
L AT T I C E D E T E R M I N AT I O N O F T H E L E A D I N G
O R D E R H A D R O N I C C O N T R I B U T I O N T O T H E

A N O M A L O U S M A G N E T I C M O M E N T O F T H E M U O N

diplomarbeit im fachbereich physik

benjamin jäger

Institut für Kernphysik
Johannes Gutenberg Universität Mainz

23.09.2010





C O N T E N T S

i introduction 1

1 overview 3

2 lattice qcd 5

2.1 Introduction 5

2.2 Scalar φ4 theory 6

2.3 QCD on the lattice 7

2.4 Wilson fermions 10

2.5 Partially twisted boundary condition 12

2.6 Numerical simulations 13

2.7 Partially quenched calculation 14

3 anomalous magnetic moment of the muon 17

3.1 Experiment 17

3.2 Theory part I: Electromagnetic contribution 18

3.3 Theory part II: Weak contribution 19

3.4 Theory part III: Strong contribution 20

3.5 Comparison between Experiment and Theory 22

ii lattice determination of the hadronic

vacuum polarization 25

4 constructing the vacuum polarization 27

4.1 Lattice setup 28

4.2 Implementation details and test 31

4.3 Extracting aµ 33

4.4 Application of partially twisted boundary condition 35

5 determination of aµ 39

5.1 Numerical and fitting techniques 39

5.2 Fitting the vacuum polarization amplitude Π(q2) 40

5.3 Comparison with chiral perturbation theory 45

5.4 Error estimation 46

6 results 51

6.1 Volume effects 51

6.2 Results for aµ 53

6.3 Chiral extrapolation of aµ 55

6.4 Comparison to other lattice calculations 57

7 summary and outlook 61

a appendix 65

bibliography 77

iii





Part I

I N T R O D U C T I O N





1
O V E RV I E W

The anomalous magnetic moment of the muon aµ ≡ gµ−2
2 is probably one of

the most precisely measured quantities in physics and therefore the object of
high precision experiments and theoretical calculations. Experiments are able to
determine this quantity with high accuracy up to the ppm level, and therefore aµ
is sensitive to physics beyond the Standard Model of Particle Physics (SM). Indeed
aµ shows a disagreement between theoretical predictions and experiments of 3.2
standard derivations. This could be a first sign of new physics, so there are many
efforts to reduce the uncertainties of experiments and theoretical calculations.
Chapter 3 gives an overview of the results from experiments and the prediction
by SM interactions.

This work will consider the hadronic contribution to the anomalous magnetic
moment of the muon resulting from strong interactions, which are described by
Quantum ChromoDynamics (QCD). Since the hadronic contribution to aµ is of
the same order as experimental sensitivity, whether or not the tension of 3.2 σ per-
sist, depends on the accuracy with which this contribution is known theoretically.
Usually the hadronic contribution is determined in a semi-phenomenological
approach, using the experimentally determined cross sections for e+e− →
hadrons. This approach needs an independent theoretical calculation to con-
firm the phenomenological estimate. QCD at a low energy regime cannot be
expanded perturbatively, so other techniques are needed. Lattice QCD is an ab
initio method to treat strong interactions non-perturbatively and has shown to
deliver accurate results for a lot of quantities in physics. A brief introduction
to Lattice QCD, concentrating on topics relevant for this work, is shown in
chapter 2.
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2
L AT T I C E Q C D

Quantum Chromo Dynamics (QCD) has been generally accepted as the theory
describing the strong interactions, one of four fundamental forces in nature. QCD
is a non-Abelian gauge theory with a SU(3)-color-symmetry. The constituents
of this model are the spin-1/2 particles called quarks, and the force-mediating
bosons are called gluons. Quarks occur in 6 different flavors1 with 3 different
colors. These colors can be considered as the charges of QCD. The gluons are
massless bosons which couple to the color. Since gluons carry color and anti-
color, they can couple to themselves. The Lagrangian L of QCD can be formally
written as:

L = −
1

2g20
Tr (FµνFµν) +

∑
f=u,d,s,...

ψ̄f(γµDµ +mf)ψf. (2.1)

The sum in equation (2.1) is performed over all quark flavors ψf. The gluons are
represented by the gauge fields Aµ, which form the field strength tensor Fµν:

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν] , A†µ = Aµ. (2.2)

Because of the non-vanishing commutator in equation (2.2), the field strength
tensor includes self-interaction of the gauge fields. Dµ is the covariant derivative
ensuring local gauge invariance of the Lagrangian:

Dµ = ∂µ +Aµ. (2.3)

In the high-energy regime the coupling becomes weak, so perturbation theory
can be applied. This behavior is referred as asymptotic freedom [1] and its discovery
was rewarded with the 2004 Nobel prize in physics.

In the low-energy regime the coupling increases to the order of 1, so a perturba-
tive expansion in powers of the coupling is useless. In this region the quarks are
said to be confined. Confinement provides an explanation why quarks cannot be
observed as free particles. All possible hadronic states have to be color singlets,
so the simplest combination of quarks are mesons q̄q and baryons qqq. These
combinations form the building blocks for almost every observed particle in
nature.

2.1 introduction

“Lattice QCD is the non-perturbative approach to the gauge theory of the strong interac-
tion through regularized, Euclidean functional integrals. The regularization is based on
a discretization of the QCD action which preserves gauge invariance at all stages.” [2]

1 The quark flavors are: up, down, charm, strange, top, bottom.
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6 lattice qcd

This summary contains all necessary ingredients. The lattice QCD approach is
based on Euclidean functional integral, which allows to construct the theory
from first principles. The input parameters for this theory are the strong coupling
constant and the masses of the quarks. So the lattice approach delivers an ab
initio method treating QCD. The Euclidean metric is obtained by rotating the
time in Minkoswki spacetime to imaginary times (t→ −it), a procedure called
Wick rotation. This ensures that the metric is positive definite gµν = δµν. As
a consequence, there is no difference between a covariant or contravariant
vector. The Euclidean functional integral connects quantum field theory to
statistical mechanics, where it corresponds to a partition function in the canonical
ensemble. This correspondence allows the usage of Monte Carlo integration
schemes to “measure” expectation values of physical observables in the quantum
theory on a computer. To this end spacetime is discretized by introducing a
hypercubic lattice, which makes the measure well-defined, finite and calculable,
so no gauge fixing is needed in order to regularize the theory.

In the following a brief introduction to lattice QCD is shown, following the lines
of [2]2.

2.2 scalar φ4 theory

To keep things simple, a scalar φ4 theory is used to establish the lattice tech-
niques. The action of the model is given by:

SE[φ] =

∫
d4x

(
1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ(x)2 +

λ

4!
φ(x)4

)
. (2.4)

Spacetime is discretized by the introduction of a hypercubic lattice

Λ =
{
x ∈ R4 | x0/a = 1, . . . , T ; xi/a = 1, . . . ,L ; i = 1, . . . , 3

}
. (2.5)

The quantity a is known as the lattice spacing, which is the minimal step in a
time or space direction. So there are T ·L3 lattice sites which form a physical
volume of a4T ·L3. The next step is to quantize the action by introducing a
discrete derivative:

dµφ(x) =
1

a
(φ(x+ aµ̂) −φ(x)) , (2.6)

d∗µφ(x) =
1

a
(φ(x) −φ(x− aµ̂)) . (2.7)

Inserting these discrete derivatives in the action yields:

SE[φ] = a
4
∑
x∈Λ

(
1

2
dµφ(x)dµφ(x) +

1

2
m2φ(x)2 +

λ

4!
φ(x)4

)
. (2.8)

2 A more detailed introduction to lattice QCD can be found in various textbooks [3, 4, 5, 6].
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Here the introduction of the hypercubic lattice Λ changed the integral to a
discrete sum over all lattice sites. The theory is quantized by the functional
integral in the following way:

ZE =

∫
D[φ]e−SE[φ] , D[φ] =

∏
x∈Λ

dφ(x). (2.9)

The introduction of the Euclidean metric changed the oscillating factor eiS to a
peaked weight factor e−S, which can be numerically determined using importance
sampling. The introduction of a hypercubic lattice reduces the functional integral
to a multi-dimensional integration. Correlation functions are now connected to
the Euclidean correlation functions:

〈φ(x1) . . . φ(xn)〉 =
1

ZE

∫
D[φ]φ(x1) . . . φ(xn)e

−SE[φ]. (2.10)

All operators that can be expressed in powers of the field φ, are thus accessible
using equation (2.10).

2.3 qcd on the lattice

From equation (2.1) the continuum action of QCD can be read off:

SQCD =

∫
d4x

−
1

2g20
Tr (FµνFµν) +

∑
f=u,d,s,...

ψ̄f(γµDµ +mf)ψf

 .

(2.11)

The next step is the discretization of the derivative and the integral in equa-
tion (2.11). The naïve replacement of ∂µ → dµ violates the transformation law:

Aµ(x)→ g(x)Aµ(x)g(x)
−1 + g(x)∂µg(x)

−1 , g(x) ∈ SU(3). (2.12)

It is shown below, that a consistent formulation can be achieved using the
parallel transporter instead of the more familiar gauge potential Aµ.

ψ(x) ψ(x+ aµ̂)

Uµ(x)

Figure 1: Graphical representation of the lattice Λ in two dimensions
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The discretization is performed by introducing a hypercubic lattice Λ analogous
to equation (2.5):

Λ =
{
x ∈ R4 | x0/a = 1, . . . , T ; xi/a = 1, . . . ,L ; i = 1, . . . , 3

}
. (2.13)

The fields ψ(x) and ψ̄(x) are associated with the lattice points, whereas the links
variables Uµ are representations of the parallel transporters. Figure 1 shows a
graphical representation of those quantities in two dimensions.

The dual lattice

Λ∗ =

{
p ∈ R4 |p0 =

2π

T
n0 ; pi =

2π

L
ni

}
, (2.14)

can be obtained by a Fourier transformation into momentum space. The inte-
ger n0 is in a range of −T/2, −T/2+ 1, . . . , T/2 and ni respectively −L/2, −L/2+
1, . . . , L/2. Consequently the momentum pµ is quantized as well and limited to
the first Brillouin zone:

−
π

a
6 pµ 6

π

a
. (2.15)

A parallel transporter moves a field from one point y in spacetime to another
point x. Along its way the field absorbs a non-Abelian phase due to the gauge
fields. Formally the transporter is given by:

U(x,y) = P.O. exp

−

x∫
y

dzAµ(z)

 . (2.16)

The path-ordering “P.O.” in equation (2.16) takes into account that QCD is an
non-Abelian gauge theory. The parallel transporter U(x,y) itself is an element
of the gauge group SU(3), whereas the gauge potential Aµ is an element of the
corresponding su(3) algebra. On the lattice the parallel transporter connects
the fermion fields of two neighbouring lattice sites. This leads to the following
definition of Uµ(x):

Uµ(x) := U(x, x+ aµ̂) , Uµ(x)
−1 = U(x+ aµ̂, x) = U(x, x+ aµ̂)−1.

(2.17)

The parallel transporter should transform in a way that the transformation law

Uµ(x)→ g(x)Uµ(x)g(x+ aµ̂)
−1 , g(x),g(x+ aµ̂)−1 ∈ SU(3) (2.18)

persists in order to construct a gauge invariant lattice formulation of QCD. The
transformation law for the fields is given by:

ψ(x)→ g(x)ψ(x) , ψ̄(x)→ ψ̄(x)g(x)−1. (2.19)

Additionally the plaquette

Pµν = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aµ̂)
−1Uν(x)

−1 (2.20)
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is defined as the smallest closed loop on the lattice. Figure 2 shows a graphical
representation of the plaquette in two dimensions. The plaquette is needed to
construct the Wilson plaquette action

SG = β
∑
x∈Λ

∑
µ<ν

(
1−

1

3
Re TrPµν(x)

)
(2.21)

serving as a discretization of the Yang-Mills action. The gauge coupling g0 is
included via the parameter β = 6/g20

Uν(x+ aµ̂)

Uµ(x)

Uν(x)
−1

Uµ(x+ aν̂)
−1

Figure 2: Graphical representation of the plaquette Pµν in two dimensions

Using the parallel transporter Uµ, two discrete versions of the derivative can be
formulated, the forward derivative ∇µ and the backward derivative ∇∗µ:

∇µψ(x) =
1

a
(Uµ(x)ψ(x+ aµ̂) −ψ(x)) , (2.22)

∇∗µψ(x) =
1

a

(
ψ(x) −Uµ(x− aµ̂)

−1ψ(x− aµ̂)
)

. (2.23)

Ideally a discretized Dirac operator D and its Fourier transformed D̃ should
satisfy the following statements:

a) D is local.
Locality is demanded for any quantum field theories describing elementary
particles.

b) D̃(p) = iγµpµ +O(ap2) .
This statement ensures that the correct continuum limit of QCD is obtained.

c) D̃(p) is invertible for p 6= 0.
This property guarantees the correct fermion spectrum. The mass of a
fermion can be evaluated at a pole of the inverse Dirac operator.

d) γ5D+Dγ5 = 0.
If this equation is fulfilled, the massless theory has a chiral symmetry.

The No-Go-Theorem [7] by Nielsen and Ninomiya showed that the discretization
requirements of the lattice actions mentioned above cannot be fulfilled simul-
taneously. So any lattice action will violate at least one of the conditions (a) -
(d).
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The naïve discretization of the Dirac operator

Dnaïve =
1

2
γµ
(
∇µ +∇∗µ

)
(2.24)

turns out to violate condition c). This operator automatically incorporates instead
of one 16 fermions, known as the fermion doubling problem. The Fourier
transformed Dirac operator

D̃naïve = iγµ
1

a
sin(apµ) (2.25)

vanishes for p = 0 as well as for p = π
a , so there are 2 poles to the Dirac operator

in every dimension, in total 24 = 16 poles of the Dirac operator, corresponding
to 16 fermions on the lattice. The freedom to add operators to the action which
vanish in the limit a → 0, allows one to obtain a solution for this problem.
Historically, Wilson [8] was the first who solved the fermion doubling problem
by adding an two derivative term to the naïve Dirac operator. The price to pay
is the loss of chiral symmetry in this discretization. The next section will focus
on this discretization in a more detailed way.

