

{ϕemn ,H} = {M
eW e

mn , Πa
i jz

a
i j}

+ ∂m {Πe
n ,


∂iWa

i∂ jWa
 j +

M
a


Wa
 jW

a
 j − Lint}

− ∂n {Πe
m ,


∂iWa

i∂ jWa
 j +

M
a


Wa
 jW

a
 j − Lint}

− {{Πe
mn , Lint} , Πazai j +



Πa
 jΠ

a
 j +Π

a
 j(∂iW

a
i j − ∂iW

a
ji)}

=Mea
mni jz

a
i j + Y e

mn

(6.26)

with

Mea
mni j = M

aδeaδ imδ jn + {Πa
i j, {Π

e
mn , Lint}} , (6.27)

where the explicit form of Y e
mn is irrelevant. In the previous calculation it

was used that Lint—including arbitrary Poisson brackets of that term—is
a polynomial exclusively in the six �eldsWa

 j andW
a
i j . It follows from

4 Note that we distinguish between the function and the corresponding density by a
slightly di�erent notation, e.g. Lint and Lint = ∫ dxLint.
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No. Fields Factor in detM Inequality

1 W
 = x,

W
 = x

M − xg g ≤ 

2a W
 = x M

 + xd, d ≥ 
M + xd d ≥ 

2b W
 = x M

 − xd, d ≤ 
M − xd d ≤ 

3a W 
 = x M + xd, d ≥ 

M − xd d ≤ 
3b W 

 = x M − xd, d ≤ 
M + xd d ≥ 

4 W
 = x,

W
 = y

MM
 − xyd d ≤ 

Table 6.2: Analysis of the determinant ofM. For a given choice of �elds all
other �elds are set to zero. Only the crucial factors of the determinant
are mentioned. Each step depends on the previous ones.

equation (6.26) that the ×-matrixM from equation (6.27) needs a
non-vanishing determinant in order to solve for the unknown functions
zai j.�is reasoning leads �nally to the correct number of constraints for
three spin-one particles, i.e. the  ×  ×  =  canonical variables are
reduced by ×  =  constraints to the × ×  =  physical degrees of
freedom. Furthermore, by exploiting the Jacobi identity one �nds the
property

Mea
mni j =M

ae
i jmn , (6.28)

i.e.M is symmetric, which simpli�es further calculations.
�e following analysis of the condition detM ≠  is only feasible with

the help of computers, since every entry in the matrix contains about
 terms despite using the parametrization in equation (6.20) satisfying
U() invariance. Nevertheless, the test case Lint = L has been calculated
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by hand and cross-checked with the programs in use. �e analysis is
detailed in table 6.2 on the previous page and results in the equations

d = d = d = d = d =  ,
g =  ,

(6.29)

besides several insigni�cant inequalities. Applying these equations ren-
ders detM independent of the �eldsWa

i j , which are called „frozen-out“
in [76].�is could be a hint that one cannot infer more conditions from
this determinant analysis, although an estimate of the lower bound of
the determinant5 seems practically impossible due to the sheer size of
the full expression. At this point, it shall be stressed that the three-�eld
interaction governed by g vanishes only by requiring self-consistency
on a classical level owing to equation (6.29).

6.4 quantization with constraints

�e quantization including constraints is based on the path integral
formalism, in which the generating functional plays the crucial role.
On the classical level, the original variables are related by a canonical
transformation to new ones, where the constraints are completely sepa-
rated from the dynamical variables.6 �is allows for the construction of
the correct generating functional using these new variables. However,
the return to the original ones is accompanied by the introduction of
non-physical fermionic scalar �elds, which are called ghost �elds. Before
proceeding with the renormalizability analysis, one needs to verify that
these ghost �elds, e.g. denoted as c, c̄, do not have a kinetic part, ∂µ c̄∂µc,
in the e�ective Lagrangian implementing the constraints.�is ensures
that one can simply derive naïve Feynman rules from interaction terms
containing the tensor �eldsW only, since in dimensional regularization
contributions from �elds without kinetic parts can be ignored. In fact,
this check is carried out analogously to [62, Ch. IV].

5 Note that detM = MM
 forW ≡  by virtue of equation (6.27).�erefore, detM ≠

∀W is equivalent to detM > ∀W .
6 �is separation is always possible owing to a fundamental theorem, see [75]. However,
the proof does not yield an explicit form of the canonical transformation.
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�e generating functional, in which the variables Ω appearing in
the constraints Ω =  are separated from the dynamical variables ω
appearing in the physical HamiltonianHph(ω) ≡ H(ω, Ω)∣Ω=, reads

Z[Jω] = ∫ DωDΩ δ(Ω)

× exp (i ∫ dx [ωω̇ +ΩΩ̇ −H(ω, Ω) + ωJω +ΩJΩ]) ,

(6.30)

where ω = (ω,ω), Ω = (Ω, Ω), and sources J = (Jω , JΩ) have been
introduced. Here, ω, Ω and ω, Ω denote the �elds and momenta,
respectively. Changing back to the original variables (W , Π) by a canon-
ical transformation as well as to the original constraints (ϕ, ϕ), the
δ-function behaves as

δ(Ω) = δ(ϕ)
√

det({ϕ, ϕ}) , (6.31)

where

{ϕ, ϕ} =
⎛

⎝

{ϕai j , ϕbmn} {ϕai j , ϕbmn}

{ϕai j , ϕbmn} {ϕai j , ϕbmn}

⎞

⎠
(6.32)

is the ×-matrix consisting of the constraints given in equations (6.23)
and (6.25). Since {ϕai j , ϕbmn} =  holds according to equation (6.23), the
relation

√

det({ϕ, ϕ}) = det({ϕemn , ϕai j }) = detM , (6.33)

is obtained, referring to equations (6.26) and (6.27). Since detM ≠ 
holds, the system of constraints is indeed of second class.
Furthermore, the action S = ∫ dxL is canonically invariant and

the Jacobian determinant of a canonical transformation to the original
values in equation (6.30) is unity. Now, expressing the determinant
in equation (6.33) and the δ(ϕ)-function in δ(ϕ) = δ(ϕ)δ(ϕ) as
functional integrals over the aforementioned ghost �elds,7

δ(ϕ) ∼ ∫ Dλ exp(i ∫ dx∑
i< j

λa
i jϕ
a
i j ) and

√

det({ϕ, ϕ}) ∼ ∫ DcDc̄ exp(i ∫ dx ∑
i< j
m<n

c̄emnM
ea
mni jc

a
i j) ,

(6.34)

7 Here, the summation convention of indices is noted explicitly once again.
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the generating functional reads

Z[J] = ∫ DW DΠDλDcDc̄ δ(ϕ)

× exp[i ∫ dx (K + Ja µνWa
µν)] ,

(6.35)

where
K = Πa

 jẆ
a
 j +Π

a
i jẆ

a
i j −H(W , Π) + λa

i jϕ
a
i j + c̄emnM

ea
mni jc

a
i j

= Πa
 jẆ

a
 j +Π

a
i jẆ

a
i j − ϕ

a
i j z

a
i j −


Πa
 jΠ

a
 j

−Πa
 j(∂iW

a
i j − ∂iW

a
ji) −



∂iWa

i∂ jWa
 j

+
M

a


(−Wa

 jW
a
 j +Wa

i jW
a
i j) +Lint

+ λa
i j(M


aWa

i j + ∂iΠ
a
 j − ∂ jΠa

i − {Πa
i j, Lint})

+ c̄emnM
ea
mni jc

a
i j

(6.36)

and sources Jaµν have been introduced.
�e integration over the threemomenta Πa

i j can be carried out directly
due to the factor δ(ϕ) ≡ ∏m<n δ(Πe

mn) in the integrand and the fact
that {Πa

i j, Lint} as well as c̄emnM
ea
mni jc

a
i j are indeed independent of Πe

mn.
Consequently, the integration over the remaining three momenta Πa

 j
is done by using the generalized formula for Gaussian integrals [78,
Ch. 6.2].�is yields

Z[J] = ∫ DW DλDcDc̄ exp[i ∫ dx (K̃ + Ja µνWa
µν)] , (6.37)

where

K̃ =


[Ẇa

 j − (∂iWa
i j − ∂iW

a
ji) − (∂iλa

i j − ∂iλ
a
ji)]

×[Ẇa
 j − (∂iWa

i j − ∂iW
a
ji) − (∂iλa

i j − ∂iλ
a
ji)]

−


∂iWa

i∂ jWa
 j +

M
a


(−Wa

 jW
a
 j +Wa

i jW
a
i j) +Lint

+ λa
i j(M


aWa

i j − {Πa
i j, Lint}) + c̄emnM

ea
mni jc

a
i j

=


{Ẇa

 j − [∂i(Wa
i j + λa

i j) − ∂i(W
a
ji + λa

ji)]}

× {Ẇa
 j − [∂i(Wa

i j + λa
i j) − ∂i(W

a
ji + λa

ji)]}

+
M

a


[−Wa

 jW
a
 j + (Wa

i j + λa
i j)(W

a
i j + λa

i j) − λa
i jλ

a
i j]

−


∂iWa

i∂ jWa
 j +Lint − λa

i j {Π
a
i j, Lint} + c̄emnM

ea
mni jc

a
i j .

(6.38)
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By shi�ing variables Wa
i j → Wa

i j − λa
i j in equation (6.37), an e�ective

Lagrangian is �nally obtained from equation (6.38) of the form

Le� = L−
M

a


λa
i jλ

a
i j+

M
a


c̄ai jc

a
i j+(interactions of λ, c, c̄,W) , (6.39)

with L given in equation (6.10). Since no kinetic terms of ghost �elds
appear in equation (6.39), one can continue with naïve Feynman rules
resulting from L instead of Le�, which simpli�es calculations.

6.5 naïve feynman rules

Propagator

�e following explicit derivation of the propagator is guided by [78,
Ch. 6], however, one must take into account not only the more compli-
cated Lorentz structure but also the antisymmetry of the �elds. As usual,
one starts with the generating functional of the free Lagrangian density8
from equation (6.11)

Z[J] = ∫ DW exp{i ∫ dx[L(W µν) +Wαβ Jαβ]}

= N ∫ DV exp{i ∫ dx[L(W(V µν)) + (Vαβ − Vβα)Jαβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(⋆)

]} ,

(6.40)

where in the last step a tensor �eld V µν, whose antisymmetric com-
ponent equals W µν = (V µν − V νµ), has been introduced. �e path
integration over the symmetric part of V µν has been compensated with
a normalizing constantN . Hence, one obtains for the exponent

(⋆) =


Vαβ∆αβγδVγδ + (Vαβ − Vβα)Jαβ (6.41)

with the di�erential operator

∆αβγδ = gβδ∂α∂γ + gαγ∂β∂δ − gαδ∂β∂γ − gβγ∂α∂δ

+M(gαγgβδ − gαδgβγ) ,
(6.42)

8 �e internal index structure is omitted in the following.
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where here as in the following the divergence theorem has been em-
ployed. Via a change of variables Vαβ → Vαβ +Ψαβ in the path integral
in equation (6.40), where Ψαβ is some „constant“ �eld, one obtains

(⋆)→


Vαβ∆αβγδVγδ + Vαβ∆αβγδΨγδ +



Ψαβ∆αβγδΨγδ

+ Vαβ(Jαβ − Jβα) + Jαβ(Ψαβ −Ψβα) ,
(6.43)

where the relation Ψαβ∆αβγδVγδ = Vαβ∆αβγδΨγδ has been used.�e �eld
Ψαβ is now chosen such that

∆αβγδΨγδ = −(Jαβ − Jβα) . (6.44)

�e solution of this di�erential equation can be determined by using
a Green’s function,

Ψγδ(x) = ∫ dyDγδµν(x − y)Jµν(y) . (6.45)

Inserting this in equation (6.44) and changing to momentum space
representation, one �nds

∆̃αβγδ(p)D̃γδµν(p) = −(δα
µδβ

ν − δα
ν δβ

µ) , (6.46)

where the Fourier transform of the di�erential operator reads

∆̃αβγδ = −gβδpαpγ − gαγpβpδ + gαδpβpγ + gβγpαpδ

+M(gαγgβδ − gαδgβγ) .
(6.47)

An ansatz for the Lorentz structure of the to be determined Green’s
function reads

D̃γδµν = Agγδgµν + Agγµgδν + Agγνgδµ

+ Bgγδpµpν + Bgγµpδpν + Bgγνpδpµ
+ Bgδµpγpν + Bgδνpγpµ + Bgµνpγpδ

+ Cpγpδpµpν + Dєγδµν ,

(6.48)

where one could have already set D =  due to the odd parity of єγδµν.
�is simpli�es if one takes into account that

Ψγδ(x) =


(π) ∫∫ dydp e−ip⋅(x−y)D̃γδµν(p)Jµν(y) (6.49)

is only contracted with antisymmetric tensors in equation (6.43).�ere-
fore, one can ignore parts symmetric under γ ↔ δ by setting A = B =
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B = C =  without loss of generality. Inserting the remaining ansatz in
equation (6.46) yields conditions which can be expressed as

A = A −

M , B = B −


M(M − p)

,

B = B +


M(M − p)
, D =  ,

(6.50)

where the coe�cients A, B, B are still arbitrary. Applying these condi-
tions in the ansatz leads to

D̃γδµν(p) = −


M(M − p)
[(M − p)gγµgδν + gγµpδpν − gγνpδpµ]

+ A(gγνgδµ + gγµgδν) + B(gγµpδpν + gδµpγpν)

+ B(gγνpδpµ + gδνpγpµ)

= −


M(M − p)
[(M − p)gγµgδν + gγµpδpν − gγνpδpµ] ,

(6.51)

where again symmetric parts have been discarded without loss of gener-
ality.
Finally, one can absorb the path integral in the normalizing constant

and one obtains

Z[J] = N exp{−
i
 ∫∫ dzdz′ Jγδ(z′)[Dβαγδ(z − z′)

− Dαβγδ(z − z′)]Jαβ(z)} ,
(6.52)

from which the propagator as the two-point function follows as

⟨∣T[Wa
µν (x)Wb

λσ (y)]∣⟩ = −
δZ[J]

δJa µν(x)δJb λσ(y)
∣
J=

=
iδab


[Dνµλσ(x − y) − Dµνλσ(x − y)

+ Dσλµν(x − y) − Dλσµν(x − y)]

=
iδab

M
a
∫ dp

(π)
e−ip⋅(x−y)


M

a − p − i+

× [(M
a − p)gµλgνσ + gµλpνpσ − gµσ pνpλ − (µ↔ ν)] .

(6.53)

�is result is identical to [76, App. A] except for the internal index
structure δab, which has been added here for completeness.�e term
−i+ introduced in the last step indicates the usual Feynman boundary
condition.
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�ree-Vertex

Although the constraint analysis has already shown that all couplings
gabc governing the three-�eld interaction vanish, the three-vertex is
considered here again from a slightly di�erent point of view.�e naïve
Feynman rule for the three-vertex can be derived fromL as usual since it
depends merely on index permutations and not on the tensor formalism
itself. It reads:

W a
µν Wb

λσ

W c
αβ

= −i

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

gabc

gbac

gbca

gacb

gcab

gcba

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

gµλgναgσβ

gµλgνβgσα

gµσ gνβgλα

gµαgνλgσβ

gµαgνσ gλβ

gµβgνσ gλα

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.54)

Here and henceforth, the Feynman rules have been written as a „scalar
product“ of a „vector“ containing only coupling constants and a „vector“
containing only kinematic terms.�is is useful for the model implemen-
tation in FeynArts, see section B.2.
At this point, one should take into account that only parts which

are antisymmetric in the index pairs µν, λσ , and αβ contribute to any
physical quantity since (1) external legs are contracted with antisym-
metric polarization tensors and (2) internal legs are contracted with the
antisymmetric propagator in equation (6.53).�e antisymmetric part of
equation (6.54) can be written as

W a
µν Wb

λσ

W c
αβ

RRRRRRRRRRRRRRRRRRRRRRRAntisymm.

=
(gabc − gacb − gbac

+ gbca + gcab − gcba)ggg[µν][λσ][αβ] ,
(6.55)

where ggg[µν][λσ][αβ] is a pairwisely antisymmetric Lorentz tensor, see
also the remarks in section 6.6. Using the parametrization from equa-
tion (6.15), one �nds that the right-hand side of equation (6.55) vanishes
unless abc is a permutation of . In particular, the non-vanishing part
has always the form

±gggg[µν][λσ][αβ] , (6.56)
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Figure 6.1: One-loop contributions to the three-point function. �e wiggly
line represents a spin-one particle. However, these contain always
at least one three-vertex and can therefore be ignored due to the
constraint analysis.

which, however, vanishes as soon as the results from the constraint
analysis in equation (6.29) are applied.�e three-vertex one-loop contri-
butions are depicted in �gure 6.1. In summary, all contributions which
contain three-vertices can be neglected in a self-consistent theory with-
out loss of generality.
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Four-Vertex

�e more complicated naïve Feynman rule for the four-vertex reads

W a
µν

W c
αβ

Wb
λσ

Wd
γδ

= ξ + ξ + ξ + ξ + ξ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=

, (6.57)

where the �ve summands ξ, . . . , ξ represent the parts resulting from
the Lagrangian densities L, . . . ,L with four �elds. For the �rst two
Lagrangians they are given explicitly in the following, the other three
expressions have been omitted since they can be set to zero without loss
of generality due to equation (6.9) as indicated:

ξ = −i

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hacbd
 + hadbc

 + hbcad
 + hbdac



+ hcadb
 + hcbda

 + hdacb
 + hdbca



habcd
 + hadcb

 + hbadc
 + hbcda



+ hcbad
 + hcdab

 + hdabc
 + hdcba



habdc
 + hacdb

 + hbacd
 + hbdca



+ hcabd
 + hcdba

 + hdbac
 + hdcab



⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎝

gµλgνσ gαγgβδ

gµαgνβgλγgσδ

gµγgνδgλαgσβ

⎞
⎟
⎟
⎠

, (6.58a)

ξ = −i

⎛
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hadbc
 + hbcad



hacbd
 + hbdac



hbcda
 + hdabc



hbdca
 + hcabd



hadcb
 + hcbad



habcd
 + hcdab



hcbda
 + hdacb



hbacd
 + hcdba



hacdb
 + hdbac



habdc
 + hdcab



hcadb
 + hdbca



hbadc
 + hdcba



⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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. (6.58b)

�e four-vertex one-loop contributions are depicted in �gure 6.2 on the
facing page.
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nine more permutations

Figure 6.2: One-loop contributions to the four-point function.�e wiggly line
represents a spin-one particle. �e omitted permutations can be
obtained by crossing the external legs.

6.6 renormalizability analysis

Basically, one requires that Lorentz structures of divergent parts at one-
loop level have the same structure of prefactors as the corresponding
Lorentz structures at tree level. �is ensures that in�nite quantities
can be absorbed in the parameters of the theory—a crucial condition
for a physical theory—by using, for example, the minimal subtraction
renormalization scheme.

Remarks about Antisymmetrization

�e vertex functions at tree and one-loop level are pairwisely decom-
posed in antisymmetric and symmetric parts as follows:

t ...[µν]... =


(t ...µν... − t ...νµ...) ,

t ...(µν)... =


(t ...µν... + t ...νµ...) .

(6.59)

�is is convenient since the polarization tensors are antisymmetric and,
hence, symmetric parts do not contribute to physically meaningful quan-
tities. In other words, this pairwise antisymmetrization ensures that
merely necessary conditions are deduced in the following renormaliz-
ability analysis.
As an example, the contributions to a three-vertex function Γ with

�xed internal indices a, b, c ∈ {, , } are regarded at tree and one-loop
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level for vanishing momenta.�ese can be expressed in !/(!!!!) =
 products9 of three metric tensors gggµνλσαβ

i as follows:

Γµνλσαβ
tree =



∑
i=

κi ggg
µνλσαβ
i ,

Γµνλσαβ
1-loop ∣

p i=
=


∑
i=

κ̃i ggg
µνλσαβ
i + (non-divergent parts) .

(6.60)

For example, gggµνλσαβ
 is given by10

gggµνλσαβ
 = gµνgλσ gαβ . (6.61)

Each of these tensors can be decomposed into  =  parts according
to equation (6.59), however, only the pairwisely antisymmetric part
needs to be considered. As seen in section 6.5, only one such structure
ggg[µν][λσ][αβ] remains.�e expression reads

Γ[µν][λσ][αβ]
tree =



(κ−κ−κ+κ−κ+κ+κ−κ)ggg[µν][λσ][αβ] (6.62)

and an analogous expression for the divergent part of the one-loop
contribution. Since κ and κ̃ are functions of the coupling constants, one
can derive conditions by requiring the same structure at tree and one-
loop level. However, it has been shown in section 6.5 that the prefactor
in equation (6.62) is always zero for all three-vertices and, hence, no
conditions can be deduced.
Regarding the four-vertex function, the contributions are expressed in

terms of !/(!!!!!) =  products of fourmetric tensors ggggµνλσαβγδ
i

as follows:11

Γµνλσαβγδ
tree =



∑
i=

κi gggg
µνλσαβγδ
i ,

Γµνλσαβγδ
1-loop ∣

p i=
=


∑
i=

κ̃i gggg
µνλσαβγδ
i + (non-divergent parts) .

(6.63)

9 As indicated, the �gure  is given by ! combinations of the Lorentz indices of Γ
divided by ! combinations of positions of the metric tensor and divided three times
by ! to account for the symmetry of the metric tensor in its Lorentz indices.

10 At this point, a certain order of the structures gggµνλσαβ
i with κ i or κ̃ i as coe�cients in

equation (6.60) has been chosen.
11 �e κ i used here are not related to the ones in equation (6.60).
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�e pairwisely antisymmetric part is then written as

Γ[µν][λσ][αβ][γδ]
tree =



(κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]


+



(κ − κ − κ + κ − κ + κ

+ κ − κ − κ + κ + κ − κ
+ κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]


+


(κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]


+



(κ − κ − κ + κ − κ + κ

+ κ − κ − κ + κ + κ − κ
+ κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]


+



(κ − κ − κ + κ − κ + κ

+ κ − κ − κ + κ + κ − κ
+ κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]


+


(κ − κ − κ + κ)gggg

[µν][λσ][αβ][γδ]
 ,

(6.64)

where gggg[µν][λσ][αβ][γδ]
i denote six independent pairwisely antisymmet-

ric tensors. An analogous expression holds for the one-loop contribution.
For example, gggg[µν][λσ][αβ][γδ]

 is given by

gggg[µν][λσ][αβ][γδ]
 = gασ gβλgγνgδµ − gασ gβλgγµgδν

− gαλgβσ gγνgδµ + gαλgβσ gγµgδν .
(6.65)

Each of the six prefactors in equation (6.64) at one-loop level needs to
be absorbed in the corresponding coe�cient at tree level simultaneously.
�is requires the same structures of coupling constants and therefore
leads to the conditions for speci�c vertices, presented in the following
sections.
Moreover, this procedure of antisymmetrization has been successfully

cross-checked by pairwisely antisymmetrizing the whole expression �rst
and then comparing coe�cients of metric tensor products one by one.
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�e Vertex abcd = .