2.4 wilson fermions

The massless Wilson Dirac operator

DW =
1

2
γµ
(
∇µ +∇∗µ

)
+ ar∇∗µ∇µ (2.26)

includes an additional contribution with a free coefficient r, the additional term
vanishes in the limit a→ 0. The Fourier transform of equation (2.26) then solves
the fermion doubling problem, but breaks chiral symmetry explicitly. As can
be seen by the last term, the discretization effects in Wilson fermions are of
order a, whereas the naïve discretization errors would be of order a2. This
issue can be solved by the O(a) improvement program introduced by Symanzik
[9, 10]. Sheikholeslami and Wohlert [11] have shown that O(a) improvement
can be achieved by adding a suitable counter term to the Dirac operator, which
vanishes in the limit a→ 0. This counter term requires an appropriate tuning of
a coefficient cSW for each lattice spacing a. For the massless theory the Dirac
operator

DSW = DW +
ia

4
cSWσµνF̂µν (2.27)

is constructed using a combination of gamma matrices σµν = i
2
[γµ,γν] and the

definition of the field strength tensor on the lattice

F̂µν =
1

8a2
(Qµν(x) −Qνµ(x)) . (2.28)

The quantity Qµν in equation (2.28) is the sum over all 4 plaquettes around
one lattice point. It is called clover-leaf because of the shape of its graphical
representation illustrated in figure 3.
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Figure 3: Graphical representation of the clover-leaf Qµν in two dimensions

The parameters of QCD, the bare coupling g0 and the masses of the quarks,
are redefined in lattice calculations by introducing new parameters β and the
hopping parameter κ in the following way:

β =
6

g20
, (2.29)

κ =
1

2am0 + 8r
. (2.30)

With these definitions the fermionic part of the action for the Wilson fermions
can be written as:

SWF = a
4
∑
x∈Λ

ψ̄(x) (DW +m0)ψ(x)

= a4
∑
x∈Λ

(
−
κ

a

3∑
µ=0

[
ψ̄(x)(r− γµ)Uµ(x)ψ(x+ aµ̂) (2.31)

+ ψ̄(x+ aµ̂)(r+ γµ)Uµ(x)
−1ψ(x)

]
+ ψ̄(x)ψ(x)

)
.

As a consequence of the introduction of the Wilson term, the point where the
quarks mass vanishes is in an interacting theory a priori unknown and has to be
determined. The point denoted by κc, can be evaluated for instance by obtaining
the point where the pion mass vanishes. The bare quark mass and the hopping
parameter are then related by:

m =
1

2a

(
1

κ
−
1

κc

)
. (2.32)

Table 1 shows different actions, which are commonly used in Lattice QCD3,
together with their properties.

3 More details on these different actions can be found in [2, 12, 13, 14, 15, 16, 17].
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action discr. errors chiral symmetry doublers

naïve (2.24) O(a2) preserved 16

Wilson (2.26) O(a) broken none

Wilson + SW (2.27) O(a2) broken none

Staggered [12] O(a2) subgroup unbroken 4

Neuberger [13, 14] O(a2) preserved none

Domain Wall [15] O(a2) broken, exp. suppressed none

Twisted Mass [16] O(a2) broken none

Table 1: Different discretizations and its properties

2.5 partially twisted boundary condition

Due to the finite amount of memory on a computer, the simulation volume
has to be finite, and usually one imposes periodic boundary conditions to the
resulting box:

ψ(x+ L) = ψ(x). (2.33)

The simulation box is aligned to copies of itself. This can be geometrically
interpreted as torus and so boundary effects are minimized. Anyway the effects
of a finite volume have to be studied in every simulation to ensure that the
simulation is reasonably close to the limit of infinite volume. Sachrajda and
Villadoro [18] have proposed to use twisted boundary conditions in lattice
simulations:

ψ(xi + L) = Uiψ(xi). (2.34)

With the generators Ta of the Cartan sub-algebra of the flavor group, the twisted
boundary condition for a simulation can be written in the following way:

ψ(xi + L) = Uiψ(xi) = exp(iθai T
a)ψ(xi) = exp(iΘi)ψ(xi). (2.35)

The quark fields ψ can be redefined according to

ψ(x) = exp
(
i
Θi
L
xi

)
ψ̃(x) (2.36)

such that periodic boundary conditions are automatically fulfilled by the new
fields ψ̃(x). This procedure changes the Dirac operator in a way, in which the
momentum is tuned by the twist angle Θi. Since the twist angle is a contin-
uous variable, the momentum is now not longer discrete and can obtain any
continuous value in the range of [0, 2π] according to:

pi =
2πni
L

+
Θi
L

. (2.37)
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Sachrajda and Villadoro [18] have shown that for hadronic processes which do
not involve final state interactions, twisted boundary conditions can be applied
to the valence quarks only. The sea quarks then remain with periodic boundary
conditions, which avoids the need to generate a new set of gauge configurations.
Using this procedure, called partially twisted boundary condition, may introduce
finite volume effects; Jüttner, Sachrajda and Flynn [19] have demonstrated that
these are suppressed.

2.6 numerical simulations

The expectation value of any operator A, which can be expressed in powers
of the quark fields ψ, the antiquark fields ψ̄ and the link-variables Uµ, can be
evaluated using the functional integral. The expectation value 〈A〉 can be written
as an Euclidean functional integral as

〈A〉 = 1

Z

∫
D[U]D[ψ, ψ̄]Ae−SG[U]e−SF[U,ψ,ψ̄], (2.38)

where SG is the gluonic part of the action and SF the fermionic part of the action.
The integration involves an integration over all degrees of freedom in the fields
ψ and ψ̄ as well as over the gauge group SU(3). The normalizing constant Z can
be obtained by the condition 1 = 〈1〉. The fermionic part of the action is bilinear
in the quark fields and the anti-quark fields, so this part of the integral can be
performed analytically by Grassmann integration

〈A〉 = 1

Z

∫ ∏
x∈Λ

3∏
µ=0

dUµ(x)Ã (detDlat)
Nf e−SG[U], (2.39)

where Ã denotes the operator with the fermionic degrees of freedom integrated
out and Dlat = DW +m0 is the Dirac operator on the lattice. The measure
dUµ(x) is the group invariant Haar measure of the SU(3) gauge group and Nf
corresponds to the number of degenerate quark flavors. This equation can be
generalized to non-degenerate quark flavors, but this work explicitly considers
two degenerate flavors. The expectation value 〈A〉 is a high dimensional integral
and a Monte Carlo integration scheme is applied in order to evaluate this integral.

The first step is to generate a set of gauge configurations. A configuration is a
collection of all link variables on the lattice:

{Uµ(x) | x ∈ Λ , µ = 0, . . . 3}. (2.40)

An ensemble is an infinite set of configurations. For each configuration the
statistical weight is given by:

W = (detDlat)
Nf e−SG[U]. (2.41)

The weight is exponentially suppressed, so it is possible to consider only configu-
rations for which the weight is large. This procedure is called importance sampling.
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Configurations are constructed by generating a Markov chain of configurations
({Uµ(x)}i → {Uµ(x)}i+1). Each one has to be accepted or rejected by a Metropolis
accept-reject step [20], ensuring that the configurations are distributed according
to their statistical weight. In lattice QCD commonly a procedure known as
Hybrid Monte Carlo [21] is applied to generate a Markov chain of configurations.
At first random initial momenta from a Gaussian distribution are chosen. Then
the fields are evolved by integrating the Hamiltonian equations of motions for
a small time step numerically. Afterwards, a Metropolis accept-reject step is
applied to determine whether the configuration is used or discarded.

With a given set of configurations constructed as described above, the expectation
value 〈A〉 can be estimated by the arithmetic mean Ā of an observable Ai over
the gauge configurations:

Ā =
1

Ncfg

Ncfg∑
i=1

Ai. (2.42)

In the limit Ncfg →∞ this estimate reproduces the expectation value exactly,
but due to a finite amount of simulation time, this limit is out of reach. One
therefore has to take the remaining statistical uncertainties into account. A more
detailed discussion will follow in section 5.4.

2.7 partially quenched calculation

In a pure Yang-Mills simulation of QCD, also called quenched simulation, the
fermion determinant detDlat is set to 1, corresponding to a simulation with
no dynamical quarks, Nf = 0. Quenched simulations have been studied in the
past, since the evaluation of the fermion determinant requires much computing
power. The development of faster computers and more efficient algorithms
allowed the use of dynamical quarks in last few years. This work considers
lattice simulations with non-pertubatively O(a) improved Wilson fermions with
two dynamical quarks (Nf = 2). In this case the masses for the quarks in terms
of the hopping parameter κ are the same for sea and valence quarks κsea = κv.

The parameters of lattice simulations, the bare coupling and the quark masses,
can be expressed by renormalized hadronic quantities like hadrons masses or
decay constants. The mass of a generic pseudoscalar meson amPS(m1,m2) is a
function of the free input parameters m1,m2, which corresponds to the mass of
the quark m1 and anti-quark m2 in the pseudoscalar meson. Postulating exact
isospin symmetry, the mass of the up and down quarks can be expressed by
m̂ = 1

2(mu +md). Assuming the lattice spacing a can be calibrated by some
input quantity Q, the value for the light quark masses m̂ is obtained when

mPS(m1,m2)
Q

=
mπ

Q

∣∣∣∣
exp

,m1 = m2 (2.43)
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is matched to the experimental value mπ. Usually the masses are expressed in
terms of the hopping parameter κ shown in equation (2.32).

It is possible to perform a partially quenched (PQ) simulation for instance for the
strange quark by setting the hopping parameter for the valence quark κval to the
hopping parameter of the strange quark κs. This simulation is performed with
a sea of up and down quarks and a quenched valence strange quark. Partially
quenched simulations require the knowledge of the hopping parameter for the
strange quark κs which can be obtained by the data and procedure described
in [22, 23]. Here, the ratio of the masses for a pseudoscalar and vector are
determined for several calculations for some values of κ2:(

mPS(κ̂, κ2)
mV(κ̂, κ2)

)2
=
( mK
mK∗

)2∣∣∣∣
exp

= 0.5542 (2.44)

Plotting these results against the inverse of κ2 should show a straight line and
the value for κs can be determined at the physical ratio

(
mK

mK∗

)2
= 0.5542 which

is for example shown for the D34 ensemble data in figure 4.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.4

( m K m K∗
) 2

1
κ2

(
mK

mK∗

)2∣∣
exp

1
κs

linear interpolation
simulation results for D3 [23]

Figure 4: Determination of κs for D3 ensemble using data from [23]

4 This ensemble is used to illustrate the determination of κs. The corresponding parameters of this
simulation are shown in table 2 in chapter 4.
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A N O M A L O U S M A G N E T I C M O M E N T O F T H E M U O N

The Standard Model of Particle Physics (SM) is highly successful in describing
all known phenomena in strong, weak, and electromagnetic interactions. The
anomalous magnetic moment of the muon

aµ ≡
gµ − 2

2
(3.1)

is one of the quantities in high energy physics that can be measured and calcu-
lated to very high precision and used to test the SM. Indeed, a discrepancy of 3.2
standard derivations occurs between measurements and theoretical predictions.
This discrepancy might be a sign for new physics beyond the SM. The anoma-
lous magnetic moment of the muon is more sensitive to unknown high energy
effects than the electron, because of the relative mass scale aµ/ae ∼ (mµ/me)2.
This ratio could be improved by using the tau lepton instead of the muon, but
due to the very short lifetime of the tau, the measurement is beyond current
experimental possibilities. There are many efforts in order to improve the de-
termination of the magnetic moment of the muon aµ in experiments as well
as in theoretical calculations. A detailed review on this topic can be found in
[24] and the current data is available in a Particle Data Group review [25]. In
the following sections the experimental determination as well as the theoretical
predictions from different interactions are summarized.

3.1 experiment

In principle the experimental determination [26, 24] of the anomalous magnetic
moment of the muon aµ is quite simple. The movement of a highly polarized
muon in a storage ring in a constant magnetic field can be described by the
Larmor Precession. A sketch of the experimental setup is shown in figure 5.

µ−

~p

~s

Figure 5: Systematic sketch of experimental setup showing the precessing muon and its
spin in a storage ring

17



18 anomalous magnetic moment of the muon

The muon performs a circular motion in the storage ring, where the spin of the
muon is precessing along the momentum. The frequency difference ωa between
the angular frequency ωc and the precession of the spin ωs directly contains
the anomalous magnetic moment of the muon aµ:

ωa = ωs −ωc =

(
eB

mµγ
+ aµ

eB

mµ

)
−

eB

mµγ
= aµ

eB

mµ
. (3.2)

To measure the Larmor precession ωa one exploits the fact that the decay of
the muon ( µ− → e−νµν̄e ) is spin polarized. The momentum of the emerging

µ− e−

νµ

ν̄e

Figure 6: Decay pattern of the muon

electron is anti-parallel to the spin of the muon. Figure 6 shows the decay pattern.
The weak interaction causing this decay couples only the left-handed leptons
or right-handed anti-leptons. If the neutrinos are massless, the violation of the
parity (P) prefers that left-handed electrons are emitted. Since the masses of the
neutrinos have been shown to be small, this certainly is a good approximation.
The polarized muon itself is produced by the decay of a boosted pion.

The E821 experiment in Brookhaven [26] has evaluated this quantity with a very
high precision over a few years. The world average for the experimental value
for the muon and anti-muon are:

a
exp
µ+ = 11659204(6)(5) · 10−10, (3.3)

a
exp
µ− = 11659215(8)(3) · 10−10, (3.4)

(3.5)

which show a good agreement. Lepton universality allows to combine these
values to the mean:

a
exp
µ = 11659208.9(5.4)(3.3) · 10−10. (3.6)

3.2 theory part i: electromagnetic contribution

Quantum Electro Dynamics (QED) is the quantum field theory describing the elec-
tromagnetic interaction. For QED it is possible to apply perturbation theory, be-
cause the bare coupling has a value of smaller than one α−1 = 137.035999084(51)
[25]. Since experiments show a precision up to ppm, QED contributions need to
be estimated up to fifth order.

The leading order QED contribution a(1)µ is given by the Feynman diagram
in figure 7. This diagram describes the biggest contribution to the anomalous
magnetic moment of the muon.
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γ

γ

µ−µ−

Figure 7: Lowest order QED contribution

This graph can be evaluated analytically

a
(1)
µ =

α

2π
= 11614097.3289(43) · 10−10, (3.7)

which was done by Schwinger [27] a long time ago. The error takes into account
the uncertainty of input value α and the mass ratios of the different leptons. The
number of Feynman diagrams for higher order perturbations increases expo-
nentially. For the second order this leads to 9 diagrams, the third order involves
72 diagrams. Beyond three loops the diagram appearing in the perturbative
expansion must be evaluated numerically. At four loops there are 891 diagrams.
For the fifth order there are 9080 diagrams. Having computed this contribution
through 4-loops and estimated the fifth order contribution, the summarized
result and the corresponding estimated errors [25] are:

aQEDµ =
α

2π
+ 0.765857410(27)

( α
2π

)2
+ 24.05050964(43)

( α
2π

)3
(3.8)

+ 130.8055(80)
( α
2π

)4
+ 663(20)

( α
2π

)5
+ . . .

The contributions of the electromagnetic interactions up to fifth order sum up
to:

aQEDµ = 11658471.81(2) · 10−10. (3.9)

The contribution from QED determines 99.994% of the theoretical prediction of
aµ, so the weak and strong interaction add small corrections to aµ which will
be discussed in the following sections.

3.3 theory part ii: weak contribution

The weak interaction is mediated by massive W± and Z bosons. These bosons
couple to left-handed fermions and right-handed anti-fermions. The weak in-
teractions allow to change the flavor of a quark and are responsible for the
well known beta decay. Only the weak interactions violate P (parity) and CP
(C:charge conjugation) whereas all other interactions conserve them. The masses
of the bosons are about ∼ 100 GeV/c2, the interaction is weak compared to the
electromagnetic interaction at a low energy scale. The leading order Feynman
diagrams are shown in figure 8.
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γ

µ− µ−

W− W−

νµ Z

γ

µ−µ−

H

γ

µ−µ−

Figure 8: Lowest order weak contribution and hypothetical Higgs boson contribution

The third diagram involves the yet unobserved Higgs boson whose mass and ex-
istence is subject of the current LHC experiments. Nevertheless a lower bound for
the Higgs mass enables an estimate for the contribution of the Higgs boson[25]

aµ(H) < 5 · 10−14, (3.10)

which is actually completely negligible. The other diagrams as well as higher or-
der contribution up to 2-loops can be evaluated and it turns out that the leading
3-loop logarithms are negligible and of O(10−12). The resulting contributions
[25] at one and two loop order are given by:

aweakµ [1− loop] = 19.482(2) · 10−10, (3.11)

aweakµ [2− loop] = −4.07(10)(18) · 10−10. (3.12)

As expected, the resulting summed contribution of the weak interaction [25] is
small but not negligible:

aweakµ = 15.4(1)(2) · 10−10. (3.13)

3.4 theory part iii: strong contribution

As already discussed , the strong interactions are described by QCD. These
interactions show different behavior in a high and low energy regime. At a high
energy scale, the theory becomes asymptotically free, an expansion in terms of
the strong coupling αs is possible. At a low energy scale the coupling grows to
the order of 1, so that a perturbative treatment makes no sense.

had

γ

µ−µ−

γ γ

Figure 9: Lowest order hadronic contribution

In order to extract the hadronic contribution to the anomalous magnetic mo-
ment other techniques than perturbation theory have to be applied. Commonly,
dispersion relation and the optical theorem are used to estimate the leading
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order hadronic contribution shown in figure 9. The dispersion relation can be
derived from causality for the vacuum polarization amplitude Π, which leads
to:

Π(k2) −Π(0) =
k2

π

∞∫
0

ds
ImΠ(s)

s (s− k2 − iε)
, (3.14)

in which
√
s is the center of mass energy and k the momentum transfer. The

optical theorem connects the imaginary part of the vacuum polarization ampli-
tude to the total cross section from e+e− annihilation into hadrons. The optical
theorem is a consequence of unitarity which can be expressed as below:

R(s) =
3s

4παs(s)2
σtot(e

+e− → hadrons), (3.15)

ImΠ(s) =
s

4παs(s)
σtot(e

+e− → hadrons) =
αs(s)

3
R(s). (3.16)

had
γ γ

⇔

had
γ

Figure 10: Optical theorem: Connecting vacuum polarization to hadronic total cross
section

In a high energy regime QCD can be expanded perturbatively, so the calculation
can be cut at an energy scale Ecut in which perturbation theory of QCD is known
to work (Ecut & 2 GeV). The low energy part has to be evaluated using the
experimental data for the cross section introducing experimental uncertainties
to hadronic contribution. The resulting integral is a convolution of the ratio R(s)
and an analytical known function K̃(s):

ahadµ =
(αsmµ
3π

)2E
2
cut∫
m2
π

ds
Rdata(s)K̃(s)

s2
+

∞∫
E2cut

ds
Rper(s)K̃(s)

s2

 , (3.17)

K̃(s) =
3s

m2µ

(
s2

2
(2− s2) +

(1+ s2)(1+ s2)

s2

(
ln(1+ s) − s+

s2

2

)
(3.18)

+
(1+ s)

(1− s)
s2 ln(s)

)
.

Using all available e+e− → hadrons data the leading hadronic contribution to
the anomalous magnetic moment [25] is

ahad
µ = 695.5(4.0)(0.7) · 10−10. (3.19)

The error of the leading order hadronic contribution limits the theoretical pre-
diction. An improvement of this contribution is needed in order to improve the
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error bars of the theoretical calculations.The first error addresses the experimen-
tal uncertainties, whereas the second error involves uncertainties of perturbation
QCD.

Another approach involves the vector spectral functions from the tau decay
(τ→ ντ + hadrons). This decay can be connected to the e+e− → hadrons cross
section by an isospin rotation. Including isospin violation corrections to the tau
decay data, the hadronic contribution [25] changes ahad

µ to :

ahad,τ
µ = 705.3(4.0)(1.9)(0.7) · 10−10. (3.20)

The leading order hadronic contribution to aµ shows a discrepancy between
the approaches using e+e− data or τ decay data. The difference exceeds the
estimated uncertainties. The τ decay approach could underestimate isospin-
breaking effects, but shows a better agreement with the experimental measured
aµ. The e+e− data can be directly related via the dispersion integral and is a
theoretical cleaner estimate.

Higher order O(α3) contribution, including an additional photon line in figure 9,
can be evaluated using the same e+e− data from experiments [25]:

ahad,α3
µ = −9.8(0.1) · 10−10. (3.21)

γ

µ− µ−

γ γγ

µ−

had

Figure 11: Light-by-light scattering contribution

The light-by-light scattering contribution (lbl), which can be seen in figure 11,
enters at an O(α3) level. This can be evaluated by a model-independent approach
using large NC QCD [25] to:

alblµ = 10.5(2.6) · 10−10. (3.22)

3.5 comparison between experiment and theory

Summing up all contributions of different SM interactions leads to a theoretical
prediction for the anomalous magnetic moment of the muon:

atheoµ = 11659183.4(0.2)(4.1)(2.6) · 10−10, (3.23)

aexpµ = 11659208.9(5.4)(3.3) · 10−10, (3.24)

∆aµ = aexpµ − atheoµ = 25.5(6.3)(4.9) · 10−10. (3.25)
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The theoretical prediction can be compared to the result of the experimental
determination and a significant deviation of 3.2 σ between theory and experi-
ment is observed. If the τ data is included in the determination of the hadronic
vacuum polarization, the deviation is reduced to 1.9 σ.

The combined uncertainties from experiments are larger than the combined
theoretical error, where the strong interaction, especially the hadronic vacuum
polarization, is dominant in the theoretical uncertainty. Currently the limitations
for the magnetic moment of the muon are given by the experimental determina-
tion and there are newly proposed experiments at Fermilab [28] and JPARC [29],
which could improve the precision of the experiment by a factor of 4. Reducing
both theoretical and experimental errors is going to show whether the 3.2 σ
deviation remains. If it remains or even increases, the anomalous magnetic
moment of the muon would be one of the first signals for physics beyond the
SM. If not, it would prove the validity of the SM with a very high precision.
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C O N S T R U C T I N G T H E VA C U U M P O L A R I Z AT I O N

In this chapter I will focus on a non-perturbative method to construct the leading
hadronic contribution as shown in figure 12 to aµ1 using lattice gauge theory
techniques.

had

γ

µ−µ−

γ γ

Figure 12: Lowest order hadronic contribution

In this case no other inputs than the physical parameters of QCD are needed,
so it can be considered to be a purely theoretical prediction. In contrast to the
dispersive approach discussed in section 3.4, the simulations using lattice QCD
do not require an experimental input, beyond that which is required to fix the
physical values of the QCD parameters.

There have been already attempts to calculate aµ using different lattice actions.
In the past, groups used the quenched approximation with O(a) improved
Wilson fermions as valence quarks in [31] and domain wall fermions in [32].
In addition, there have been simulations with 2+1 dynamical quarks using
staggered fermions in [33] and 2 flavor twisted mass fermions in [34]. In the
literature there is an ongoing debate on the rooting problem of staggered
fermions [35] using a fourth root trick to get rid of the fermion doubling
problem. In order to understand systematic effects by different discretizations
here a different approach is used to study aµ.

The lattice QCD simulations of this work are done using non-perturbatively
O(a) improved Wilson fermions with two degenerate, dynamical quarks. In
addition partially twisted boundary conditions, discussed in section 2.5 and
4.4, are applied to the computation of the vacuum polarization to achieve an
improvement of the momentum resolution.

1 In the following the hadronic contribution to the anomalous magnetic moment of the muon is
abbreviated by aµ ≡ ahadµ .

27
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4.1 lattice setup

The vacuum polarization amplitude Π(q2) is related to the current-current
correlator via:

Πµν(q) = i

∫
d4xeiqx

〈
Jem
µ (x)Jem

ν (0)
〉
=
(
qµqν − q

2gµν
)
Π(q2). (4.1)

The charges for the different quark flavors zf can be separated by redefining
the electromagnetic vector currents Jem

µ (x) =
∑
f zfJ

f
µ(x). The correlator needed

for equation (4.1) can be split up into two separate parts shown in figure 13, a
connected part and a disconnected part.

(a) (b)

Figure 13: Two possible Wick contractions for the vacuum polarization:
(a) connected diagram, (b) disconnected diagram

Imposing isospin symmetry for up and down quark, the new vector current
Jµ(x) ≡ Juµ(x) = Jdµ(x) is the same for both quark types and therefore the vacuum
polarization as well. In the following the connected diagram of figure 13 (a)

is studied using lattice simulations. The disconnected diagram as shown in
figure 13 (b) is more difficult to evaluate in lattice simulations, since it requires
propagators from all lattice points to all others. This disconnected diagram is
not the subject of this work and has been estimated by Jüttner and Della Morte
[36] using two flavor chiral perturbation theory to reduce the connected diagram
by 10%.

As mentioned before Wilson fermions break chiral symmetry explicitly. This
has the consequence that the vector current ψ̄γµψ is not conserved. It can be
renormalized in order to fulfill ∂µJren

µ = 0, but this requires a renormalizing
factor, which has to be determined independently. Here instead the point-
split vector current is used, which is conserved and requires no renormalizing
constant. The Noether theorem connects symmetries to conserved quantities.
Since the lattice action is invariant under gauge transformations, the Noether
theorem implies a conserved current connected to that symmetry. Following [37]
this current can be obtained by an infinitesimal, unitary, local transformation

ψ̄ ′ = ψ̄ (1− iε(x)) , (4.2)

ψ ′ = ψ (1+ iε(x))

up to second order in the infinitesimal parameter ε(x) on the Wilson fermion ac-
tion SWF. The lattice action SWF shown in equation (2.31) and as a result the par-
tition function Z should be invariant under the transformations in equation (4.2).
For simplicity we consider expectations values with respect to fermionic degrees
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of freedom only. Gauge invariance ensures that the partition function is given
by:

Z =

∫
D[ψ, ψ̄]e−S

(
1− i

∑
x∈Λ

(
∂S

∂ψ(x)
ε(x)ψ(x) − ψ̄(x)ε(x)

∂S

∂ψ̄(x)

))
. (4.3)

So all additional terms in ε(x) should vanish, implying

〈∇µJµ(x)〉ψ̄ψ =

〈
∂S

∂ψ(x)
ε(x)ψ(x) − ψ̄(x)ε(x)

∂S

∂ψ̄(x)

〉
ψ̄ψ

= 0, (4.4)

from which the conserved vector current

Jµ(x) =
1

2

(
ψ̄(x+ aµ̂)(r+ γµ)U

+
µ (x)ψ(x) − ψ̄(x)(r− γµ)Uµ(x)ψ(x+ aµ̂)

)
(4.5)

can be extracted, setting ε(x) to δxy. The vector current Jµ is anti-Hermitian due
to the properties of the γ-matrices:

J†µ(x) = −Jµ(x). (4.6)

In non-forward matrix elements, like the vacuum polarization amplitude, the
point-split vector current is accurate up to O(a). In momentum space equa-
tion (4.4) transforms to:

2

a
sin
(qµa
2

)∑
n

eiqna+iqaµ̂/2 〈Jµ(x)〉ψ̄ψ = 0 (4.7)

Introducing the momentum variable:

q̂µ =
2

a
sin
(qµa
2

)
(4.8)

on the lattice and the Fourier transformed vector current∑
n

eiqna+iqa
µ̂/2 〈Jµ(x)〉ψ̄ψ = 〈Jµ(q)〉ψ̄ψ , (4.9)

equation (4.7), the Ward-Takahashi identity [38, 39] for the vector current, can
be written as:

q̂µ 〈Jµ(q)〉ψ̄ψ = 0 (4.10)

To derive the vacuum polarization, the expectation value of an operator 〈A〉ψ̄ψ,
which is a function of the fields ψ, ψ̄ and U, is expanded using the transforma-
tions in equation (4.2). Since the vacuum polarization is the expectation value
of two vector currents, the operator A is set to the vector current Jν. Again one
demands that all terms linear in ε(x) vanish, and setting ε(x) to δxy leads to:

〈Jν(y)∇µJµ(x)〉ψ̄ψ +

〈
∂Jν

∂ψ(x)
ψ(x) − ψ̄(x)

∂Jν

∂ψ̄(x)

〉
ψ̄ψ

= 0. (4.11)
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Using the definition

J
(2)
µ (x) =

a

2

(
ψ̄(x+ aµ̂)(r+ γµ)U

+
µ (x)ψ(x) + ψ̄(x)(r− γµ)Uµ(x)ψ(x+ aµ̂)

)
(4.12)

this can be condensed to:

〈Jµ(y)∇νJν(x)〉ψ̄ψ +
〈
J(2)(x)ν

〉
ψ̄ψ

δxyδµν = 0. (4.13)

A Fourier transformation of equation (4.13) allows one to obtain the vacuum
polarization tensor

Πµν(q̂) = Π
(1)
µν(q̂) +Π

(2)
µν(q̂), (4.14)

where

Π
(1)
µν(q̂) =

a4

T ·L3
∑
x,y∈Λ

eiq̂x−iq̂y+iq̂aµ̂/2−iq̂aν̂2 〈Jµ(y)Jν(x)〉 , (4.15)

Π
(2)
µν(q̂) = −

a4

T ·L3
∑
x,y∈Λ

eiq̂x−iq̂y
〈
J
(2)
µ (x)

〉
δxyδµν. (4.16)

The coefficients in equations (4.15) and (4.16) are chosen to reproduce the correct
continuum limit. The expectation values in equations (4.15) and (4.16) involve all
degrees of freedom ψ, ψ̄ and U. The first part Π(1)

µν(q̂) of the vacuum polarization
corresponds to the diagram (a) in figure 14, while the second part is illustrated
in diagram (b), which vanishes in the continuum theory.