�e following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

gggg[µν][λσ][αβ][γδ]
 −d −


π

(d − dd + d + d)

gggg[µν][λσ][αβ][γδ]
 d


π

(d − dd + d + d)

�e divergent part can only be absorbed if d + d =  holds, which is
equivalent to

d = d =  . (6.66)

�is result is used in the analysis of the following two vertices.

�e Vertex abcd = 

�e following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

gggg[µν][λσ][αβ][γδ]
  −

(M +M
)d

MM
π

�e divergent part must vanish, hence

d =  . (6.67)

�e Vertex abcd = 

�e following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

gggg[µν][λσ][αβ][γδ]
 −d −


π

(d − dd + d + d)

gggg[µν][λσ][αβ][γδ]
 d


π

(d − dd + d + d)
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�e divergent part can only be absorbed if d + d =  holds, which is
equivalent to

d = d =  . (6.68)

Summary

All other non-mentioned vertices or Lorentz structures lead to either
equivalent or trivial conditions. Collecting all the results above, one
�nds the conditions

d = d = d = d = d =  . (6.69)

According to table 6.1 on page 50, the  parameters (includingM and
M) have been reduced due to equation (6.29) on page 54 and equa-
tion (6.69) to . All couplings gi and di vanish and only the mass pa-
rameters remain.�erefore, no self-consistent interacting tensor model
exists. Further implications of this result are discussed in chapter 8, and
the �ndings of a cross-check starting from a global SU() symmetry are
presented in the following section.

6.7 consistency check with global su(2) invariance

Using the fact that dabc ≡  and f abc = єabc holds in SU(), a global SU()
invariance12 is established by the following choice of coupling constants:

gabc = gєabc , habcd
 = fδacδbd + f ′ δabδcd ,

habcd
 = fδacδbd + f ′δabδcd , habcd

 = fδacδbd + f ′δabδcd ,
habcd
 = fδacδbd + f ′δabδcd , habcd

 = fδacδbd + f ′δabδcd .
(6.70)

Additionally, all three particles have the same mass, i.e.M = M. Here,
the three Lagrangians containing the product of Levi-Civita symbols
are directly discarded owing to equation (6.9), i.e.

f = f ′ = f = f ′ = f = f ′ =  (6.71)

is set in equation (6.70) without loss of generality.13

12 Compare also chapter 5 and section A.1.
13 �e calculation was also carried out without using equation (6.71) and it led to the
same result.



68 vector particles in the tensor model

No. Fields Factor in detM Inequality

1a W 
 = x x( f+ f+ f ′ + f ′)+M  f+ f+ f ′ + f ′ ≥ 

1b W 
 = x M−x( f+ f+ f ′ + f ′)  f+ f+ f ′ + f ′ ≤ 

2a W 
 = x, x( f + f) +M  f + f ≥ 

W
 = x M − x( f + f)  f + f ≤ 

2b W 
 = x, M − xg g ≤ 

W
 = x

Table 6.3: Analysis of the determinant ofM including global SU() symmetry.
See table 6.2 on page 53 for further explanation.

A constraint analysis is carried out analogously to section 6.3 using
the parameters given above.14 One �nds

g =  , f = − f , f ′ = ( f − f ′ ) . (6.72)

Details for this analysis are given in table 6.3. Again, the three-vertex,
which is determined by g, vanishes as do therefore all its one-loop
contributions since in those a three-vertex is always present, see �gure 6.1
on page 61.
Subsequently, the renormalizability analysis is restricted to the four-

vertex. One can divide all vertices with non-vanishing divergences into
two classes,

abcd ∈ {, , } and abcd ∈ {, , , . . . } , (6.73)

where . . . denotes more permutations. One �nds that all Lorentz struc-
tures which do not appear at tree level vanish also at loop level a�er
pairwise antisymmetrization. In order to ensure renormalizability, the
linear combinations of coe�cients at tree level need to be identical to the
ones at loop level.�is leads for the �rst class of vertices to one equation

 f  + ( f + f ′ )

=  (6.74a)

14 However, note that in this section g does not coincide with g from the previous
sections.



6.7 consistency check with su() 69

and for the second class to three equations:

f  +  f f ′ =  , (6.74b)

 f  −  f f ′ + f ′

=  , (6.74c)

f  −  f f ′ + f ′

=  . (6.74d)

Since equation (6.74a) can be interpreted as a parabolic surface in three
dimensions which only intersects the f f ′ plane in the origin, all four
equations are equivalent to

f = f ′ =  . (6.75)

Employing these conditions in the constraint analysis again, one �nds
that detM = (M) ≠ , i.e. no further conditions can be deduced. In
summary, twelve parameters in equation (6.70) (includingM) have been
reduced due to equations (6.72) and (6.75) to two. As in section 6.6, one
�nds that all three- and four-vertex functions vanish.�is is consistent
with the �ndings of the previous sections since the more restrictive
global symmetry group SU() has been required here which should at
least reproduce the results obtained by assuming the global symmetry
group U() a priori.





7
MAGNETIC MOMENT OF THE RHO MESON

�is chapter presents the calculation of the magnetic moment of the rho
meson in the framework of chiral e�ective �eld theory up to orderO(q).
�is is the �rst step towards form factors of vector mesons, which are
helpful to describe a physical process depicted in �gure 7.1. Furthermore,
the results for the magnetic moment can, in principle, be used in Lattice
QCD extrapolations. Simply speaking, Lattice QCD is another approach
to non-perturbative QCD and regularizes the theory by discretizing the
Minkowski space-time. Due to current limitations in computing power,
results are calculated with pion masses of about M ≈ MeV, i.e. far
away from the physical value.�erefore, so-called chiral expansions are
helpful to extrapolate the results obtained by Lattice QCD to physical
values of the input parameters, such as the pion mass [79].
�e chiral Lagrangians for pions and vector mesons discussed in

the �rst part of this work are used. Some lengthier results are given
in appendix C in order to keep the following presentation as clear as
possible.

e e

ρ ρ
(a)

e e

ρ ρ

q

(b)

Figure 7.1: Exemplary subprocess to which the magnetic moment of the rho
meson contributes. Process (a) represents a scattering process of
an electron with a rho meson including all possible interactions,
whereas process (b) represents the one-photon-exchange approxi-
mation, which is justi�ed since the QED vertex is proportional to
√

α ≈ /
√
≪ .�e photon is represented by a wiggly line and

carries the squared momentum q.

71
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7.1 model definition and preliminary remarks

�e inclusion of the lightest vector mesons in ChPT is a reasonable step
in the construction of a chiral e�ective �eld theory.�is was motivated
in sections 2.2 and 2.3 and the introduced notation is employed here.
Additionally, in �gure 7.1b the incoming and outgoing large momenta of
the rho meson are denoted as pi and pf, respectively, and the incoming
photon momentum is q.
In this manner, the most general Lagrangian describing pions and

vector mesons consistent with the assumed symmetries reads

L = Lπ +Lρπ +Lωρπ + . . . , (7.1)

where

Lπ =
F


Tr[DµU(DµU)

†
] +

FM


Tr(U +U†) , (7.2a)

Lρπ = −


Tr(ρµνρµν) + idx Tr(ρµνΓµν) + fV Tr(ρµν f

µν
+ )

+
M

ρ + cxM Tr(U+U†)/
g

Tr[(gρµ − iΓµ)(gρµ − iΓµ)]

+ i
gρπ

g
Tr[(gρµ − iΓµ)(gρν − iΓν) f

µν
+ ] , (7.2b)

Lωρπ = −



ωµνωµν +
M

ω


ωµωµ +

F

gωρπєµναβων Tr(ραβuµ) .

(7.2c)

Here, only terms relevant to the calculation of the magnetic moment
have been taken into account. Furthermore, the building block χ has
been replaced by the square of the pion mass M, which is allowed
within the desired accuracy of this calculation. Note that, for practical
reasons, the de�nition of the LEC fV is slightly di�erent from the usual
one, e.g. in [68].�e usual de�nition can be obtained by the replacement
fV → − fV/(

√
).

As already mentioned, the Kawarabayashi-Suzuki-Riazuddin-Fay-
yazuddin relation (KSRF) [63, 64] of the bare parameters is used to
eliminate the pion decay constant F in the chiral limit from the results,

M
ρ = gF . (7.3)

Additionally, the term proportional to cx in equation (7.2b) leads to a
modi�cation of the undressed rho meson propagator as follows

−i
p − (M

ρ + cxM)
(gµν −

pµpν

M
ρ + cxM ) , (7.4)
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which transforms to the standard propagator for vector �elds in the case
cx = , where M

ρ is the squared mass of the rho meson in the chiral
limit. Fortunately, FeynArts provides a technique to implement this
modi�cation easily. Since the physical mass of the rho meson is given
by the pole of the dressed propagator, the on-mass-shell condition for
an external rho momentum reads

p = M
ρ + cxM +O(ħ) , (7.5)

whereO(ħ) denotes loop contributions.
Note that the so-called conventional dimensional regularization has

been used here and henceforth and not dimensional reduction. �is
is favorable in computer-assisted calculations. In particular, the Levi-
Civita symbol єµνλσ in equation (7.2c) is treated as D-dimensional in
contractions.1 Consequently, these two methods yield di�erent coe�-
cients for �nite terms, i.e. terms not proportional to a loop integral. Note
that FeynCalc does treat the Levi-Civita symbol four-dimensionally by
default, but FeynArts does not.

7.2 power counting

As explained in section 3.1, the power counting takes all possible �uxes
of external large momenta into account. Hence, they are shown for all
one-loop topologies contributing to the self-energy and the magnetic
moment in �gures C.1 and C.2, respectively. For completeness, it is
assumed that the external photon carries a small momentum, whereas
the external rho mesons carry large momenta.�e polarization vector
of the photon єµ is counted asO(q), which implies that the covariant
derivative Dµ can also be counted consistently asO(q).�e last assign-
ment is merely a convention since the polarization vector is an overall
factor according to the LSZ formalism. However, this small quantity is
included in the total accuracy of the calculation, namelyO(q), but not
in the orders given for the diagrams in �gures 7.3 and 7.4.
An example shall illustrate the power counting scheme outlined in

section 3.1. To this end, the one-loop diagram (13) in �gure 7.4 is chosen.
�e rho meson is represented by a straight line, the pion by a dashed line,
the external photon by a wiggly line and the omega meson by a curly

1 Conventional dimensional regularization is discussed in [70], based on [69]. For
dimensional reduction see [80]. See also [81] for a comparison of the two schemes
and more references.
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line.�e three possible cases and the resulting order of the vertices are
discussed in the following separate paragraphs using the Feynman rules
given in section C.1 on page 105. Here, �uxes of large momenta have
already been indicated by thicker lines.

(1)







−

−

�e γρ vertex counts asO(q), since its leading
order isM

ρgµν.�e ρππ vertex counts asO(q),
since one of the pion momenta is large. Both
ωρπ vertices count as O(q), since either the ρ
momentum or the πmomentum is small, but not
both. In total this yields  +  +  −  −  = .

(2)







−



�e γρ vertex and the ρππ vertex are assigned
the same order as for the �rst case. �e upper
ωρπ vertex counts asO(q), since the ρ and the
π momentum are both small. �e lower ωρπ
vertex counts as O(q), since the ρ and the π
momentum are both large. In total this yields
 +  −  = .

(3)







−



�e γρ vertex, the ρππ vertex and the upper ωρπ
vertex are assigned the same order as for the �rst
case. All other vertices count as O(q), since
there are always large momenta involved. In total
this yields  +  −  = .

In summary, the orderO(q) is assigned to the diagram as the lowest
order resulting from these three cases, excluding the order stemming
from the polarization vector.�is procedure has been carried out for
each diagram in �gure 7.4. Owing to the power counting of the cor-
responding propagators in table 3.1 on page 22, the lowest orders are
usually obtained if pions carry small momenta and vector mesons large
ones.
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ρa ρb

πc

(1)O(q)
ρa ρb

ρc

(2)O(q)

ρa ρb
πc

πd

(3)O(q)

ρa ρb
ρc

ρd

(4)O(q)

ρa ρb
πa

ω

(5)O(q)

Figure 7.2: One-particle irreducible diagrams contributing to the two-point
function of the rho meson.

7.3 two-point function

�e wave function renormalization constant Zρ is de�ned as the residue
at the pole z of the dressed propagator

Dab
µν(p) = δab gµν − pµpν/z

p − z
Zρ + (non-pole parts) . (7.6)

�e sum of all one-particle-irreducible diagrams in �gure 7.2 of the
two-point function can be parametrized as

iΠab
µν = iδab[gµνΠ + (gµνp − pµpν)Π(p)] , (7.7)

where Π is independent of p and Π(p) is regular at p = . In terms
of equation (7.7), the wave function renormalization constant of the rho
meson reads2

Zρ =


 −Π(z) − zΠ′
(z)

= +Π(z) + zΠ′
(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=δZρ

+O(ħ) , (7.8)

whereO(ħ) denotes higher-order loop corrections.

2 �e result is obtained by writing the dressed propagator symbolically as a self-similar
series iD = iD + iD iΠ iD + iD iΠ iD iΠ iD + ⋅ ⋅ ⋅ = iD + iD iΠ iD, where
iD is the undressed propagator in equation (7.4) and iΠ is the sum of all one-particle-
irreducible diagrams in equation (7.7).�e Lorentz structure can be taken into account
by using a suitable ansatz for D as shown for the propagator in section 6.5. Since only
the pole part is of interest, iΠ is expanded around p = z.
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Noting that equations (7.4) and (7.6) imply z = M
ρ + cxM +O(ħ)

and using the approximationMρ ≈ Mω, the explicit calculation yields

δZρ = −
g

πM
ρ(M

ρ + cxM)
{−M

ρA(Mcx +M
ρ)

− A(M)(gdx − )(gdx − )(Mcx +M
ρ)


+ (Mcx +M
ρ)[(gdx − )(Mcx +M

ρ)

× B(Mcx +M
ρ ,M,M)

× (M(g(cx − )dx − cx − ) +M
ρ(gdx − ))

+ M
ρB(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ)

+ M(cx − )M
ρ(gdx − )(gdx + )

+ M(cx − )cx(gdx − )(gdx + )

+M
ρ(gdx(gdx − ) + )]}

−
gωρπ

π(M
ρ + cxM)

{−A(M
ρ)[Mcx +M

ρ +M]

+ A(M)[M( − cx) − M
ρ]

− [M(cx − ) − M
ρ][Mcx +M

ρ]

+ M[(cx + )M
ρ +M(cx − )(cx + )]

× B(Mcx +M
ρ ,M,M

ρ)} .

(7.9)

�e above result is used in the calculation of the magnetic moment
according to the LSZ formalism.�is is detailed in the following section.

7.4 magnetic moment

In this section, the diagram depicted in �gure 7.1a is calculated for q = 
in the one-photon-exchange approximation. To this end, the amplitude
of the sub-diagram represented by the „blob“ in �gure 7.1b is written as

Mλ =M
a α
 (−i)Daa

αµ (pf)єabV λµν(pf, pi, q)(−i)Dbb
νβ (pi)M

b β
 , (7.10)

whereMa α
 andMb β

 are the polarization vectors of the outgoing and
incoming rho meson, respectively, and the dressed propagator from
equation (7.6) has been used.�e SU() structure єab has already been
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ρa ρb

γ

(1)O(q)
ρa ρb

γ

ρ3

(2)O(q)

Figure 7.3: Tree diagrams contributing to the magnetic moment of the rho me-
son.�eir order can be directly read o� the corresponding Feynman
rules.

separated from the vertex V . Next, the γρρ vertex can be parametrized
as

V λµν(pf, pi, q) =∑
j
tλµν
j Vj(pf , p


i , q) , (7.11)

where tλµν
j are Lorentz structures. Expanding each Vj around the pole

z and substituting equation (7.6) in equation (7.10), the leading pole
contribution is obtained as

Mλ
pole = −є

abMa α
 Zρ

gαν − pf αpf ν/z
pf − z

×∑
j
tλµν
j Vj(z, z, q)Zρ

gµβ − pi µpi β/z
pi − z

M
b β
 .

(7.12)

In order to properly renormalize the γρρ vertex function according to
the LSZ reduction formula [44], equation (7.12) is rewritten as

Mλ
pole = −є

ab
√
ZρM

a α


gαν − pf αpf ν/z
pf − z

×
√
Zρ∑

j
tλµν
j Vj(z, z, q)

√
Zρ

×
gµβ − pi µpi β/z

pi − z

√
ZρM

b β
 ,

(7.13)

so that the renormalized vertex function is given by
√
Zρ∑

j
tλµν
j Vj(z, z, q)

√
Zρ = ZρV λµν(pi, pf, q)

= −Γλµν(pi, pf, q) .
(7.14)
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Figure 7.4: One-particle-irreducible loop diagrams contributing to the mag-
netic moment of the rho meson. Continued on page 79.
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Figure 7.4: One-particle-irreducible loop diagrams contributing to the mag-
netic moment of the rho meson. (Cont.)
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Noting that structures like pµDµν(p) do not have a pole according
to equation (7.6), structures containing pµi or pν

f in Γµνλ are dropped.
Next, the „on-mass-shell“ part of the vertex function Γ de�ned in equa-
tion (7.14) is parametrized as

Γµνλ(pi, pf, q) = f(q)(pλ
i + pλ

f )g
µν + f(q)(qνgλµ − qµgλν) , (7.15)

where other Lorentz structures do not appear due to symmetries and
gauge invariance. Here, the momenta pi and q are de�ned as incoming
and the momentum pf is de�ned as outgoing. In particular, the on-shell
condition

qλΓµνλ =  , (7.16)

which corresponds to the conservation of the U() current of quantum
electrodynamics, justi�es the parametrization in equation (7.15).�is
structure has been checked for the sum of the calculated diagrams.�e
electric charge e and the magnetic moment µρ are then de�ned by f()
and f() as

f() = e , (7.17a)
f() = Mρµρ . (7.17b)

According to equation (7.14), there are tree and loop contributions in
these quantities, which are sorted symbolically in orders of ħ as follows:

Γµνλ = −( + ħδZρ)(V
λµν
tree + ħV

λµν
loop) +O(ħ)

= −V λµν
tree − ħ(δZρV

λµν
tree + V λµν

loop) +O(ħ) .
(7.18)

�e Feynman diagrams at tree level for V λµν
tree are given in �gure 7.3 and

at one-loop level for V λµν
loop in �gure 7.4.

Finally, at tree level, the form factors are obtained as

f tree () = e , (7.19a)
f tree () = e[ + gρπ − g(dx +  fV)] . (7.19b)

Taking the tree-order results times the wave function renormalization
constant according to equation (7.18) into consideration, one �nds at
one-loop level

f loop () =  . (7.20a)
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�is result is expected and serves as a reliable cross-check since hadronic
corrections cannot contribute to the electric charge due to the Ward
identity of quantum electrodynamics [46]. In the same way, using again
the approximationMω ≈ Mρ, the magnetic moment of the rho meson is
obtained as

f loop () =
eg

πM
ρ(Mcx +M

ρ)
Ξ

+
egωρπ

πM
ρ(M

ρ −M)
Ξ ,

(7.20b)

where the lengthy expressions Ξ and Ξ are given in section C.3 on
page 110.
Regarding power counting, the maximum order of terms to be taken

into account in equation (7.18) is O(q), since the total accuracy is of
orderO(q) where the polarization vector counts asO(q) as an overall
prefactor. �is translates for the form factor f to order O(q) and
for the form factor f toO(q) according to equation (7.15). Moreover,
there is an important point concerning the power counting order of the
wave function renormalization constant. Referring to equation (7.8), the
minimal order of Π(z) and Π′

(z) determines the order of Zρ since
z = M

ρ +O(ħ, q) is of orderO(q).�ese two quantities can be seen
as the coe�cients of a Taylor expansion around p = z of the two-point
function as follows:

Π(p) = Π(z) + (p − z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
O(q)

Π′
(z) +O((p − z)) . (7.21)

Since the tree level diagrams in �gure 7.3 start with O(q), the wave
function renormalization constant δZρ contributes withO(q) in equa-
tion (7.18). By virtue of equation (7.21), this translates to O(q) as the
maximum order of relevant diagrams in �gure 7.2. Note that all these
power counting considerations are only valid for particular expressions
if the contributions of the diagrams are renormalized such that they
respect their assigned chiral order.�is is dealt with in the following
section.
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7.5 reformulated infrared regularization

�e next step is to calculate the subtraction terms as explained in sec-
tion 3.2 in order to give IR regularized expressions for the results in
equation (7.20b) up to order O(q). Furthermore, one can check the
correct calculation of subtraction terms up to orderO(q) by virtue of
equation (7.20a), since the IR regularization scheme satis�es the Ward
identities. Nevertheless, there is a subtle point in calculating the sub-
traction terms for the wave function renormalization constant. It is not
correct to calculate them on the basis of the per-diagram expressions
in table C.1. During the derivation of equation (7.9), the relation for
∂B/∂p in equation (A.11) on page 97 has been used, which is only
valid in n =  dimensions. However, this relation must not be used
in the calculation of subtraction terms, where the expansion around
n =  must take place as a last step. Consequently, one needs to calculate
the subtraction terms o�-mass-shell up to order O(q)—noting that
p−M

ρ is of orderO(q)—before taking the derivative with respect to p.
Additionally, a similar complication appears in the case of diagrams for
the magnetic moment. A�er the Passarino-Veltman reduction of tensor
integrals, the small squared photon momentum q can appear in the
denominator as a so-called Gram determinant.�erefore, a numerator
X containing loop integrals needs to be expanded around q as q → ,
namely

lim
q→

X
q

= lim
q→


q

(X∣q=
²

=

+
∂X
∂q

∣
q=

q + . . . ) =
∂X
∂q

∣
q=

. (7.22)

In other words, the derivatives of scalar one-loop integrals3 are needed
with respect to their momentum arguments. Again, one must not use
formulas expressing the derivatives of C integrals in terms of A and
B integrals including �nite parts stemming from n → . Finally, one
can resort to calculating the subtraction terms in n dimensions for
arbitrary q and then taking the limit q → . Note that this implies
using the Passarino-Veltman reduction in n dimensions.4 As a last step,
the expression is expanded around n = .