µ ν

(a)

µν

(b)

Figure 14: Contribution to the vacuum polarization tensor:
(a) corresponding to Π(1)

µν , (b) depicting Π(2)
µν

Translation invariance in the gauge average allows one to perform a variable
substitution x̃ = x− y, ỹ = y− y = 0 reducing the number of inversions of the
propagator from T ·L3 to five. In the end the vacuum polarization can be written
as:

Π
(1)
µν(q̂) = a

4
∑
x̃∈Λ

eiq̂(x̃+aµ̂/2−aν̂/2) 〈Jµ(x̃)Jν(0)〉 (4.17)

Π
(2)
µν(q̂) = −a4

〈
J
(2)
µ (0)

〉
δµν (4.18)

With these definitions the Ward-Takahashi identities

〈q̂µΠµν(q̂)〉 = 〈q̂νΠµν(q̂)〉 = 0 (4.19)

are fulfilled. These identities are conserved in the gauge average, because of the
use of translation invariance.
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Using the γ5-hermicity of the Wilson-Dirac operator, the two parts of the vacuum
polarization tensor Πµν can be written in terms of the quark propagator

S(y, x) = γ5S†(x,y)γ5, (4.20)

and the gauge links Uµ(x):

Π
(1)
µν(q̂) =

a4

4

∑
x∈Λ

eiq̂(x+aµ̂/2−aν̂/2) Tr
[

(r+ γν)U
†
ν(0)γ5S

†(x+ aµ̂, 0)γ5(r+ γµ)U†µ(x)S(x,aν̂)

− (r− γν)Uν(0)γ5S
†(x+ aµ̂,aν̂)γ5(r+ γµ)U†µ(x)S(x, 0) (4.21)

− (r+ γν)U
†
ν(0)γ5S

†(x, 0)γ5(r− γµ)Uµ(x)S(x+ aµ̂,aν̂)

+ (r− γν)Uν(0)γ5S
†(x,aν̂)γ5(r− γµ)Uµ(x)S(x+ aµ̂, 0)

]
,

Π
(2)
µν(q̂) =

a

2
δµν Tr

[
(1+ γν)U

†
ν(0)S(0,aν̂) + (1+ γν)Uν(0)S

†
ν(0,aν̂)

]
.

(4.22)

The quark propagator S(y, x) starting from a fixed point x can be obtained
by a numerical inversion of the Wilson-Dirac operator using for instance the
conjugate-gradient algorithm [40]. In order to measure the quantities in equa-
tion (4.21) on the lattice, one needs at least five inversions with sources located
at 0,aê0,aê1,aê2 and aê3.

Having computed the vacuum polarization tensor Πµν(q) on the lattice by
equations (4.21) and (4.22), the vacuum polarization Π(q2) can be extracted as

Π(q̂2) =

3∑
µ,ν=0

Πµν(q̂)

q̂µq̂ν − δµνq̂2
(4.23)

by contracting both indices µ and ν. In addition contributions with a denomina-
tor of zero are not measurable and left out. Before discussing the methods to
determine the function Π(q2), simulation details and tests of the implementation
are presented.

4.2 implementation details and test

The implementation uses Wilson fermions with two mass-degenerate quarks.
The discretization errors have been improved by the Sheikholeslami-Wohlert
term [11] to achieve an O(a2) lattice formulation. The input parameter for the
calculations are the inverse bare coupling β = 5.3 and the hopping parameter
κ connected to the quark masses. csw = 1.90952 has been tuned appropriately
according to [41] to ensure O(a) improvement of spectral quantities. The simu-
lation code is based on the DD-HMC algorithm developed by Lüscher [42]. This
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algorithm combines the ideas of domain decomposition and deflation2 with the
Hybrid Monte Carlo algorithm shown in 2.6. The calculation of the vacuum
polarizations tensor is integrated into the measure code developed by us.

run κsea volume L [fm] Ncfg mπ [MeV] κs

D2 0.13590 48 · 243 1.7 149 704.8(2.6) 0.13632

D3 0.13610 48 · 243 1.7 168 552.5(3.4) 0.13605

D4 0.13620 48 · 243 1.7 168 485.4(4.0) 0.13591

D5 0.13625 48 · 243 1.7 169 429.3(4.3) 0.13574

E2 0.13590 64 · 323 2.2 158 696.5(0.9) 0.13632

E3 0.13605 64 · 323 2.2 156 593.4(1.1) 0.13609

E4 0.13610 64 · 323 2.2 162 554.2(1.1) 0.13605

E5 0.13625 64 · 323 2.2 168 414.4(1.4) 0.13574

F6 0.13635 96 · 483 3.3 200 297.9(0.9) 0.13575

Table 2: Parameters for the different runs and results for mπ and κs

Table 2 shows the run parameters of the simulations as well as corresponding
pion mass mπ and hopping parameter of the strange quarks κs, which is needed
for the partially quenched simulation with Nf = 2+ 1. For all simulations a
lattice spacing of a = 0.0689 [45] has been used. This value has been obtained
by an appropriate rescaling of the lattice spacing for β = 5.5 ensembles using
the hadronic radius. The scale for β = 5.5 ensembles has been determined using
the mass of the Ω− baryon. Nevertheless a scale determination for β = 5.3
is currently investigated by us. The pion masses for the E and F ensembles
also have been determined in this study. The pion masses for the D ensembles
are obtained from [22]. The values for κs have been evaluated as shown in
section 2.7.

In order to identify implementation errors of the vacuum polarization tensor,
several tests can be performed. The lattice formulation itself ensures gauge
invariance, so a random gauge transformation g(x),g(x+ aµ̂)−1 can be applied:

Uµ(x)→ g(x)Uµ(x)g(x+ aµ̂)
−1 , g(x),g(x+ aµ̂)−1 ∈ SU(3). (4.24)

This transformation should leave the vacuum polarization tensor invariant up
to numerical precision and the test shows that this is fulfilled.

An additional test is to check the imaginary part of the vacuum polarization
tensor. The definition of the vacuum polarization tensor, equation (4.1), includes
an expectation value of two vector currents. This expectation value should be

2 Details on the implementation of the DD-HMC and its acceleration techniques are shown in
[43, 42, 44]
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real, since the operators Jµ(x)Jν(0) and J
(2)
µ (x) are self-adjoined. Indeed the

imaginary part vanishes up to numerical precision.

The Ward-Takahashi identities

〈q̂µΠµν(q̂)〉 = 〈q̂νΠµν(q̂)〉 = 0 (4.25)

also serve as a check. This identity is valid for all possible combinations of
momentum and indices µ and ν. This relation has been checked for a few
combinations of momentum and indices.

4.3 extracting aµ

Having computed the vacuum polarization tensor Πµν(q) for different en-
sembles the next step is the calculation of the vacuum polarization Π(q2) via
equation (4.23). Starting from the vacuum polarization Π(q2), it is in principle
quite simple to write down the hadronic contribution to the anomalous magnetic
moment of the muon aµ by a convolution integral [32]:

ahad
µ =

α2

3π2

∑
f

z2f

∞∫
0

dq2

q2
12π2 F(q2)

(
Π(0) −Π(q2)

)
. (4.26)

The kernel

F(q2) =

(
4m2

µ

q2

)2
(
1+

√
1+

4m2
µ

q2

)4√
1+

4m2
µ

q2

(4.27)

depends on the mass of the muon mµ and the momentum transfer q2. This
kernel is peaked below the mass of the muon mµ = 105.658367(4)MeV2/c2 [46]
as shown in figure 15 and it suppresses large momentum contributions to the
anomalous magnetic moment aµ. Figure 15 shows a plot of the kernel F(q2)
scaled logarithmically in the momentum q2.

An example for the simulation results for the vacuum polarization Π(q2) for the
E4 ensemble is shown in figure 16 plotted against the momentum transfer q2.
Since equation (4.26) needs the vacuum polarization at zero momentum transfer,
the intercept Π(0) is essential to determinate aµ. The limiting factor for the
accuracy of lattice estimates for aµ is the ability to constrain the low-momentum
region.

The basic idea is to fit the vacuum polarization amplitude to an analytic function
and use this function to extract aµ by integrating equation (4.26) numerically.
These functions are expected not to contain singularities, so the numerical
integration is straightforward.
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Figure 15: Plot of the kernel function F(q2) of the equation (4.26).
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Figure 16: Simulation results for Π(q2) on the E4 ensemble with 162 configurations

For further discussions the quantity Π̂(q2) is defined as:

Π̂(q2) = Π(0) −Π(q2). (4.28)

The charge factor

z =
∑
f

z2f (4.29)

is measured in multiples of the elementary QED charge e and factorizes the
charges of the quarks in equation (4.26).
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4.4 application of partially twisted boundary condition

Partially twisted boundary condition (bc) is one of the major features of this
diploma thesis, since it allows one to gain control over the momentum depen-
dence of the vacuum polarization amplitude.

The twist of a quark and an anti-quark in flavor neutral hadron in the same
way would lead to a net twisted momentum of pi = 2πni

L + Θi−Θi
L = 2πni

L , thus
a trick is used for the computations. The vacuum polarization tensor Πµν(q)
is the correlation of two electromagnetic vector currents in equation (4.1). Lets
assume for simplicity that the electromagnetic vector current is given by the
local current:

Jµ(x) = ψ̄(x)γµψ(x). (4.30)

It is straightforward to apply these considerations to the general case in sec-
tion 4.1. Using this definition of the vector current, the vacuum polarization
tensor can be written as:

Π
(1)
µν(q̂) = a

4
∑
x∈Λ

eiq̂x 〈Jµ(x)Jν(0)〉 . (4.31)

The second part of the vacuum polarization tensor Π(2)
µν(q̂) involves the calcu-

lation of one propagator, so the twist cancels here anyway. So the contractions
need the evaluation of the two propagators. A twist of those propagators in
the same way leads to a vanishing net twisting angle as mentioned before. The
electromagnetic current is per definition a flavor-diagonal quantity causing a
net twist Θi = 0. Imposing iso-spin symmetry in the two-flavor theory allows
one to re-interpret the contribution

Π
(1)
µν(q̂) = a

4
∑
x∈Λ

eiq̂x
〈
Tr ψ̄(x)γµψ(x)ψ̄(0)γνψ(0)

〉
= a4

∑
x∈Λ

eiq̂x
〈
Tr ū(x)γµd(x)d̄(0)γνu(0)

〉
, (4.32)

as a flavor-non-diagonal quantity, for which twisted bondary conditions have a
non-trivial effect. The contractions now contain the evaluation of two different
propagators, so for instance the up quark propagator can be twisted, where as
the down quark propagator remains untwisted.

Going towards zero momentum the precision of the vacuum polarization Π(q2)
decreases, since its denominator is the combination of the momenta squared
and constant precission for the vacuum polarization is assumed. The application
of partially twisted boundary condition can move data points closer to q2 = 0,
it also lifts the degeneracy of positive and negative momentum. All momenta
are shifted by the transformation. It turns out that the signal obtained with a
twist angle that shifts the lowest momentum by about 30% towards zero still
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Figure 17: Effect of partial twisted boundary condition on E4 ensemble

has reasonable error bars. Also the degeneracy arranges the momenta in a way
that former gaps are filled with data points.

Figure 17 shows the result of the application of partially twisted boundary
conditions on the vacuum polarization for E4 ensemble. These additional points
reveal more details of the curvature of the vacuum polarization. This may assist
the fits which are needed for the extraction of aµ. To what extent the additional
points increase the accuracy and confidence of lattice results for ahad

µ will be
analyses in section 6.2.

Having fitted a suitable function to the data, the complete integrand of equa-
tion (4.26) is shown in figure 18. Here the momentum is plotted on a logarithmic
scale. The peak region of the integrand is not directly reachable with lattice tech-
niques, but partially twisted boundary conditions help to reach lower momenta
and give a better control on the systematic effects of the extrapolation in q2.
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5
D E T E R M I N AT I O N O F aµ

To determine aµ, a reliable functional representation of the q2-dependence
is required to describe the vacuum polarization amplitude Π(q2) in order to
integrate equation (4.26) to obtain its the contribution to the anomalous magnetic
moment aµ. Therefore different types of functions should be considered: Model-
independent functions, such as polynomials and Padé approximations, and
physically motivated functions. Since the behavior of the vacuum polarization is
not known for low momentum transfer, model-independent functions also serve
as an approximation. These function show no model dependence, but that does
not imply that there are no ambiguities, as different choices of fit functions may
produce different results. Estimators motivated by physics can be obtained from
effective field theories like chiral perturbation theory or continuum perturbation
theory.

5.1 numerical and fitting techniques

In a least-squares fit the quantity χ2 is defined as:

χ2 =

n∑
i=1

(f(α, xi) − yi)
2

σ2i
. (5.1)

Given the set of n data points xi,yi and its errors σi, χ2 has to be minimized
with respect to the m parameters α of the fit function f. If the data points can
be considered to be statistically independent, an uncorrelated fit should be
performed using equation (5.1).

If the data points are not statically independent, they show a correlation among
themselves which is reflected by the covariance matrix C. In this case the χ2 can
be written in a more general way as:

χ2 =

n∑
i=1

n∑
j=1

(f(α, xi) − yi)C−1
ij

(
f(α, xj) − yj

)
. (5.2)

The quantity χ2red is obtained by dividing the χ2 by the numbers of degrees of
freedom n−m. In a perfect normal distributed case the χ2red should have an
expectation value of 1. If the χ2red is far bigger than 1, the data is not described
well by the fit function. For the case of χ2red far smaller than 1, the fitted function
describes the data better than expected by statistics.

One crucial problem is the minimization of χ2, since depending on the fit
function this is a non-linear minimization problem, which may contain many

39
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local minima. So an efficient minimization algorithm is needed to obtain the
global minimum. The Levenberg-Marquardt-algorithm [47] has shown to produce
stable results compared to different minimization algorithms like random search
or simulated annealing [48] in the framework Mathematica by Wolfram Re-
search [49]. The Levenberg-Marquardt-algorithm has been integrated into the fit
programs by me.

For all fits Singular Value Decomposition [50] of the covariance matrix has been
applied. Singular Value Decomposition allows to factorize a (n,m)-matrix A in
the following form:

A = UΣV∗. (5.3)

The matrices U and V are unitary (m,m)- and (n,n)-matrices. The matrix Σ is a
diagonal (m,n)-matrix with sorted l non-vanishing singular values σ1 > . . . > σl
on the diagonal. If the matrix A is a positive definite (n,n)- matrix, it can be
inverted via

A−1 = V Σ−1U∗, (5.4)

where Σ−1 is a diagonal matrix with the reciprocal singular values 1
σ1
. . . 1σn

on its diagonal. This procedure is used to invert the covariance matrix, which
is needed for the calculation of χ2. The covariance matrix is by definition a
positive definite (n,n)-matrix, so the singular value decomposition is applicable.
Using the singular values, the condition number κ = σ1

σn
of a matrix, which

estimates numerical instabilities, is constructed in a simple way. The estimated
covariance matrix for the simulation data shows in some cases a condition
number greater than 109 causing numerical difficulties when being inverted.
Data points producing singular values five orders of magnitudes smaller than
the biggest singular value σi < 10−5 ·σ1 are eliminated by setting the inverse
singular value to zero. So numerical errors are avoided and the covariance matrix
is thinned out to reduce the dimensionality of the minimization problem for χ2.
Otherwise the minimization fails frequently. In order to have fits which describe
the data, this thin out method using SVD is mandatory and applied to all data
sets.

5.2 fitting the vacuum polarization amplitude Π(q2)

An approach to extract the vacuum polarization can be obtained by a cubic spline
to the data. By construction the cubic spline produces a two times continuously
differentiable function, which can be used to extract the contribution to aµ.
Since the value at zero momentum is needed a fit has to be performed anyway.
Nevertheless, a spline is known to work well for interpolations but not for
extrapolations.
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Figure 19: Cubic spline to E4 ensemble

Figure 19 shows an example of a cubic spline applied to the E4 ensemble. Obvi-
ously the spline fails to produce a reasonable value for the magnetic moment
as expected. The reason is seen in the low momentum region in which the
spline turns down leading to a negative value for aµ. Also for other ensembles
this splines approach does not produce reasonable values. The cubic spline
demonstrates that any direct numerical integration of the vacuum polarization
amplitude is not sufficient to obtain aµ.

In the following four different approaches to determine the q2 dependency will
be compared. In order to test the stability of the fits, different fit intervals have
been used for the fits. Varying the intervals corresponds to the variation of the
degrees of freedom in χ2.

A simple ansatz for the fit is a polynomial in q2. A general polynomial is of the
form

f(x = q2) =

m∑
i=0

ai x
i, (5.5)

where ai are the free parameters of this ansatz. Tests show that polynomials
seem to undershoot the region of low momentum which is essential for the deter-
mination of aµ. Also outside the fitting interval, especially for large momentum,
the function does not describe the data at all, which can be seen in figure 20.
Indeed it is well-known that polynomial fits are more suited to interpolate data
than extrapolate values. As an illustration, the fits and the results for aµ are
shown in the corresponding figures. The integration, needed to extract aµ shown
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Figure 20: Polynomial of order 4 fit on E4 for different intervals

in equation (4.26), can be performed here in the fitting interval exclusively. Since
the fits over different intervals produce a wide range of results for aµ and the
extrapolation shows a trend to smaller values as the interval length increases,
this ansatz is discarded.

Aubin and Blum [33] showed the dominance of a tree-level vector contribution
in the vacuum polarization Π(q2). This could serve as an ansatz for a fit function,
with the vector mass mV and its decay constant fV as free parameters:

f(q2) =
α

3π

(4πfV)
2

q2 +m2V
+C. (5.6)

The fits to the vector dominance model are shown in figure 21. These show
similar problems as the polynomial fits and exhibit a trend to smaller values of
aµ when increasing the fit intervals. Here the problem might be the relatively
small number of parameters. If the fit interval is increased the vector dominance
curve reduces in the low momentum region, which can be seen in figure 21.

A completely different approach is to postulate a simple model for the dispersion
relation R(s) and to obtain a function for the vacuum polarization using the
optical theorem discussed in section 3.4. Such a model has been introduced by
Göckeler in [31]. In the expression

R(s) = Aδ(s−m2V) +BΘ(s− s0) (5.7)
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Figure 21: Vector dominance fit on E4 for different intervals

a δ peak models the vector resonance and a Heaviside function the threshold for
the production of hadrons. Inserting this into equation (3.14) and performing
the integration in equation (3.15) leads to a functional form like:

f(q2) = B ln
(
q2 + s0

)
−

A

q2 +m2V
+C. (5.8)

The combination of logarithmic and rational parts result in a highly non-linear
function, including also the vector dominance model. In total there are five free
parameters B, s0,A,mV ,C to be determined. Figure 22 show the result of three
different fits to the dispersion relation motivated fit function in equation (5.8)
for variable fit intervals. The tendency for the estimate of aµ to decrease with
increasing q2-interval is reduced.

In order to compare the results of the fit motivated by the dispersion relation,
a different set of function with comparable properties is needed. A model
independent approximation known to work well for extrapolations is obtained
by the Padé-Approximation, a ratio of two polynomials of order n and order m:

f(x = q2) =

a0 +
n∑
i=1

ai x
i

m∑
i=1

bi xi
. (5.9)

Since the definition (5.9) contains singularities in the first quadrant, it is useful
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Figure 22: Dispersion relation motivated fit on E4 for different intervals
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Figure 23: Padé fit with n = 3 and m = 2 to E4 for different intervals

to rewrite the polynomials in a different form in order to avoid singularities.
The new basis for the fits is

f(x = q2) =

c0
n∏
i=1

(x+ c2i )

m∏
i=1

(x+ d2i )

, (5.10)
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where the ci,di are free parameters of this ansatz. This function again is non-
linear and therefore the Levenberg-Marquardt algorithm is applied to perform
the fits. As expected the Padé fits reproduce similar results as the dispersion
relations shown in figure 23. Here the behavior of the data is reflected by the
function even outside the fit range.
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Figure 24: Padé fit with n = 3 and m = 2 to E4 without reducing the covariance matrix
using Singular Value Decomposition based thinning out method.

Figure 24 shows a Padé-fit, exactly with the same initial conditions for the fit in
figure 23, but without the use of the thinning method based on Singular Value
Decomposition discussed in 5.1. As it can be seen in figure 24, the fitting proce-
dure fails to deliver a good description of the data. Correlated fits frequently
show the problem of missing a good description of the data. SVD is crucial for
an accurate and reliable modelling of the q2-dependence.

5.3 comparison with chiral perturbation theory

Another approach to obtain the vacuum polarization, which does not require
any lattice data, is to use chiral perturbation theory. Here the masses of the
heavy quarks charm, bottom and top are fixed to infinity and the theory can
be expanded around the chiral limit of exactly massless up, down and strange
quarks. The vacuum polarization can be evaluated in this approach, which
has been done by Golowich and Kambor [51] up to 1-loop contributions. This
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formula has been adapted to address the connected diagram in figure 13 (a) by
Jüttner and Della Morte [36]. The resulting formula for the vacuum polarization

Π̂(q2) =
10

9

1

4π2

√
1+

4m2π
q2

ln


√
1+ 4m2

π

q2
+ 1√

1+ 4m2
π

q2
− 1

− 2

 (5.11)

contains no free parameters and is shown in figure 25 together with the sim-
ulation data for E4. Since here the vacuum polarization Π(q2) is plotted and
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Figure 25: Comparison of chiral pertubation theory for the vacuum polarization with
the lattice data from the F6 ensemble

not the difference Π(0) − Π(q2) an additional constant is needed, which has
been matched to an intermediate data point of F6. The F6 ensemble is lightest
ensemble studied in this work corresponding to a pion mass of 297.9MeV .
The chiral perturbation curve does not describe the simulation data in the low
and high momentum region. The obtained result for the anomalous magnetic
moment aµ consequently does not compare to the results determined by fits.
Lattice artefacts and a relative heavy pion mass can be considered to deliver an
explanation for the mismatch. The chiral perturbation theory treats masses as a
small perturbation, which might not be fulfilled for a pion twice as heavy as in
nature.

5.4 error estimation

The hadronic contribution to the anomalous magnetic moment aµ can be deter-
mined in a few steps. The first step is to determine Π̂(q2) from a fit as described
in the previous section. The result is multiplied by the kernel F(q2), shown
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in equation (4.27), to obtain the integrand. The next step is to evaluate the
convolution integral in equation (4.26) to obtain aµ using numerical integra-
tion. This work uses the QAG adaptive integration of the GNU Scientific Library
[53, 54]. Since the main contributions come from the low momentum region, an
integration algorithm that samples this important region with more details is
needed. The algorithm from the GNU Scientific Library is an adaptive algorithm
which decomposes the integration interval into several smaller intervals, con-
centrating on the important low-momentum part. The error of the numerical
integration is chosen to be below 10−4, so its contribution to the error can be
completely neglected. The results have been in several cases cross-checked with
the numerical integration routine of Mathematica. Although the fits show a stable
behavior in the region in which data points occur, those fits can be completely
wrong in a momentum range outside the data points due to the extrapolation
and as discussed in the previous chapter. The integral is truncated at a value,
so that the contribution for aµ is estimated accurately enough. The integration
interval is chosen to include all data points for the different ensembles. This
means for the D ensembles the momentum is integrated up to 6.5GeV2, the E
ensembles up to 3.5GeV2 and the F ensemble up to 2.0GeV2. A systematic error
arises from the truncation of the integration interval which has been roughly
estimated by using a constant for Π̂(q2 > q2cut). Here the first data point of the
lightest ensemble is used for the estimation of this constant. This should limit
the error to its upper bound:

aµ[q
2 > 2.0GeV2] 6 3 · 10−10,

aµ[q
2 > 3.5GeV2] 6 1 · 10−10, (5.12)

aµ[q
2 > 6.5GeV2] 6 3 · 10−11.

To estimate the statistical error of the contribution to the anomalous magnetic
moment aµ the Jackknife error procedure [55, 43] is applied. The Jackknife
method is a statistical re-sampling method which allows to estimate a statistical
error and the covariance matrix on a data set. A Jackknife-sample

zβ,i =
1

Ncfg − 1

Ncfg∑
α=1,α6=β

yα,i (5.13)

is obtained by removing one configuration from the determination of the gauge
average of a quantity. In general more than one configuration can be removed
to construct a Jackknife sample, but here a single-elimination Jackknife is used
to obtain the gauge average and its statistical error. Assuming there are Ncfg
configurations for the gauge average formulated with Greek indices and n data



48 determination of aµ

points for a quantity y shown in Latin indices, the gauge average and the error
of a data point i can be calculated by:

z̄i =
1

Ncfg

Ncfg∑
α=1

yα,i, (5.14)

σ2i =
Ncfg − 1

Ncfg

Ncfg∑
β=1

(
zβ,i − z̄i

)2 . (5.15)

The covariance matrix Cij is obtained by

Cij =
Ncfg − 1

Ncfg

Ncfg∑
β=1

(
zβ,i − z̄i

)
·
(
zβ,j − z̄j

)
. (5.16)

The factor Ncfg−1Ncfg
takes the reuse of data-samples into account. This covariance

matrix is used to perform a correlated fit, using the definition of χ2 in equa-
tion (5.2). A fit for each Jackknife sample is performed and used to obtain one
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Figure 26: Padé fits n = 3, m = 2 to E4 ensemble for all Jackkife-samples

value for aµ using equation (4.26). A narrow blue band in figure 26 represents
fits to the entire set of 162 Jackknife samples. Since the deviations are that small,
the resulting statistical Jackknife error is tiny. For the E4 ensemble and a fit
range of 0.0− 3.5GeV2 this procedure results in:

aµ[0.0− 3.5GeV2,E4] = 246.92(0.09) · 10−10. (5.17)

There are two types of errors: statistical and systematic errors. The statistical
errors, estimated by a Jackknife procedure, cover the statistical fluctuations in
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the data points relevant for the fits. A systematic error has been introduced by
the truncation of the integral necessary for the determination of aµ. In addition
different fit function and intervals show various results. The systematic uncer-
tainty of aµ can be estimated by the spread of different fit functions and degrees
of freedom. After sorting the results, the spread of the central 68% estimates
the systematic uncertainty. In this way outliers are not overestimated. These
systematic effects dominate the estimation of the error on aµ. The statistical
uncertainty can be neglected compared to the estimated systematic uncertainty.
On top of that, there are inherent systematic errors of the lattice approach, like
finite volume and finite lattice spacing just to mention a few examples, which
have to be studied in detail.
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R E S U LT S

In this chapter the results for aµ on the studied β = 5.3 ensembles are shown.
The necessary fits describing the q2-dependence have been performed using the
techniques from the previous chapter. At first ensembles with different volumes
are studied in order to identify volume effects. After presenting the result for aµ,
the chiral extrapolation to the physical value for mπ is performed. In addition
a comparison to other lattice simulations is shown in the last section of this
chapter.

6.1 volume effects

Volume effects are the result of simulations in a finite box with periodic boundary
conditions due to correlations between two points. These volume effects are
expected to increase for smaller values of mπL. There are three sets of ensembles
D2↔ E2, D3↔ E4 and D5↔ E5, which have the same input parameter κ and
β but different volumes L = 1.7 fm ↔ L = 2.2 fm. These ensembles allow to
study volume effects on the vacuum polarization. The following figures show
the hadronic vacuum polarization for the corresponding ensembles plotted on
top of each other.