3 See section A.2 on page 96 for the de�nition of the scalar loop integrals.
4 �is is stressed here since FeynCalc takes the limit n →  a�er Passarino-Veltman
reduction by default, i.e. it automatically adds the �nite terms from dimensional
regularization.
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In order to illustrate this, the test case is considered where only terms
proportional to gωρπ are taken into account and cx is set to zero. Re-
ferring to the Feynman diagrams in �gures 7.2 and 7.4, one concludes
that only diagram (5) of the two-point function and diagram (15) of the
magnetic moment contribute to f loop up to orderO(q).5 Fortunately,
the calculation of subtraction terms in this case necessitates only the ex-
pansion of one-point and two-point scalar loop integrals. Consequently,
they read

δZsub, (5)ρ = −
gωρπM

ρ

π
[ ln(M

ρ) − ] +O(q) , (7.23a)

f()sub, (15) = −
egωρπ

π
[M

ρ + (M
ρ + M) ln(M

ρ) (7.23b)

+ M] +O(q) .

Here and henceforth, the scale has been set to µ = GeV and divergences
proportional to λ in equation (A.10) have not been shown. Next, the
IR regularized expressions are obtained by subtracting the terms in
equations (7.23a) and (7.23b) from the corresponding unrenormalized
expressions in tables C.1 and C.2 on pages 112–113, respectively, and
expanding the result up toM with the help of the analytical expressions
in equations (A.8) and (A.9) on pages 96–97.�ey read

δZIR, (5)ρ = −
(gIRωρπ)

M

π
[ln(M) + ] +O(M) , (7.24a)

f()IR, (15) =
e(gIRωρπ)

M

π
[ln(M) + ] +O(M) . (7.24b)

According to equations (7.18), (7.19a), and (7.20a) and to the fact that
reformulated IR regularization preserves symmetries up to higher order,
the condition

f()IR, (15) + e δZIR, (5)ρ =  +O(M) (7.25)

must hold, which is indeed true for equations (7.24a) and (7.24b). A�er
the standard Passarino-Veltman reduction in n dimensions, it is conve-
nient to analyze �rst which subtraction terms of the loop integrals are
needed in particular. As motivated in equation (7.22), one can already
set the external rho momenta on-shell, pi/f = M

ρ + cxM, whereas the

5 Compare also the particular contributions to f() of each diagram in table C.2 on
page 113 in the appendix.
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photon momentum q should be kept o� shell.�e analysis is achieved
by replacing each speci�c scalar one-loop integral by a dummy series of
su�cient6 order, e.g.

C(M
ρ + cxM, q,M

ρ + cxM,M,M,M)

→ C + ℵC + ℵ
C + ℵ

C + . . . ,
(7.26)

where ℵ counts the small quantities and the Ci are unique with respect
to the loop integral and its arguments. Next, small quantities in the
prefactors of the integrals are identi�ed with the replacements

M → ℵM ,
pi/f → M

ρ + ℵ(pi/f −M
ρ) ,

q → ℵq ,
(7.27)

where pi/f denotes an external, not necessarily on-shell rho momentum
and q the squared photon momentum. Subsequently, the whole expres-
sion is expanded around ℵ =  up to orderO(ℵ) and, a�erwards, ℵ is
discarded by setting ℵ = . For diagram (11) in �gure 7.4, this analysis
leads to an expression which contains C, C, C. Hence, the subtraction
terms for the integral7

C(M
ρ + cxM, q,M

ρ + cxM,M,M,M) (7.28)

up to orderO(q) need to be calculated.
�e procedure is carried out in a standard way [82] by using the

Feynman parametrization


p
= −i ∫

∞


e ipxdx , (7.29a)

for the three propagator terms, integrating over dnk by using

∫ dnk exp(iAk + iBk) = i−n/πn/A−n/ exp(−i
B

A
) , (7.29b)

a�er interchanging both the integrations, substituting the Feynman
parameters xi by

x = λξ , x = λ( − ξ)ξ , x = λ( − ξ)( − ξ) , (7.29c)

6 In practical calculations a maximum order of  was chosen.
7 See equation (A.12) on page 98 for its standard de�nition. Here, the +i+ prescription
is noted explicitly again.
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and, �nally, integrating over λ by using

∫
∞


dλλαe−iβλ = i−α−Γ(α + )β−α− . (7.29d)

One obtains

C(M
ρ + cxM, q,M

ρ + cxM,M,M,M)

= −(πµ)n−πn/−Γ( − n/) ∫



dξdξ ( − ξ)

× [(M − i+) − (M
ρ + cxM)ξ( − ξ)

− q( − ξ)( − ξ)ξ]
n/−

.

(7.30)

According to the reformulated IR regularization scheme, the inte-
grand in equation (7.30) is expanded in small Lorentz-invariant quanti-
ties in order to obtain the subtraction terms. To this end, a�er employing
the replacements in equation (7.27), the integrand is expanded up to ℵ
and, a�erwards, ℵ =  is set.�is yields

C(M
ρ + cxM, q,M

ρ + cxM,M,M,M)sub

= −(πµ)n−πn/−Γ( − n/) ∫



dξdξ ( − ξ)

× {[−ξ( − ξ)M
ρ − i+]

n/−

+ [n/ − ][−ξ( − ξ)M
ρ − i+]

n/−

× [−q( − ξ)( − ξ)ξ +M( − cx ξ( − ξ))]} .

(7.31)

At this point, one respects the −i+ boundary condition correctly by
using the auxiliary relation

[−ξ( − ξ)M
ρ − i+]

x
= e−iπx ξx ( − ξ)x(M

ρ)
x
, (7.32)

where x is either (n/−) or (n/−). Note that the term −ξ(− ξ)M
ρ

is always non-positive since the integration variable ξ ranges between 
and . Consequently, the integration over ξ is trivial in equation (7.31)
and the integration over ξ can be carried out by employing the formula
[83]

∫



dξξα

 ( − ξ)β =
Γ(α + )Γ(β + )
Γ(α + β + )

. (7.33)
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�e expansion around n =  is only necessary up to order (n − ) for
loop integrals since the n-dependent prefactors of the full expression
cannot contain terms proportional to /(n − ). However, note that x
in equation (7.32) is n-dependent, which leads to the correct imaginary
parts of the subtraction terms due to the factor e−iπx . Eventually, the
�rst three coe�cients in equation (7.26) are obtained as

C =

M

ρ
[ln(M

ρ) +  − iπ] ,

C =  (all odd coe�cients vanish) ,

C =
q

M
ρ
[ln(M

ρ) +  − iπ]

−
M

M
ρ
[(cx − ) ln(M

ρ) − iπ(cx − ) + ] .

(7.34)

By neglecting all diagrams in �gure 7.4 with orderO(q) or higher,8
one �nds that a�er the reformulated infrared reformulation procedure
only diagram (15) contributes to f IR () and f IR () and the contribution
of diagram (3) in �gure 7.2 to δZIRρ vanishes. Hence, the already veri�ed
consistency condition in equation (7.25) stays the same if taking all
diagrams into account. Finally, the result for the gyromagnetic ratio in
reformulated infrared regularization reads

f IR ()/e =

e
( f tree, IR + f loop, IR )

=  + gIRρπ − gIR(dIRx +  f IRV ) +
M
π

Mρ(gIRωρπ)

+O(M) .

(7.35)

8 �at means that no calculation of subtraction terms has been carried out for these inte-
grals since the corresponding C integrals are cumbersome to integrate, despite using
comprehensive integral tables [84, 85, 86]. Hence, no cross-check of the assignment
of orders to those diagrams was done.
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Method µρ Reference

Current Dyson-Schwinger . [89]
Rel. QM: Light-front . [90]
QCD light cone sum rules . ± . [91]
QCD sum rules . ± . [92]
Previous Dyson-Schwinger . [93]
Rel. QM: Covariant . [94]
Rel. QM: Light-front ., ., ., . [94]
Rel. QM: Light-front . [95]

Table 7.1: Comparison with other theoretical predictions.�ey are sorted by
date of publication. �e magnetic moment µρ is given in units of
µ = e/(Mρ). In general, all methods use some non-trivial assump-
tions concerning the e�ective interaction or validity of perturbative
expansion.

7.6 discussion of results

�e main result obtained in this chapter is given in equation (7.35).�e
loop correction, which should be small in comparison to the tree-level
result, can be estimated by numerical evaluation. Using the physical
masses M = .GeV, Mρ = .GeV [36] and the heavily model-
dependent numerical value for the LEC gIRωρπ ≈ GeV− [87], one �nds
as a rough estimate

f loop, IR ()/e ≈ . . (7.36)

Here, the width of the rho meson Γχ has been neglected as a higher-
order correction. Assuming that the numerical value at tree level for
the magnetic moment µρ is  in units of µ = e/(Mρ) [88], the loop
correction is indeed small.9 However, at least the LEC gIRρπ at tree level
in equation (7.35) is not known so far and thus no completely numerical
result can be given.
In table 7.1 some other theoretical predictions are presented.�ey are

in good agreement with the result obtained here if one takes into account
that this calculation has an error of at least  due to the numerical

9 Note that f()/e is exactly the magnetic moment µρ de�ned in equation (7.17b) in
units of µ = e/(Mρ).
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value of gIRωρπ [87]. In Lattice QCD, the main problem is the calculation
of this complex quantity at the physical pion mass due to the limited
computational power resulting in large statistical errors [96, 97]. Hence,
the results obtained there are not yet comparable. A higher-order calcu-
lation in the framework of chiral e�ective �eld theories could be used to
give a more reliable numerical value for the magnetic moment as a chiral
extrapolation of Lattice QCD results. Unfortunately, no experimental
data for the magnetic moment exist at the moment and thus no �nal
decision on the validity of the various theoretical assumptions compared
in table 7.1 can be made.



8
SUMMARY AND CONCLUSION

�is chapter gives a short summary of the results obtained in part II and
draws conclusions from it. Consequently, some possible extensions of
this work are proposed as a short outlook. Obstacles and di�culties,
which may occur in future endeavors, are pointed out.
In chapter 5, a successful extension to the SU() sector of the constraint

analysis in the vector �eld formalism has been presented. A massive
Yang-Mills theory has been found for eight vector particles assuming
a global SU() symmetry a priori. However, starting from a global
U() symmetry, i.e. requiring only charge conservation, the analysis has
not been feasible for eight �elds due to the vast number of parameter
choices during the constraint analysis. �e same obstacle appears if
requiring a global SU() symmetry as a subgroup of SU(), i.e. for equal
up- and down-quark masses, which leads to isospin symmetry. It is also
a non-trivial task to �nd the number of truly independent parameters
resulting from the permutation symmetries of the interaction terms.
In conclusion, reducing the a priori assumptions for eight vector �elds
quickly leads to severe problems.
At this point, it shall be mentioned brie�y that a constraint analysis

for three axial-vector particles was carried out and led to conditions for
the coupling constants. Unfortunately, the subsequent renormalizability
analysis yielded lengthy equations which could not be simpli�ed further.
Nevertheless, little e�ort has been made to investigate this further.
In chapter 6, a challenging result has been found. Assuming U()

invariance a priori, the most general Lagrangian for three vector par-
ticles described by antisymmetric tensor �elds has been constructed.
Here, interaction terms accompanied by couplings of negative energy
dimension have been assumed to be suppressed by an intrinsic large
scale. By applying a cumbersome constraint analysis, one directly �nds
that the three-vertex interaction must vanish. Taking absorbability of
divergences into account, the four-vertex interaction must also vanish.
�is result would not have been obtained if one had not carried out the
cumbersome constraint analysis. In conclusion, the only self-consistent
theory in the antisymmetric tensor �eld formalism is the free theory.

89
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�is is in stark contrast to the �ndings in the vector �eld formalism.
�ere, the same assumptions lead to a massive Yang-Mills theory.
An integral part of this work was cross-checking the results stemming

from computer algorithms as far as possible by hand. Relying on that,
one draws the conclusion that there is an astounding di�erence between
the tensor �eld formalism and the vector �eld formalism in e�ective
quantum �eld theories. Regarding the former, the assumption that
terms with a higher number of �elds and derivatives are suppressed
does not lead to an expected self-consistent interacting theory as for the
latter. However, the equivalence of both formalisms has been shown
for various interaction terms in chiral e�ective �eld theories including
vectormesons [60, 68].�ere, di�erentmethods of implementing vector
mesons are mutually consistent with respect to chiral symmetry, number
of LECs, and power counting. In this sense, it is o�en argued that using
either the vector or tensor �eld formalism does not matter and the
formalism should be chosen as one prefers. Nevertheless, with a few
exceptions [30], a proper constraint analysis for these interactions is not
considered, although it is a crucial part in the reasoning presented here.
�erefore, it would be a reasonable extension of this work to investigate
interaction terms of vector mesons with pions or nucleons within the
tensor �eld formalism including a constraint analysis. Of course, the
increasing number of �elds and thus the complexity of possible self-
consistent parameter choices make life hard.
In chapter 7, the magnetic moment of the rho meson has been calcu-

lated in the framework of a chiral e�ective �eld theory including the rho
and omega mesons. In comparison to work concerning the properties
of nucleons, new di�culties appear. First, the power counting becomes
more involved due to the di�erent �uxes of large external momenta.
Considering this, a chiral order was assigned to each diagram and the
regularization scheme has been successfully con�rmed for the relevant
diagrams. Second, the rho meson can decay into two pions and thus
loop integrals with imaginary parts appear. Additionally, the unstable
rho meson should be implemented with a complex mass in order to
absorb the complex counter-terms, however, it turned out that this is an
e�ect of higher order in the calculated quantities. Up to order O(q),
the calculation of the electromagnetic form factors at q =  was suc-
cessful in the reformulated infrared regularization scheme.�e most
important terms stemmed from the inclusion of the omega meson. Here,
future work could focus on reinvestigating the correct construction of
the most general Lagrangian, e.g. by using a constraint analysis, and on
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cross-checking the renormalized quantities more thoroughly by con-
sidering the case q ≠ . Furthermore, the current Lattice QCD results
need chiral expansions in the pion mass. Hence, a result valid for higher
chiral orders could be advantageous.
Although the two last chapters cover di�erent topics at �rst sight, both

the results contribute to the endeavor how to create an e�ective �eld
theory applicable in the low-energy regime up to GeV. To this end,
it is de�nitely necessary to include vector mesons as explicit degrees
of freedom, which have been known as resonances in experiments for
a long time. On the one hand, the sometimes favorable tensor �eld
formalism for vector particles has shown not to be quasi-equivalent to
the vector �eld formalism.�is necessitates rethinking of the various
descriptions of vector meson interactions with other hadrons. On the
other hand, calculating physical properties of vector mesons turns out to
be more complicated in comparison to nucleons. However, a successful
calculation and comparison with future experiments and Lattice QCD
extrapolations can increase the con�dence in the validity of the e�ective
�eld theory.
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APPENDIX





A
NOTATIONS AND RELATIONS

In this chapter, the notation used throughout this thesis is brie�y sum-
marized. Furthermore, some important relations, which have been
employed in the calculations, are given.

a.1 the special unitary group

�e following de�nitions and relations are also given in the comprehen-
sive compendium of [77].�e special unitary group SU(N) is de�ned
as

SU(N) = {M ∣M†M = 1, detM = } , (A.1)

where M is an N × N complex matrix. �e unitary group U(N) is
obtained by simply removing the constraint detM = . Elements U of
SU(N) can be parametrized as

U = exp(−iΘaTa) , (A.2)

where Ta represent the Hermitian and traceless N− generators.�e to-
tally antisymmetric structure constants fabc , which encode the structure
of the Lie group, are de�ned as

[Ta , Tb] = i fabcTc , (A.3)

where [A, B] = AB − BA denotes the commutator. Furthermore, the
anticommutation relations can be written with the help of the totally
symmetric tensor dabc as

{Ta , Tb} = κδab + dabcTc , (A.4)

where κ is some N dependent constant.
For N = , the generators can be written in terms of the Pauli matrices,

namely Ti = τi/, where

τ =
⎛

⎝

 
 

⎞

⎠
, τ =

⎛

⎝

 −i
i 

⎞

⎠
, τ =

⎛

⎝

 
 −

⎞

⎠
. (A.5)

�e structure constants are equivalent to the Levi-Civita symbol, fabc =
єabc, and the dabc vanish. For convenience, τ denotes the unit matrix.
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For N = , the generators Ta = λa/ are given by the Gell-Mann
matrices

λ =
⎛
⎜
⎜
⎝

  
  
  

⎞
⎟
⎟
⎠

, λ =
⎛
⎜
⎜
⎝

 −i 
i  
  

⎞
⎟
⎟
⎠

, λ =
⎛
⎜
⎜
⎝

  
 − 
  

⎞
⎟
⎟
⎠

,

λ =
⎛
⎜
⎜
⎝

  
  
  

⎞
⎟
⎟
⎠

, λ =
⎛
⎜
⎜
⎝

  −i
  
i  

⎞
⎟
⎟
⎠

, λ =
⎛
⎜
⎜
⎝

  
  
  

⎞
⎟
⎟
⎠

,

λ =
⎛
⎜
⎜
⎝

  
  −i
 i 

⎞
⎟
⎟
⎠

, λ =


√


⎛
⎜
⎜
⎝

  
  
  −

⎞
⎟
⎟
⎠

. (A.6)

�e constants fabc and dabc can be calculated by the relations

fabc =

i
Tr([λa , λb]λc) and dabc =



Tr({λa , λb}λc) , (A.7)

respectively.

a.2 one-loop integrals

�is section brie�y summarizes the so-called scalar one-loop integrals
in the notation of [98]. �ey typically appear as results of one-loop
calculations a�er applying the standard Passarino-Veltman reduction
[72].�e scheme reduces tensor loop integrals over dnk, which carry
quantities such as kµkν in the numerator, to scalar ones. For a thorough
review of Passarino-Veltman reduction schemes see [73].�e algorithms
presented there are implemented in FeynCalc as well as in FormCalc, a
part of FeynArts, see also appendix B.�e calculation of loop integrals
is detailed in [82].
In dimensional regularization [69], the one-point scalar integral is

given by

A(m) =
(πµ)−n

iπ ∫ dnk


k −m + i+

= −πλm −m ln
m

µ
.

(A.8)

�e mass scale µ gives the integral the mass unit eV independent of the
number of space-time dimensions n. It is usually set to µ = GeV in this
thesis, which simpli�es results.
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�e two-point scalar integral can also be calculated explicitly for
arbitrary arguments. It reads

B(p,m ,m)

=
(πµ)−n

iπ ∫ dnk


[k −m + i+][(k + p) −m + i+]

= −πλ + ln(
µ

m
) −  −

ω
 
F(, ; ;ω)

−


[ +

m
m (ω − )

] F(, ; ;  +
m

m (ω − )
) ,

ω =
m −m + p +

√
(m −m + p) − m p

m
,

(A.9)

where F(a, b; c; z) is the standard hypergeometric function [83].�e
divergent part of the one-point and two-point integrals is encoded in

λ =

π

{


n − 
−


[ln(π) + Γ′() + ]} . (A.10)

According to the M̃S renormalization scheme, quantities proportional
to λ in equation (A.10) are compensated by appropriate counter-terms.
Furthermore, the derivative of B with respect to p reads

∂B(p,m ,m)
∂p

=

D

{(−p +m +m)p − A(m)(p +m −m)

− A(m )(p −m +m)

+ B(p,m ,m)[p(m +m) − (m −m)]} ,

(A.11)

where

D = p[m − (p +m)m + (p −m)] .

�is relation proves to be useful in the calculation of the wave function
renormalization constant. Among more derivatives, this result can be
found in [99, App. C.2.1]. However, note that some of these formulas
exhibit parts not proportional to a one-loop integral.�erefore, they are
only valid in n =  dimensions and cannot be used for the calculation of
subtraction terms in the reformulated IR regularization scheme.
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�e non-divergent three-point scalar integral can only be calculated
analytically for special arguments, so only its de�nition is given for
completeness as

C(p , p, p,m ,m,m) =
(πµ)−n

iπ

× ∫ dnk


[k −m ][(k + p) −m][(k + p) −m]
,
(A.12)

where p = p + p and the +i+ prescription in the denominator has
been dropped for brevity. By virtue of the translation invariance in k,
the following expressions are all equal:

C(p , p, p,m ,m,m) , C(p, p, p ,m ,m ,m) ,
C(p , p, p,m,m ,m) , C(p, p, p ,m,m ,m ) ,
C(p, p , p,m ,m ,m) , C(p, p , p,m ,m,m ) .

(A.13)

Furthermore, the derivatives of C with respect to an arbitrary argument
is detailed in [100].�e corresponding algorithm is also given in [99,
App. C.2.1] and has been implemented in Mathematica in order to ex-
press all C at q =  in terms of B and A, compare also section 7.5 on
page 82.
For completeness, the following relations for special arguments of C

integrals are given:

C(p, , p,m ,m,m) =

[m − m(m + p) + (m − p)]
−

× [(m −m − p)(B(p,m,m ) − )

− (m +m − p)A(m)/m + A(m )] , (A.14a)
C(p, p, ,m,m ,m) =

[B(p,m,m) − B(p,m ,m)]/(m −m) . (A.14b)



B
TECHNICAL DETAILS

�is chapter gives a brief overview of the various tools and techniques
which have been used to calculate the results throughout this work.
Mostly, the comprehensive computer algebra systemWolframMathe-
matica 7.0 and the programming language FORM [101, 102, 103] have
been employed on a Linux-based 64bit machine. Note that a 32bit sys-
tem is not su�cient due to some limitations of the FORM interpreter.
Furthermore, both the Mathematica packages FeynCalc [104] and Fey-
nArts/FormCalc [105] have been used in parallel for the calculation of
diagram amplitudes.

b.1 effective field theory model in feynarts

Starting from the de�nition of the Lagrangian using the common build-
ing blocks of chiral e�ective �eld theories, the calculation is carried out
in a semi-automatic way, i.e. all intermediate results are not transferred
by hand at any point.�is approach reduces possible sources of mistakes
in general. However, its drawback is that interim consistency checks can
become less transparent.�e single calculation steps are detailed in the
following and an overview is depicted in �gure B.1.
�e original FORM code for generating the Feynman rules in the

mesonic sector—kindly provided by Sandro Gorini—was extended for
the inclusion of the omega meson. Indeed, FORM is well-suited for the
necessary expansion of the Lagrangian and the permutation operations
involved in deriving Feynman rules of e�ective �eld theories. Next, a
wrapper which automatically generates a complete FeynArts model has
been developed in Mathematica as a �rst proof of concept.�e wrapper
obtains the Feynman rules via FormGet, a spin-o� of FeynArts. Besides
that, the Feynman rules are prepared for easy usage with respect to the
FeynCalc package. �e main di�culty concerning the wrapper was
the correct separation of the Feynman rules in a so-called kinetic part
and a part containing coupling constants according to the FeynArts
manual, see also equations (6.58a) and (6.58b) on page 62. Basically, it
boils down to the determination of coe�cients of Lorentz structures
and a rather cumbersome formatting of the output suitable for FeynArts.