The ensembles D2 and E2 corresponding to a pion mass ∼ 700MeV show almost
no sign of volume effects in figure 27. A minimal trend to lower values can be
observed for the data of D2 ensemble in red. The values for aµ determined from
different fits

a
(D2)
µ = 184.3(4.4) · 10−10, (6.1)

a
(E2)
µ = 177.5(1.3) · 10−10,

differ by 1.5 σ. One expects that in these rather heavy ensembles the volume
effect should not be visible, probably the error is underestimated for the E2
ensemble, since the data almost agree with each other.

The next set of ensembles cover D3 and E4 lattices in which the corresponding
pion mass has a value of ∼ 550MeV. For these ensembles the data for the smaller
lattice L = 1.7 fm in figure 28 lie below those corresponding L = 2.2 fm data,
nevertheless both data sets do agree within the statistical uncertainties except of
the first data point. The hadronic contribution to aµ for those ensembles have
been evaluated to:

a
(D3)
µ = 245.2(6.7) · 10−10, (6.2)

a
(E4)
µ = 243.9(3.8) · 10−10,

51
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Figure 27: Vacuum polarization for two different ensembles with different volume:
D2 L = 1.7 fm in red and E2 L = 2.2 fm in blue
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Figure 28: Vacuum polarization for two different ensembles with different volume:
D3 L = 1.7 fm in red and E4 L = 2.2 fm in blue

which perfectly agrees within the error bars and no volume effect is visible.

Finite volume effects should be larger at the smaller pion mass of ∼ 425MeV.
The data for the smaller volume, plotted in red, lie significant below the corre-
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sponding ensemble, but still agree within the statistical errors. This trend can be
seen in figure 29 and affects the calculation of contribution to aµ. The results for
aµ:

a
(D5)
µ = 282.3(20.3) · 10−10, (6.3)

a
(E5)
µ = 329.6(8.4) · 10−10

show a difference of 2.3 σ. So the volume has an influence of more than 14% on
the determination of the vacuum polarization.
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Figure 29: Vacuum polarization for two different ensembles with different volume:
D5 L = 1.7 fm in red and E5 L = 2.2 fm in blue

6.2 results for aµ

The vacuum polarization has been determined for the 11 different ensembles
of table 2. The methods described in chapter 5 have been applied to determine
the hadronic contribution to aµ. In order to estimate a systematic error, five
different fit functions have been used: Padé with n = 3,m = 2; Padé with
n = 3,m = 3; Padé with n = 4,m = 3; Padé with n = 4,m = 2 and the fit
motivated from dispersion relation defined in equation (5.8). The fits are varied
over seven fit ranges individually, so in total there are 35 evaluations of aµ in
each ensemble serving as an estimator for the spread of the real value. The
median of the 35 distributed results is used as an estimator for aµ, since the
median is more robust to outliers than the arithmetic mean. After sorting the
results, the spread of the central 68% serves as an estimator for the uncertainty
of aµ. This systematic error dominates the uncertainty of aµ, so the statistical
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Jackknife error can be neglected completely. The individual fit results can be
found in appendix A, showing the degrees of freedom and the χ2red. The results
are presented in table 3 for the Nf = 2 and the Nf = 2+ 1 partially quenched
simulations. A graphical representation of those result is shown in figure 30.

Nf = 2 Nf = 2+ 1 PQ

name aµ/10
−10 aµ/10

−10

D1 108.1(3.2) –

D2 184.3(4.4) 231.1(15.6)

D3 245.2(6.7) 292.3(5.8)

D4 237.9(10.3) 274.1(5.5)

D5 282.3(20.3) 317.3(19.5)

E2 177.5(1.3) 221.9(2.3)

E3 194.6(5.6) 234.5(3.3)

E4 243.9(3.8) 288.4(4.6)

E4 no twist 227.7(7.2) 275.9(8.7)

E5 327.6(8.4) 368.0(13.4)

F6 408.2(10.8) 452.7(14.5)

Table 3: Results for aµ in Nf = 2 and Nf = 2+ 1 partially quenched simulations

The estimated errors increase when going to lighter pion masses, since the
fluctuations in the low momentum region are increased. These fluctuations
reflect the errors of the fits. In order to see the effect of partially twisted boundary
conditions, one particular ensemble, the E4 ensemble, has been studied in the
same way without twisting. It produces a value for aµ which is 10% smaller,
but whose error is twice as large. The different results for aµ are due to the lack
of data points in the low momentum region.

If the three quarks are degenerate, the additional contribution of the strange
quarks would add up a correction of 20%, which comes from the increased
charge factor z. If the strange quark is more massive than the up and down
quarks, as in nature, its contribution to aµ shrinks. All partially quenched
Nf = 2+ 1 simulations results lie as expected above the corresponding Nf = 2
results, which confirms the expectations. In the D3 ensemble the degenerate
case is almost fulfilled, here the additional contribution is 20.5%, which is close
to the expectation.
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Figure 30: Nf = 2 results in blue colors and Nf = 2+ 1 partially quenched results in
red colors for aµ plotted against the pion mass. Vertical line: physical pion
mass

6.3 chiral extrapolation of aµ

All simulations correspond to a pion mass heavier than in nature. So simu-
lations for different pion masses have been performed to enable yet another
extrapolation of aµ to the physical point mπ = 134.9766(6)MeV/c2 [46].

Since there is no theoretical constraint on the chiral behavior, again different
ansätze are possible. The chiral perturbation theory for two flavors up to 1-loop
has no free parameters left in Π̂(q2).This ansatz for the vacuum polarization
can be integrated to obtain aµ. The chiral curve has been matched to the F6
ensemble, the ensemble with the smallest pion mass studied in this work, by
adding a constant offset. Chiral perturbation theory should be valid in a range
of small pion masses, since the masses of the quarks are treated as perturbation.
In section 5.2 the chiral perturbation theory ansatz did not describe the simula-
tion data for the vacuum polarization Π(q2), although it reproduced the chiral
behavior for small pion masses to some extent. Anyway, higher order corrections
are needed in order to have a better description of the whole range of data
points. Using the chiral perturbation theory formula, the vacuum polarization
at the physical point is given by:

aµ = 828.2(10.8) · 10−10. (6.4)

The error is difficult to determine, but by construction is given by the error
on the F6 ensemble. Probably the error is underestimated in such a simple
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Figure 31: Chiral perturbation theory applied to Nf = 2 results matched to F6

evaluation. The value for aµ and its error are listed here for comparison, since
the chiral perturbation theory does not reflect other data points. The result from
chiral perturbation theory is larger than the current world average, which has
been discussed in section 3.4. The estimate in (6.4) is expected to undershoot the
value from the PDG, since additional contributions, for instance the contribution
from a strange quark, were not considered here. Nevertheless the shape of the
curve can help to construct a model for the chiral behavior of aµ.

Instead of finding an expression for the vacuum polarization, an ansatz for the
chiral behavior of aµ(m2π) can be postulated. Motivated by a chiral expansion, a
fit function

f(m2π) = A+B ·m2π +C ·m2π ln(m2π) (6.5)

can be used. Here an expansion of aµ in terms of m2
π/Λ2 can be performed,

treating the pion mass as a perturbation in units of some arbitrary scale Λ,
which can be absorbed into the fitting parameters A,B,C.
Since there are only a few data points, the function should not contain too many
parameters in order to perform a reliable fit. The E and F ensembles are used
for the chiral extrapolation, since the corresponding D lattices showed relics
of finite volume effects. Alternatively, an expansion in polynomials of m2π is
possible. With five data points, a expansion up to third order in m2π can be used:

f(m2π) = A+B ·m2π +C ·m4π. (6.6)

In both cases an uncorrelated fit has been performed. Figure 32 shows both
functions applied to the Nf = 2 and Nf = 2+ 1 partially quenched data.
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Figure 32: Chiral extrapolation using polynomial fit and chiral fit of equation (6.5)

In figure 31 the chiral perturbation theory indicated a steep dependency on
the pion mass, so a non-linear term in the fit function is necessary to describe
the behavior of the data. The polynomial and the chiral fit in figure 32 show
different extrapolation behavior, which can be used to estimate a systematic
uncertainty of aµ at the physical point. The mean of both fit results serves as an
estimate for aµ, whereas the spread indicates the systematic uncertainty. The
extrapolated values are:

aµ[Nf = 2] = 513.7(20.5) · 10−10, (6.7)

aµ[Nf = 2+ 1,PQ] = 590.0(27.0) · 10−10. (6.8)

The error in this determination could be estimated wrong, since only two fits
have been considered. Both fits are constrained by the E2 data point, which has a
rather small estimated error. This ensemble corresponds to a pion mass of about
700MeV , which cannot be considered to be small. The results for aµ show to
be smaller than the phenomenological result by the dispersive approach using
e+e− data discussed in section 3.4.

6.4 comparison to other lattice calculations

This work uses non-perturbatively O(a) improved Wilson fermions with Nf = 2
dynamical quarks. In addtion, partially twisted boundary conditions have been
applied to reach lower momentum. In the past, different actions and techniques
have been studied to determine the hadronic contribution to the anomalous
magnetic moment of the muon. Aubin and Blum in [33] have used improved
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rooted staggered fermions with 2+ 1 flavors. Twisted mass fermions with 2
flavors have been studied by the European Twisted Mass Collaboration (ETMC)
[34]. There have been also quenched simulations in [31, 32], which are not
considered in this comparison. Also, as a reference the phenomenological result
from the Particle Data Group [25] is shown in the plots.

Figure 33 shows the results for two flavor simulations with twisted mass
fermions and our worked based on O(a) improved Wilson fermions. The results
from twisted mass fermions [34] involves statistical errors only. Also a different
fit procedure has been applied. ETMC have used polynomial fits to determine
the vacuum polarization, which had been show in section 5.2 to deliver unstable
results. The results from this work showed small statistical error, but these value
were dominated by systematic effects choosing fit function and intervals.
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Figure 33: Comparing different actions for a two flavor lattice simulation

The comparison shows that the errors can be improved by using partially twisted
boundary conditions and more suited fit functions. If only “untwisted” data
would be used to determine the q2-dependence, the stability of the fits would
be impaired, which leads to smaller values with significant increased systematic
errors. The values obtain in these different simulations do agree within the
estimated errors. One data point of ETMC can be considered as outlier.

Considering the contribution of a strange quark, staggered simulations are
performed using dynamical 2+1 flavors, where as this work includes the strange
quark quenched. Figure 34 shows the different results obtained for theNf = 2+1
simulations. Small errors and the trend to approach the phenomenological value
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as mπ is decreased towards the physical point relies on the use of the staggered
chiral perturbative ansatz including a vector dominance model. The errors of the
staggered calculation are statistical only and it might be that they are missing
systematic effects. If they use a polynomial fit for the momentum dependence
of the vacuum polarization, the values for aµ are different and show a larger
error. A cubic fit would lead to lower values whereas a fourth order polynomial
fit would produce larger values [33].
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Figure 34: Comparing different actions for Nf = 2+ 1 lattice simulation

The chiral behavior shows to be similar in both calculations, but the result of
this work is significantly lower than the staggered result. The gap between the
different simulations could indicate an additional contribution by a dynamic
strange quark, but it is more likely the systematic errors in the staggered
determination are underestimated.





7
S U M M A RY A N D O U T L O O K

The determination of the hadronic contribution to aµ is complicated to compute
on the lattice since the important momentum region cannot be sampled directly.
Partially twisted boundary conditions have shown to improve this situation by
adding additional data points to the vacuum polarization. These additional data
greatly improve the stability of the fits and the extrapolation to p2 = 0 is more
reliable comparing to untwisted data. A particular comparison showed that the
systematic error is reduced by a factor of two, if partially twisted boundary
condition have been applied to the computation. In addition a trend to lower
values for aµ has been seen, indicating the difficulties of the extrapolation
without twisting once more.

To determine the hadronic contribution to aµ, two different types of fit func-
tions have been used to describe the momentum dependency of the vacuum
polarization Π(q2): a Padé approximation and a fit motivated by a dispersion
relation. The variation of the degrees of freedom by changing the fit interval
has shown to deliver different results, which do not agree within the evaluated
statistical uncertainties estimated by Jackknife. The spread of those results has
been used to estimate the systematic influence of different fit intervals and
functions. These systematic effects dominating the determination of aµ serve as
an estimate for the real errors. Other fit ansätze, especially polynomials, have
problems to produce a stable result for aµ when varying the fit intervals. If
polynomials were used, the instability of those fits would increase systematic
error significantly.

A chiral extrapolation is needed to obtain the hadronic contribution to aµ
at the physical value of the pion mass. Here two simple models are used to
fit the pion mass dependence of aµ. The models are an improvement of a
linear extrapolation taking logarithms or squares into account. Such approaches
seem reasonable, since the estimate by chiral perturbation theory discussed in
section 5.3, showed a comparable behavior. The number of free parameter is kept
small, since only five data points were available for the extrapolation. The error
on aµ at the physical point has been estimated by the spread of both models.

In addition the contribution of a strange quarks has been investigated by per-
forming partially quenched simulations. It shows that the additional contribution
from a strange quark, even quenched, can be quite sizeable. The comparison to
staggered fermions [33] also indicates that a dynamical strange quark would
provide an additional contribution to aµ.
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Having performed all necessary steps to obtain the hadronic contribution to the
anomalous magnetic moment of the muon, the result for the two flavor theory
is obtained as :

aµ[Nf = 2] = 513.7(20.5) · 10−10.

If a quenched strange quark is included, the result increases to:

aµ[Nf = 2+ 1,PQ] = 590.0(27.0) · 10−10.

These values for aµ have been obtained using all currently available E and F
ensembles for β = 5.3, except for the E1 ensemble with an unphysically heavy
pion. The E2 ensemble shows a relatively small systematic uncertainty, so the
fits used for the extrapolation are strongly constrained by this data point. The
E2 ensemble with a pion mass of about 700MeV is far off the physical value for
the pion mass, so it should not be trusted as much as the estimated systematic
uncertainty indicates. The estimate obtained for aµ this work does not agree
with the current world average [25]:

aPDG
µ = 695.5(4.1) · 10−10.

The result of this work shows a too small value for aµ compared to the current
world average. Since the simulations are not performed to cover full QCD, it
would be interesting to see whether a fully dynamical strange quark brings the
lattice results closer to the phenomenological estimate. Nevertheless this work
has shown that a lattice calculation of the hadronic vacuum polarization can
be performed and will be in the future a valuable approach to determine the
hadronic contribution to the anomalous magnetic moment of the muon. Lattice
QCD allows one to study the strong interaction non-perturbatively and in a pure
theoretical framework. In the following a few remarks for further improvements
will be made.

The chiral extrapolation can be improved by including ensembles with lighter
pion masses. Getting closer to the physical point would show more details on the
chiral behavior of aµ, this would allow to construct a better model for the chiral
extrapolation. Chiral perturbation theory could deliver a better approximation by
including higher correction, which also could improve the extrapolation model.
Lighter ensembles also could supersede the ensembles with a rather large pion
mass, so probably the chiral extrapolation would become more reliable. In the
near future the F7 ensemble, an ensemble with even lighter pion mass, will be
studied, which probably will improve the chiral extrapolation.

If the computing power increases continuously, simulations on lattices larger
volumes can be studied in the future allowing to reach to even lower momenta
pi = 2π

L ni directly. This of course would improve the extrapolation of the
vacuum polarization, which could improve the fit used to determine the hadronic
contribution.
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Lattice artifacts will be considered in further studies by performing simulations
with different lattice spacings a. For a complete analysis this type of systematic
errors need to be estimated. In addition the point-split current, introduced in
section 4.1, can be O(a) improved in order to reduce discretization errors.

The contribution to aµ by the disconnected diagram shown in section 4.1 needs
to be computed in order to have a complete lattice determination of the hadronic
contribution in leading order. Jüttner and Della Morte [36] have estimated the
disconnected diagram using chiral perturbation theory for two flavors, they
expect a reduction of the connected diagram by 10%.

The results of this thesis are an important step towards a more reliable deter-
mination of ahad

µ from first principles, but many other effects must be better
controlled before the lattice determination is competitive with phenomenology.





A
A P P E N D I X

fit results for momentum dependence of Π(q2)

This appendix shows the plots for all ensembles analysed in this study. Addi-
tionally the results for the different fits are listed in the corresponding tables. In
some cases the fit procedure failed to produce a reasonable fit for the vacuum
polarization, which has different reasons discussed below. These failed fits have
been discarded and marked by – in the tables.
Primary the Padé fit converged into a singularity at p2 = 0 for one or more
Jackknife samples, which caused a failure of the numerical integration. In some
cases the minimization for χ2 failed to obtain a global minimum within a
reasonably high number of iterations, resulting in a χ2red � 1.
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Nf = 2

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 - –

pade32 [0.0,3.0] 28 1.56 185.42 ± 0.13

pade32 [0.0,3.5] 35 1.44 184.35 ± 0.11

pade32 [0.0,4.0] 42 1.34 182.64 ± 0.08

pade32 [0.0,4.5] 48 1.36 184.64 ± 0.08

pade32 [0.0,5.0] 53 1.44 170.51 ± 0.03

pade32 [0.0,5.5] 58 1.45 169.30 ± 0.03

pade33 [0.0,2.5] 20 - –

pade33 [0.0,3.0] 27 1.67 185.57 ± 0.13

pade33 [0.0,3.5] 34 1.54 184.68 ± 0.11

pade33 [0.0,4.0] 41 1.43 182.66 ± 0.08

pade33 [0.0,4.5] 47 1.45 184.64 ± 0.08

pade33 [0.0,5.0] 52 - –

pade33 [0.0,5.5] 57 1.48 176.80 ± 0.07

pade43 [0.0,2.5] 19 - –

pade43 [0.0,3.0] 26 1.80 180.86 ± 0.38

pade43 [0.0,3.5] 33 - –

pade43 [0.0,4.0] 40 1.52 182.61 ± 0.08

pade43 [0.0,4.5] 46 1.54 184.64 ± 0.08

pade43 [0.0,5.0] 51 1.63 170.51 ± 0.03

pade43 [0.0,5.5] 56 1.58 176.79 ± 0.07

pade42 [0.0,2.5] 20 - –

pade42 [0.0,3.0] 27 1.67 185.37 ± 0.12

pade42 [0.0,3.5] 34 1.54 184.28 ± 0.11

pade42 [0.0,4.0] 41 1.43 182.61 ± 0.08

pade42 [0.0,4.5] 47 1.45 184.59 ± 0.08

pade42 [0.0,5.0] 52 1.48 180.02 ± 0.09

pade42 [0.0,5.5] 57 1.48 176.79 ± 0.07

disp [0.0,2.5] 22 - –

disp [0.0,3.0] 29 1.46 191.27 ± 0.21

disp [0.0,3.5] 36 1.35 191.42 ± 0.18

disp [0.0,4.0] 43 1.27 187.11 ± 0.15

disp [0.0,4.5] 49 1.30 190.58 ± 0.16

disp [0.0,5.0] 54 1.31 184.83 ± 0.14

disp [0.0,5.5] 59 1.31 178.88 ± 0.09

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 - –

pade32 [0.0,3.0] 28 1.43 234.71 ± 0.24

pade32 [0.0,3.5] 35 1.25 261.31 ± 0.32

pade32 [0.0,4.0] 42 1.16 238.97 ± 0.17

pade32 [0.0,4.5] 48 1.19 234.82 ± 0.16

pade32 [0.0,5.0] 53 1.19 231.06 ± 0.16

pade32 [0.0,5.5] 58 1.19 231.56 ± 0.13

pade33 [0.0,2.5] 20 1.74 230.04 ± 0.10

pade33 [0.0,3.0] 27 1.53 224.25 ± 0.07

pade33 [0.0,3.5] 34 1.51 217.12 ± 0.06

pade33 [0.0,4.0] 41 1.35 213.61 ± 0.05

pade33 [0.0,4.5] 47 1.35 213.86 ± 0.05

pade33 [0.0,5.0] 52 1.32 213.92 ± 0.05

pade33 [0.0,5.5] 57 1.34 212.67 ± 0.04

pade43 [0.0,2.5] 19 1.86 230.04 ± 0.10

pade43 [0.0,3.0] 26 1.62 234.69 ± 0.24

pade43 [0.0,3.5] 33 1.60 217.12 ± 0.06

pade43 [0.0,4.0] 40 1.43 213.61 ± 0.05

pade43 [0.0,4.5] 46 1.44 213.86 ± 0.05

pade43 [0.0,5.0] 51 1.40 213.92 ± 0.05

pade43 [0.0,5.5] 56 1.43 212.67 ± 0.04

pade42 [0.0,2.5] 20 1.74 230.04 ± 0.10

pade42 [0.0,3.0] 27 1.52 234.69 ± 0.24

pade42 [0.0,3.5] 34 1.32 261.29 ± 0.32

pade42 [0.0,4.0] 41 1.22 238.97 ± 0.17

pade42 [0.0,4.5] 47 1.26 234.82 ± 0.16

pade42 [0.0,5.0] 52 1.26 231.06 ± 0.16

pade42 [0.0,5.5] 57 1.26 231.55 ± 0.13

disp [0.0,2.5] 22 - –

disp [0.0,3.0] 29 1.33 250.14 ± 0.28

disp [0.0,3.5] 36 - –

disp [0.0,4.0] 43 1.08 255.95 ± 0.27

disp [0.0,4.5] 49 1.12 240.92 ± 0.73

disp [0.0,5.0] 54 1.10 247.50 ± 0.19

disp [0.0,5.5] 59 1.11 245.07 ± 0.19

Figure 35: Results for different fits on D2 ensemble
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Nf = 2

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 1.58 238.27 ± 0.10

pade32 [0.0,3.0] 28 1.50 238.59 ± 0.19

pade32 [0.0,3.5] 35 1.67 237.59 ± 0.11

pade32 [0.0,4.0] 42 1.62 236.88 ± 0.10

pade32 [0.0,4.5] 48 1.49 245.73 ± 0.12

pade32 [0.0,5.0] 53 1.44 250.98 ± 0.12

pade32 [0.0,5.5] 58 1.52 245.54 ± 0.11

pade33 [0.0,2.5] 20 1.68 238.22 ± 0.19

pade33 [0.0,3.0] 27 1.57 252.39 ± 0.27

pade33 [0.0,3.5] 34 1.76 237.63 ± 0.11

pade33 [0.0,4.0] 41 1.70 236.89 ± 0.10

pade33 [0.0,4.5] 47 1.56 245.73 ± 0.12

pade33 [0.0,5.0] 52 1.51 250.99 ± 0.12

pade33 [0.0,5.5] 57 1.60 245.54 ± 0.11

pade43 [0.0,2.5] 19 1.80 238.62 ± 0.33

pade43 [0.0,3.0] 26 1.68 232.37 ± 0.25

pade43 [0.0,3.5] 33 1.85 247.12 ± 0.23

pade43 [0.0,4.0] 40 1.79 236.74 ± 0.10

pade43 [0.0,4.5] 46 1.64 245.69 ± 0.12

pade43 [0.0,5.0] 51 1.59 250.92 ± 0.12

pade43 [0.0,5.5] 56 1.68 245.86 ± 0.11

pade42 [0.0,2.5] 20 1.68 238.28 ± 0.10

pade42 [0.0,3.0] 27 1.58 238.58 ± 0.20

pade42 [0.0,3.5] 34 1.76 237.55 ± 0.11

pade42 [0.0,4.0] 41 1.70 236.87 ± 0.10

pade42 [0.0,4.5] 47 1.56 245.69 ± 0.12

pade42 [0.0,5.0] 52 1.51 250.91 ± 0.12

pade42 [0.0,5.5] 57 1.60 245.44 ± 0.11

disp [0.0,2.5] 22 1.50 237.65 ± 0.22

disp [0.0,3.0] 29 1.42 246.19 ± 0.29

disp [0.0,3.5] 36 1.60 238.74 ± 0.12

disp [0.0,4.0] 43 1.54 238.01 ± 0.12

disp [0.0,4.5] 49 1.44 245.23 ± 0.10

disp [0.0,5.0] 54 1.43 255.41 ± 0.37

disp [0.0,5.5] 59 1.47 248.74 ± 0.12

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 1.60 284.18 ± 0.13

pade32 [0.0,3.0] 28 1.52 285.01 ± 0.23

pade32 [0.0,3.5] 35 1.70 283.61 ± 0.13

pade32 [0.0,4.0] 42 1.71 288.85 ± 0.14

pade32 [0.0,4.5] 48 1.51 292.77 ± 0.14

pade32 [0.0,5.0] 53 1.46 299.29 ± 0.14

pade32 [0.0,5.5] 58 1.54 292.63 ± 0.13

pade33 [0.0,2.5] 20 1.70 289.19 ± 0.59

pade33 [0.0,3.0] 27 1.61 280.93 ± 0.83

pade33 [0.0,3.5] 34 1.78 283.61 ± 0.13

pade33 [0.0,4.0] 41 1.80 288.85 ± 0.14

pade33 [0.0,4.5] 47 1.59 292.79 ± 0.14

pade33 [0.0,5.0] 52 1.53 299.29 ± 0.14

pade33 [0.0,5.5] 57 1.62 292.99 ± 0.13

pade43 [0.0,2.5] 19 1.81 284.86 ± 0.43

pade43 [0.0,3.0] 26 1.69 301.57 ± 0.32

pade43 [0.0,3.5] 33 1.87 295.57 ± 0.28

pade43 [0.0,4.0] 40 1.90 288.85 ± 0.14

pade43 [0.0,4.5] 46 1.67 292.74 ± 0.14

pade43 [0.0,5.0] 51 1.60 298.71 ± 0.14

pade43 [0.0,5.5] 56 1.70 292.52 ± 0.13

pade42 [0.0,2.5] 20 1.70 284.14 ± 0.13

pade42 [0.0,3.0] 27 1.60 285.00 ± 0.23

pade42 [0.0,3.5] 34 1.78 283.59 ± 0.13

pade42 [0.0,4.0] 41 1.80 288.78 ± 0.14

pade42 [0.0,4.5] 47 1.58 292.74 ± 0.14

pade42 [0.0,5.0] 52 1.53 299.21 ± 0.14

pade42 [0.0,5.5] 57 1.62 292.52 ± 0.13

disp [0.0,2.5] 22 1.51 283.76 ± 0.28

disp [0.0,3.0] 29 1.44 294.31 ± 0.34

disp [0.0,3.5] 36 1.62 285.06 ± 0.14

disp [0.0,4.0] 43 1.63 290.45 ± 0.17

disp [0.0,4.5] 49 1.46 292.32 ± 0.12

disp [0.0,5.0] 54 1.44 295.72 ± 0.51

disp [0.0,5.5] 59 1.49 295.27 ± 0.13

Figure 36: Results for different fits on D3 ensemble
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−10