99
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Generate Feynman rules from e�ective
Lagrangian using building blocks.

Convert Feynman rules and generate
FeynArts Model.

Generate diagrams with FeynArts.
Export as graphics.

FormGet

Write down
diagram
amplitudes
manually.

Calculate with
FeynCalc.

Calculate amplitudes with FormCalc
including PaVe reduction.

Compare results for debugging and
cross-checking purposes.

Figure B.1: Flowchart visualizing the necessary extension of FeynArts for e�ec-
tive �eld theories.�e Feynman rules are also automatically con-
verted for FeynCalc usage, which is a helpful tool for cross-checking.
Boxes with thicker border indicate that the necessary code is mostly
self-written. Boxes with gray background indicate that FORM is
used instead of Mathematica.
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Future developments should modify the FORM code output such that it
is easily converted in a FeynArts model.
Regarding an e�ective �eld theory (EFT), typically much more com-

plicated Feynman rules with various kinetic parts appear in comparison
to the Standard Model, for which FeynArts has been originally designed.
Furthermore, the photon-rho coupling requires appending a two-vertex
to each generated topology.�is is implemented by direct modi�cation
of already generated topology code, i.e. before inserting the particular
�elds. In summary, it turned out that FeynArts in conjunction with
FormCalc is suitable for successful calculations in EFTs. Nevertheless,
the calculation can take some hours since FormCalc is not optimized
for typical amplitudes of EFTs. During the development process, some
bugs in FormCalc have been identi�ed by thorough comparison with
FeynCalc results, especially in the SU() index handling and in the re-
cently available Passarino-Veltman reduction code.�ey have already
been �xed in the current o�cial release. �is was greatly supported
by�omas Hahn, the maintainer of FeynArts and FormCalc. Consid-
ering that FeynCalc is outdated and not well-maintained anymore, a
future-proof approach should take FeynArts into account.

b.2 constraint analysis in form

As already mentioned in the previous section B.1, FORM is well-suited
for algebraic transformations relevant to theoretical physics. For exam-
ple, the contraction of a symmetric tensor with an antisymmetric one
is automatically identi�ed as zero. Furthermore, a very comprehensive
replacement system and a useful preprocessor is provided.
�e �rst part was the determination of available Lorentz structures

discussed in section 6.1 on page 43. �is is implemented in a brute-
force approach by simply contracting all possible index permutations
with the corresponding product of �elds. Since FORM automatically
sorts the indices in a standard order, only a few terms remain. �ey
were �nally reduced to the truly independent Lorentz structures by
taking into account the contractionwith the arbitrary coupling constants.
�ese steps have also been cross-checked with independently developed
Mathematica code. Admittedly, there are smarter ways of obtaining the
possible Lorentz structures, but the brute-force method should be the
most robust.
�e second part concerned the requirement of the U() invariance in

conjunction with the elimination of super�uous coupling parameters.
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To this end, the summation over all Lorentz indices and internal indices
is carried out in equations (6.14) and (6.17) on pages 47–48, respectively.
Additionally, the antisymmetry of the tensor �elds is incorporated as
usual by the replacementW µν → V µν − V νµ, where V µν is an arbitrary
tensor �eld.�e resulting expressions have been collected by the �elds
V . Fortunately, FormGet preserves this parenthesis structure of the ex-
pression. Using Mathematica, the conditions on the coupling constants
due to U() invariance have been solved and converted to replacements
again suitable for FORM. Finally, the whole Lagrangian is considered
again in FORM and the solution ensuring U() invariance is inserted af-
ter explicit summation of all indices and antisymmetrization.�is result
is analyzed in Mathematica with respect to super�uous parameters ac-
cording to the algorithm described in section 6.2 on page 46. In this part,
the main problem was to �gure out which tool is best-suited to carry
out a speci�c step. For example, solving a linear equation algebraically
is easily done in Mathematica, but hard in FORM. On the other hand,
tensor structures and summations are much more e�ciently handled by
FORM in comparison to Mathematica.
�e third part was the calculation of the matrixM in equation (6.27)

on page 52, whose determinant was then analyzed in Mathematica.�is
problem boils down to the implementation of the Poisson algebra

{ f , gh} = g { f , h} + { f , g} h , (B.1)

where f , g , h are arbitrary functions of the canonical variables. Using
equation (B.1), the expression is simpli�ed to the fundamental Poisson
brackets, which obey equation (4.15) on page 32. �e algorithm uses
replacements for the algebra and represents the poisson bracket by a so-
called non-commuting function in FORM.�e fact that no derivatives
appear in the interaction part of the Lagrangian simpli�es matters signif-
icantly since no integration by parts needs to be carried out. Finally, the
output is prepared for Mathematica a�er applying the relations obtained
from the U() invariance.
�e last part consisted of the renormalizability analysis. It was carried

out using a general tensor model �le in FeynArts, analogously to the
vectormodel �le used in chapter 5. Fortunately, FeynArts supports tensor
�elds by design. Since the parametrization in equation (6.20) on page 49
is given for explicit internal indices, the in�nite parts of the vertices
needed to be calculated on „particles insertion level“.�is calculation
takes some hours and it has been parallelized using a small bash script
and theMASH Perl script, which allows for treatingMathematica scripts
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as usual shell scripts. �is approach renders the process more stable.
Note that FeynCalc is not suitable for such calculations, since the tensor
rank of the loop integrals is quite high and the necessary simpli�cation
of the Lorentz structure is an elaborate problem.





C
RESULTS FOR THE MAGNETIC MOMENT IN DETAIL

c.1 feynman rules

In the vertices, the rho meson is represented by a straight line, the pion
by a dashed line, the (always external) photon by a wiggly line and
the omega meson by a curly line. All the momenta in the following
Feynman rules are incoming.�ese and the Lorentz indices µ, ν, λ, σ , α
are ordered starting from the le� upper corner in a counter-clockwise
direction, e.g.

p, µ
p, ν

p, λ

or p, ν p, λ p, σ

p, µ p, α

.
Additionally, note that the LEC fV is de�ned di�erently in comparison
to the usual de�nition, see e.g. [68] due to the implementation in FORM.
Referring to equation (7.2b) on page 72, the usual de�nition can be
obtained by the replacement fV → − fV/(

√
). All rules presented here

have been automatically calculated and inserted into this document,
which reduces readability on the one hand, but increases correctness on
the other hand.�e Minkowski product p ⋅ p of two four-vectors is
written pp in the following Feynman rules.

γ ρb
ieδb

g
(g pµ p

ν
 (dx +  fV) + gµν(Mcx −

g p(dx +  fV) +M
ρ))

πa

πb

ρc
єabc

Fg
(pµ(M

cx + g(pp)dx +M
ρ) −

pµ (M
cx + g(pp)dx +M

ρ))

πa

πb

γ

−
e(pµ − pµ)єab

Fg
(M

ρ +Mcx − Fg)
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πa

ρb

ω

−gωρπδabєppµν

ρa

ρb

ρc

gєabc((pλ
 − pλ

)gµν + (pµ − pµ)g
λν + (pν

 −

pν
 )gλµ)

γ

ρb

ρc

−eєbc(gρπ − g(dx +  fV))(pλ
 gµν − pν

 gλµ)

πa

πb ρc

ρd

−
i
F

(Mcxδabδcd gµν + gdx(p
µ
 p

ν
 −

pµ p
ν
 )(δadδbc − δacδbd))

πa

πb γ

ρd

−
ie
Fg

(δdδab(gµν(Mcx +

g(pp)(dx +  fV) + g(pp +
pp)dx +M

ρ) − g pµ(p
ν
(dx +

 fV) + dx(pν
 + pν

))) +

δaδbd(−gµν(Mcx + g(pp)(dx +
 fV) + g(pp)dx − (pp)gρπ +

(pp)gρπ +M
ρ) + g pµ(p

ν
(dx +

 fV) + dx pν
 ) + gρπ(p

µ
 − pµ )p

ν
) +

δbδad(−gµν(Mcx + g(pp)(dx +
 fV) + g(pp)dx + (pp)gρπ −

(pp)gρπ +M
ρ) + g pµ(p

ν
(dx +

 fV) + dx pν
) + gρπ(p

µ
 − pµ)p

ν
))

πa

ρb ρc

ω

−ig gωρπєabcєpλµν

πa

γ ρc

ω

iegωρπєacє−pλµν
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ρa

ρb ρc

ρd
−ig(−δabδcd(gλνgµσ+gλµgνσ−gλσ gµν)−

δacδbd(gλνgµσ −gλµgνσ + gλσ gµν)−

δadδbc(−gλνgµσ+gλµgνσ+gλσ gµν))

πa

πb γ ρd

ρe

e
F

(−(pν
gλµ − pλ

 gµν)(єadδbe −

єaeδbd + δaeєbd − δadєbe −
δabєde + δbєade + δaєbde)(g(dx +
 fV) − gρπ) − gdx(δabєde((pλ

 +

pλ
)gµν − (pν

 + pν
)gλµ) +

δaeєbd((pν
 + pν

)gλµ − (pλ
 +

pλ
)gµν) − δadєbe((pν

 + pν
)gλµ −

(pλ
 + pλ

)gµν) + єadδbe((pν
 +

pν
)gλµ − (pλ

 + pλ
)gµν) +

єaeδbd((pλ
 + pλ

)gµν − (pν
 +

pν
)gλµ) + δaєbde(pν

 gλµ −

pλ
 gµν) + δdєabe((pν

 − pν
 )gλµ +

(pλ
 − pλ

)gµν) + δbєade(pν
gλµ −

pλ
 gµν) + δeєabd((pν

 − pν
)gλµ +

(pλ
 − pλ

 )gµν)))
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c.2 fluxes of large momenta for each topology

In �gures C.1 and C.2 the possible �uxes of large external momenta
are given. �ey have been used to determine the chiral order of each
diagram, see �gures 7.2 and 7.4 on pages 75–78, respectively.

(a) Topology 

(b) Topology 

Figure C.1: Possible �uxes of largemomenta through each topology of one-loop
diagrams for the two-point function.�e external rho mesons are
assumed to carry large momenta.�e large momenta are indicated
by a thicker propagator line. Note that these diagrams should be
seen as naïve templates for a computer algorithm. Compare also
�gure 7.2 on page 75.
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(a) Topology 

(b) Topology 

(c) Topology 

(d) Topology 

(e) Topology 

Figure C.2: Possible �uxes of largemomenta through each topology of one-loop
diagrams relevant to the magnetic moment. Again, the external rho
mesons are assumed to carry large momenta, whereas the photon
momentum is assumed to be small. Compare also �gure 7.4 on
page 78.
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c.3 Ξ and Ξ for the magnetic moment

Here, the two lengthy expressions for Ξ and Ξ, which have been used
in equation (7.20b) on page 81, are given in the following equations (C.1)
and (C.2).

Ξ = −M
ρA(Mcx +M

ρ)(g(dx +  fV) − gρπ − )
− A(M)(Mcx +M

ρ)((gdx − )
× (Mcx(g(dx(g(dx +  fV) − gρπ − ) −  fV)
+ (gρπ + )) +M

ρ(g(dx(g(dx +  fV) − gρπ − )
−  fV) + gρπ)) − M

ρ)

+ (Mcx +M
ρ)((gdx − )(Mcx +M

ρ)

× B(Mcx +M
ρ ,M,M)

× (M(−g((cx − )dx gρπ + cxdx + cx fV +  fV)
+ g(cx − )dx(dx +  fV) + (cx − )gρπ + )
+M

ρ(g(dx(g(dx +  fV) − gρπ − ) −  fV) + gρπ))

− M
ρB(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ)

× (g(dx +  fV) − gρπ + )
− Mcx(M −M

ρ)(gdx − )(g(gdx(dx +  fV)
− dx gρπ +  fV) + (gρπ − ))

+ Mcx(gdx − )(g(gdx(dx +  fV) − dx gρπ +  fV)
+ (gρπ − ))

− MM
ρ(gdx − )(g(gdx(dx +  fV) − dx gρπ +  fV)

+ (gρπ − ))
+M

ρ(g(dx(g(dx(g(dx +  fV) − gρπ − ) −  fV)
+ (gρπ − )) −  fV) + (gρπ − )))

(C.1)
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Ξ = (M −M
ρ)(Mcx +M

ρ)(MM
ρ(cx(−gdx − g fV + gρπ + )

+ gdx + g fV − gρπ − )
+Mcx(cx − )(gdx − ) +M

ρ(gdx + g fV − gρπ + ))
+ A(M

ρ)(MM
ρ(cx(−g(dx + fV) + gρπ + ) + cx(gdx − )

− g fV + gρπ + ) +MM
ρ(cx(g(dx + fV) − gρπ − ) − gdx − )

+M(cx − )cx(gdx − ) +M
ρ(g(dx + fV) − gρπ + ))

− A(M)(MM
ρ(−cx(gdx − g fV + gρπ − ) + cx(gdx − )

− g fV + gρπ + ) +MM
ρ(gcxdx − gcx fV + (cx − )gρπ + cx

− gdx + g fV − ) +Mcx((cx − )cx + )(gdx − )
+M

ρ(−g(dx +  fV) + gρπ + ))
+ (B(Mcx +M

ρ ,M,M
ρ)(−M(cx − )M

ρ(cx(−gdx − g fV
+ gρπ + ) + cx(gdx − ) − g fV + gρπ + )
−MM

ρ(cx(g(dx + fV) − (gρπ + ))
+ cx(−gdx − g fV + gρπ + ) + (gdx − g fV + gρπ + ))
+MM

ρ(cx(−g(dx +  fV) + gρπ + ) + gdx − g fV + gρπ + )
+M(−(cx − ))cx(gdx − ) − M

ρ)

+ (gdx − )(M(cx − ) +M
ρ)(Mcx +M

ρ)


× B(Mcx +M
ρ ,M,M))

(C.2)
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c.4 non-renormalized expressions per diagram

�e full non-renormalized expressions per diagram for the quantities
δZρ, f(), and f() are given in tables C.1 to C.3, respectively.�ey
have been included in this document in a fully automatic way. Concern-
ing the magnetic moment, some diagrams have been grouped in order
to ensure the current conservation, i.e. only their sum ful�lls the Lorentz
structure given in equation (7.15) on page 80. See also the corresponding
Feynman diagrams in �gures 7.2 and 7.4 on pages 75–78.

Diagram δZρ

(1) 

(2) 

(3) −
g(gdx − )(Mcx +M

ρ)

πM
ρ

(A(M)( − gdx) +

(gdx + )(M(cx − ) +M
ρ) + B(Mcx +

M
ρ ,M,M)(M(g(cx − )dx − cx − ) +

M
ρ(gdx − )))

(4) −
g

π(Mcx +M
ρ)

(−A(Mcx +M
ρ) + (Mcx +

M
ρ)(B(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ) +

))

(5)
gωρπ

π(Mcx +M
ρ)

(A(M
ρ)(Mcx +M

ρ +M) +

A(M)(M(cx − ) + M
ρ) + (M(cx − ) −

M
ρ)(Mcx +M

ρ) + M(M(−cx + cx + ) −
(cx + )M

ρ)B(Mcx +M
ρ ,M,M

ρ))

Table C.1: Contributions of each Feynman diagram in �gure 7.2 to δZρ de�ned
in equation (7.8).
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Diagram f()

(1) −
egMcx(gdx − )(Mcx +M

ρ)

πM
ρ

(−M
ρ − A(M) −

M(cx − ) + (M(cx + ) +M
ρ)B(Mcx +

M
ρ ,M,M))

(2) 

(3)
eMcx gωρπ

πM
ρ(Mcx +M

ρ)
(A(M)(M(cx − ) +

M
ρ) + A(M

ρ)(M(cx + ) −M
ρ) + (Mcx +

M
ρ)(M(cx − ) + M

ρ) − M((cx + )M
ρ +

M(cx + cx − ))B(Mcx +M
ρ ,M,M

ρ))

(4) 

(5)+(7)
egdx(gdx − )(Mcx +M

ρ)

πM
ρ

(−A(M) + (M(cx −

) +M
ρ) + (M(cx − ) +M

ρ)B(Mcx +
M

ρ ,M,M))

(6)+(8) 

(9) 

(10) 

(11)
eg(gdx − )

πM
ρ

((Mcx +M
ρ)
)(−M

ρ − A(M) −

M(cx − ) + (M(cx + ) +M
ρ)B(Mcx +

M
ρ ,M,M))

(12)
eg

π(Mcx +M
ρ)

(−A(Mcx +M
ρ) + (Mcx +

M
ρ)(B(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +

M
ρ) + ))

Table C.2: Contributions of each Feynman diagram in �gure 7.4 to the form
factor f() in equation (7.20a). Continued on page 114.
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Diagram f()

(13)+(14) 

(15)
egωρπ

πM
ρ
(A(M

ρ)(M
ρ −M(cx + )) −

A(M)(M(cx − ) + M
ρ) − (Mcx +

M
ρ)(M(cx − ) + M

ρ) + M((cx + )M
ρ +

M(cx + cx − ))B(Mcx +M
ρ ,M,M

ρ))

(16)+(19)
egdx(gdx − )(Mcx +M

ρ)

πM
ρ

(−A(M) + (M(cx −

) +M
ρ) + (M(cx − ) +M

ρ)B(Mcx +
M

ρ ,M,M))

(17)+(20)
eg

π(Mcx +M
ρ)

(A(Mcx +M
ρ) − (Mcx +

M
ρ)(B(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ) −

))

(18)+(21)
egωρπ

π(Mcx +M
ρ)

(M
ρ − M(cx − )cx +

M(cx + )M
ρ − MA(M)(cx + ) +

A(M
ρ)(M(−cx) − M

ρ +M) + M(M(cx −
) − M

ρ)B(Mcx +M
ρ ,M,M

ρ))

(22) 

(23) 

(24) 

Table C.2: Contributions of each Feynman diagram in �gure 7.4 to the form
factor f() in equation (7.20a). (Cont.)
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Diagram f()

(1) −
egMcx(gdx − )(Mcx +M

ρ)

πM
ρ

(M
ρ + A(M) +

M(cx − ) + (M(cx − ) +M
ρ)B(Mcx +

M
ρ ,M,M))

(2) −
eg

π(Mcx +M
ρ)

(−gρπ + g(dx +

 fV))(−A(Mcx +M
ρ) + (Mcx +

M
ρ)(B(Mcx+M

ρ ,Mcx+M
ρ ,Mcx+M

ρ)+))

(3)
eMcx gωρπ

πM
ρ(Mcx +M

ρ)
(A(M

ρ)(M(cx − ) +

M
ρ) + A(M)(M( − cx) − M

ρ) + (Mcx +
M

ρ)(M(cx + ) + M
ρ) − (M(cx − )M

ρ +

M(cx − ) + M
ρ)B(Mcx +M

ρ ,M,M
ρ))

(4) 

(5)+(7)
eg(gdx − )(Mcx +M

ρ)(gdx + gρπ)

πM
ρ

(−A(M) +

(M(cx − ) +M
ρ) + (M(cx − ) +

M
ρ)B(Mcx +M

ρ ,M,M))

(6)+(8) 

(9) −
egMA(M)cxdx

πM
ρ

(10)
eg

π
(gρπ − g(dx +  fV))

(11)
eg(gdx − )

πM
ρ

((Mcx+M
ρ)
)(M

ρ+A(M)+M(cx−

) + (M(cx − ) +M
ρ)B(Mcx +M

ρ ,M,M))

(12)
eg

π(Mcx +M
ρ)

(−A(Mcx +M
ρ) + (Mcx +

M
ρ)(B(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ)−

))

Table C.3: Contributions of each Feynman diagram in �gure 7.4 to the form
factor f() in equation (7.20b). Continued on page 116.
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Diagram f()

(13)+(14) −
egωρπ(gdx − )

πM
ρ(M

ρ −M)
(A(M

ρ)(M(cx − )M
ρ +

M(cx − ) +M
ρ) − A(M)(M(cx − )M

ρ +

M((cx − )cx + ) + M
ρ) − M(M(cx −

)(cx − )M
ρ +M(cx − ) − M

ρ)B(Mcx +
M

ρ ,M,M
ρ) + (Mcx +M

ρ)((M(cx − ) +
M

ρ)(Mcx +M
ρ)B(Mcx +M

ρ ,M,M) + (M −

Mρ)(Mρ +M)(M(cx − ) + M
ρ)))

(15)
egωρπ

πM
ρ
(A(M)(M(cx − ) + M

ρ) +

A(M
ρ)(M(−cx) − M

ρ +M) − (Mcx +
M

ρ)(M(cx + ) + M
ρ) + (M(cx − )M

ρ +

M(cx − ) + M
ρ)B(Mcx +M

ρ ,M,M
ρ))

(16)+(19)
egdx(gdx − )(Mcx +M

ρ)

πM
ρ

(−A(M) + (M(cx −

) +M
ρ) + (M(cx − ) +M

ρ)B(Mcx +
M

ρ ,M,M))

(17)+(20)
eg

π(Mcx +M
ρ)

(A(Mcx +M
ρ) − (Mcx +

M
ρ)(B(Mcx +M

ρ ,Mcx +M
ρ ,Mcx +M

ρ) −

))

(18)+(21)
egωρπ

π(Mcx +M
ρ)

(M
ρ − M(cx − )cx +

M(cx + )M
ρ − MA(M)(cx + ) +

A(M
ρ)(M(−cx) − M

ρ +M) + M(M(cx −
) − M

ρ)B(Mcx +M
ρ ,M,M

ρ))

(22)
egA(M)dx(Mcx +M

ρ)

πM
ρ

(23)
eg

π(Mcx +M
ρ)

((Mcx +M
ρ)− A(Mcx +M

ρ))

(24)
egωρπ

π(M −M
ρ)

(M − M
ρ − MA(M) +

M
ρA(M

ρ))

Table C.3: Contributions of each Feynman diagram in �gure 7.4 to the form
factor f() in equation (7.20b). (Cont.)
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