pade32 [0.0,2.5] 21 1.79 233.51 ± 0.11

pade32 [0.0,3.0] 28 1.93 251.73 ± 0.10

pade32 [0.0,3.5] 35 1.71 256.03 ± 0.10

pade32 [0.0,4.0] 42 1.59 241.88 ± 0.08

pade32 [0.0,4.5] 48 1.78 241.97 ± 0.10

pade32 [0.0,5.0] 53 1.84 234.61 ± 0.10

pade32 [0.0,5.5] 58 1.76 231.16 ± 0.06

pade33 [0.0,2.5] 20 1.89 233.27 ± 0.11

pade33 [0.0,3.0] 27 1.98 251.04 ± 0.10

pade33 [0.0,3.5] 34 1.73 253.95 ± 0.10

pade33 [0.0,4.0] 41 1.65 237.86 ± 0.07

pade33 [0.0,4.5] 47 1.86 241.96 ± 0.10

pade33 [0.0,5.0] 52 1.92 234.52 ± 0.10

pade33 [0.0,5.5] 57 1.83 225.80 ± 0.07

pade43 [0.0,2.5] 19 2.63 188.02 ± 0.04

pade43 [0.0,3.0] 26 1.98 246.11 ± 0.09

pade43 [0.0,3.5] 33 1.82 253.95 ± 0.10

pade43 [0.0,4.0] 40 1.72 237.87 ± 0.07

pade43 [0.0,4.5] 46 1.94 242.48 ± 0.10

pade43 [0.0,5.0] 51 2.00 234.63 ± 0.10

pade43 [0.0,5.5] 56 1.91 225.88 ± 0.07

pade42 [0.0,2.5] 20 1.90 233.51 ± 0.11

pade42 [0.0,3.0] 27 2.03 251.73 ± 0.10

pade42 [0.0,3.5] 34 1.79 256.03 ± 0.10

pade42 [0.0,4.0] 41 1.66 241.88 ± 0.08

pade42 [0.0,4.5] 47 1.86 242.15 ± 0.10

pade42 [0.0,5.0] 52 1.92 234.64 ± 0.10

pade42 [0.0,5.5] 57 1.84 231.16 ± 0.06

disp [0.0,2.5] 22 1.68 232.48 ± 0.10

disp [0.0,3.0] 29 1.70 248.42 ± 0.09

disp [0.0,3.5] 36 1.49 248.25 ± 0.09

disp [0.0,4.0] 43 1.50 230.13 ± 0.07

disp [0.0,4.5] 49 1.72 238.15 ± 0.09

disp [0.0,5.0] 54 1.77 233.12 ± 0.09

disp [0.0,5.5] 59 1.68 224.63 ± 0.10

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 1.84 272.99 ± 0.12

pade32 [0.0,3.0] 28 1.61 275.03 ± 0.12

pade32 [0.0,3.5] 35 1.75 295.76 ± 0.11

pade32 [0.0,4.0] 42 1.65 279.83 ± 0.09

pade32 [0.0,4.5] 48 1.84 278.02 ± 0.11

pade32 [0.0,5.0] 53 1.87 269.72 ± 0.09

pade32 [0.0,5.5] 58 1.79 268.92 ± 0.07

pade33 [0.0,2.5] 20 1.94 272.69 ± 0.12

pade33 [0.0,3.0] 27 1.68 274.07 ± 0.11

pade33 [0.0,3.5] 34 1.78 293.43 ± 0.10

pade33 [0.0,4.0] 41 1.71 275.39 ± 0.08

pade33 [0.0,4.5] 47 1.92 278.01 ± 0.11

pade33 [0.0,5.0] 52 1.95 271.83 ± 0.10

pade33 [0.0,5.5] 57 1.86 263.05 ± 0.08

pade43 [0.0,2.5] 19 2.06 272.69 ± 0.12

pade43 [0.0,3.0] 26 1.77 274.07 ± 0.11

pade43 [0.0,3.5] 33 1.87 293.43 ± 0.10

pade43 [0.0,4.0] 40 1.79 275.39 ± 0.08

pade43 [0.0,4.5] 46 2.01 278.19 ± 0.11

pade43 [0.0,5.0] 51 2.04 271.84 ± 0.10

pade43 [0.0,5.5] 56 1.95 268.92 ± 0.07

pade42 [0.0,2.5] 20 1.95 272.99 ± 0.12

pade42 [0.0,3.0] 27 1.69 275.04 ± 0.12

pade42 [0.0,3.5] 34 1.83 295.76 ± 0.11

pade42 [0.0,4.0] 41 1.73 279.84 ± 0.09

pade42 [0.0,4.5] 47 1.92 278.20 ± 0.11

pade42 [0.0,5.0] 52 1.95 271.86 ± 0.10

pade42 [0.0,5.5] 57 1.86 268.93 ± 0.07

disp [0.0,2.5] 22 1.72 271.70 ± 0.11

disp [0.0,3.0] 29 1.50 271.63 ± 0.11

disp [0.0,3.5] 36 1.53 287.10 ± 0.09

disp [0.0,4.0] 43 1.56 267.97 ± 0.09

disp [0.0,4.5] 49 1.78 274.07 ± 0.09

disp [0.0,5.0] 54 1.80 270.53 ± 0.10

disp [0.0,5.5] 59 1.71 262.39 ± 0.11

Figure 37: Results for different fits on D4 ensemble
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−10

pade32 [0.0,2.5] 21 1.67 285.07 ± 0.15

pade32 [0.0,3.0] 28 1.50 282.37 ± 0.21

pade32 [0.0,3.5] 35 1.46 287.74 ± 0.26

pade32 [0.0,4.0] 42 1.37 301.72 ± 0.30

pade32 [0.0,4.5] 48 1.40 258.26 ± 0.10

pade32 [0.0,5.0] 53 1.44 266.99 ± 0.15

pade32 [0.0,5.5] 58 1.39 261.13 ± 0.13

pade33 [0.0,2.5] 20 1.76 285.07 ± 0.15

pade33 [0.0,3.0] 27 1.58 277.86 ± 0.20

pade33 [0.0,3.5] 34 1.53 287.75 ± 0.26

pade33 [0.0,4.0] 41 1.43 301.75 ± 0.30

pade33 [0.0,4.5] 47 1.46 258.07 ± 0.09

pade33 [0.0,5.0] 52 1.50 267.13 ± 0.15

pade33 [0.0,5.5] 57 1.44 261.18 ± 0.13

pade43 [0.0,2.5] 19 1.85 283.35 ± 0.15

pade43 [0.0,3.0] 26 1.65 282.35 ± 0.21

pade43 [0.0,3.5] 33 1.60 287.66 ± 0.26

pade43 [0.0,4.0] 40 1.50 301.67 ± 0.30

pade43 [0.0,4.5] 46 1.53 258.32 ± 0.10

pade43 [0.0,5.0] 51 1.56 266.97 ± 0.15

pade43 [0.0,5.5] 56 1.50 261.13 ± 0.13

pade42 [0.0,2.5] 20 1.76 285.07 ± 0.15

pade42 [0.0,3.0] 27 1.57 282.38 ± 0.21

pade42 [0.0,3.5] 34 1.53 287.64 ± 0.26

pade42 [0.0,4.0] 41 1.43 301.66 ± 0.30

pade42 [0.0,4.5] 47 1.46 258.29 ± 0.10

pade42 [0.0,5.0] 52 1.50 266.95 ± 0.15

pade42 [0.0,5.5] 57 1.44 261.11 ± 0.13

disp [0.0,2.5] 22 1.53 279.80 ± 0.14

disp [0.0,3.0] 29 1.44 282.34 ± 0.23

disp [0.0,3.5] 36 1.39 335.32 ± 0.69

disp [0.0,4.0] 43 1.30 365.30 ± 0.80

disp [0.0,4.5] 49 1.35 259.43 ± 0.16

disp [0.0,5.0] 54 1.38 271.39 ± 0.19

disp [0.0,5.5] 59 1.33 263.31 ± 0.15

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,2.5] 21 1.67 319.31 ± 0.15

pade32 [0.0,3.0] 28 1.51 317.93 ± 0.21

pade32 [0.0,3.5] 35 1.48 323.72 ± 0.26

pade32 [0.0,4.0] 42 1.39 334.75 ± 0.28

pade32 [0.0,4.5] 48 1.42 292.92 ± 0.10

pade32 [0.0,5.0] 53 1.45 303.19 ± 0.15

pade32 [0.0,5.5] 58 1.40 295.76 ± 0.13

pade33 [0.0,2.5] 20 1.76 318.19 ± 0.15

pade33 [0.0,3.0] 27 1.59 317.30 ± 0.24

pade33 [0.0,3.5] 34 1.55 324.13 ± 0.27

pade33 [0.0,4.0] 41 1.45 334.85 ± 0.28

pade33 [0.0,4.5] 47 1.48 292.68 ± 0.09

pade33 [0.0,5.0] 52 1.51 303.35 ± 0.15

pade33 [0.0,5.5] 57 1.46 295.76 ± 0.13

pade43 [0.0,2.5] 19 1.85 317.55 ± 0.15

pade43 [0.0,3.0] 26 1.67 317.90 ± 0.21

pade43 [0.0,3.5] 33 1.65 301.12 ± 0.12

pade43 [0.0,4.0] 40 1.51 334.69 ± 0.28

pade43 [0.0,4.5] 46 1.55 292.64 ± 0.09

pade43 [0.0,5.0] 51 1.58 303.14 ± 0.15

pade43 [0.0,5.5] 56 1.52 295.70 ± 0.13

pade42 [0.0,2.5] 20 1.76 319.31 ± 0.15

pade42 [0.0,3.0] 27 1.59 317.93 ± 0.20

pade42 [0.0,3.5] 34 1.55 323.62 ± 0.25

pade42 [0.0,4.0] 41 1.45 334.69 ± 0.28

pade42 [0.0,4.5] 47 1.48 292.94 ± 0.10

pade42 [0.0,5.0] 52 1.51 303.14 ± 0.15

pade42 [0.0,5.5] 57 1.46 295.70 ± 0.13

disp [0.0,2.5] 22 1.53 313.90 ± 0.14

disp [0.0,3.0] 29 1.45 317.78 ± 0.22

disp [0.0,3.5] 36 1.42 366.36 ± 0.58

disp [0.0,4.0] 43 1.32 387.46 ± 0.62

disp [0.0,4.5] 49 1.37 293.90 ± 0.16

disp [0.0,5.0] 54 1.39 307.52 ± 0.19

disp [0.0,5.5] 59 1.35 297.88 ± 0.15

Figure 38: Results for different fits on D5 ensemble
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−10

pade32 [0.0,1.8] 32 0.87 178.91 ± 0.04

pade32 [0.0,2.0] 35 0.87 177.46 ± 0.04

pade32 [0.0,2.2] 41 0.83 177.69 ± 0.05

pade32 [0.0,2.5] 47 0.80 177.26 ± 0.03

pade32 [0.0,2.8] 53 0.80 176.47 ± 0.03

pade32 [0.0,3.0] 56 0.79 178.76 ± 0.05

pade32 [0.0,3.5] 64 0.75 176.18 ± 0.04

pade33 [0.0,1.8] 31 0.93 178.72 ± 0.04

pade33 [0.0,2.0] 34 0.94 177.12 ± 0.04

pade33 [0.0,2.2] 40 0.89 176.58 ± 0.03

pade33 [0.0,2.5] 46 0.85 177.25 ± 0.03

pade33 [0.0,2.8] 52 0.78 133.82 ± 0.32

pade33 [0.0,3.0] 55 0.85 178.67 ± 0.04

pade33 [0.0,3.5] 63 0.80 176.14 ± 0.04

pade43 [0.0,1.8] 30 1.01 178.72 ± 0.04

pade43 [0.0,2.0] 33 1.02 177.11 ± 0.04

pade43 [0.0,2.2] 39 0.96 177.69 ± 0.05

pade43 [0.0,2.5] 45 0.92 176.87 ± 0.03

pade43 [0.0,2.8] 51 0.91 177.94 ± 0.04

pade43 [0.0,3.0] 54 0.91 178.76 ± 0.05

pade43 [0.0,3.5] 62 0.86 176.16 ± 0.04

pade42 [0.0,1.8] 31 0.94 178.91 ± 0.04

pade42 [0.0,2.0] 34 0.94 177.47 ± 0.04

pade42 [0.0,2.2] 40 0.89 177.70 ± 0.05

pade42 [0.0,2.5] 46 0.85 177.27 ± 0.03

pade42 [0.0,2.8] 52 0.85 177.94 ± 0.04

pade42 [0.0,3.0] 55 0.85 178.78 ± 0.05

pade42 [0.0,3.5] 63 0.80 176.19 ± 0.04

disp [0.0,1.8] 33 0.79 178.30 ± 0.04

disp [0.0,2.0] 36 0.81 176.42 ± 0.03

disp [0.0,2.2] 42 0.78 177.53 ± 0.05

disp [0.0,2.5] 48 0.74 176.43 ± 0.04

disp [0.0,2.8] 54 0.75 177.71 ± 0.05

disp [0.0,3.0] 57 0.75 178.29 ± 0.04

disp [0.0,3.5] 65 0.70 176.11 ± 0.04

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 0.98 225.09 ± 0.07

pade32 [0.0,2.0] 35 1.07 223.78 ± 0.09

pade32 [0.0,2.2] 41 0.98 224.88 ± 0.09

pade32 [0.0,2.5] 47 0.99 220.00 ± 0.09

pade32 [0.0,2.8] 53 0.79 221.62 ± 0.06

pade32 [0.0,3.0] 56 0.81 222.12 ± 0.08

pade32 [0.0,3.5] 64 0.77 221.22 ± 0.06

pade33 [0.0,1.8] 31 1.04 224.76 ± 0.07

pade33 [0.0,2.0] 34 1.15 217.64 ± 0.06

pade33 [0.0,2.2] 40 1.04 224.49 ± 0.09

pade33 [0.0,2.5] 46 1.05 219.88 ± 0.08

pade33 [0.0,2.8] 52 0.84 221.63 ± 0.06

pade33 [0.0,3.0] 55 0.86 222.08 ± 0.08

pade33 [0.0,3.5] 63 0.81 220.38 ± 0.06

pade43 [0.0,1.8] 30 1.11 224.77 ± 0.07

pade43 [0.0,2.0] 33 1.21 223.88 ± 0.09

pade43 [0.0,2.2] 39 1.11 224.96 ± 0.09

pade43 [0.0,2.5] 45 1.12 220.23 ± 0.09

pade43 [0.0,2.8] 51 0.89 221.32 ± 0.06

pade43 [0.0,3.0] 54 0.91 222.12 ± 0.08

pade43 [0.0,3.5] 62 0.86 221.22 ± 0.07

pade42 [0.0,1.8] 31 1.04 225.09 ± 0.07

pade42 [0.0,2.0] 34 1.14 223.88 ± 0.09

pade42 [0.0,2.2] 40 1.04 224.96 ± 0.09

pade42 [0.0,2.5] 46 1.05 219.92 ± 0.09

pade42 [0.0,2.8] 52 0.84 221.62 ± 0.05

pade42 [0.0,3.0] 55 0.86 222.13 ± 0.08

pade42 [0.0,3.5] 63 0.81 221.23 ± 0.06

disp [0.0,1.8] 33 0.91 224.01 ± 0.06

disp [0.0,2.0] 36 1.02 220.71 ± 0.09

disp [0.0,2.2] 42 0.94 223.26 ± 0.24

disp [0.0,2.5] 48 0.94 219.91 ± 0.07

disp [0.0,2.8] 54 0.75 221.33 ± 0.07

disp [0.0,3.0] 57 0.77 221.95 ± 0.07

disp [0.0,3.5] 65 0.73 221.01 ± 0.06

Figure 39: Results for different fits on E2 ensemble
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−10

pade32 [0.0,1.8] 32 1.42 186.33 ± 0.05

pade32 [0.0,2.0] 35 1.53 192.69 ± 0.04

pade32 [0.0,2.2] 41 1.42 194.87 ± 0.04

pade32 [0.0,2.5] 47 1.02 196.30 ± 0.06

pade32 [0.0,2.8] 53 1.17 193.85 ± 0.04

pade32 [0.0,3.0] 56 1.35 197.64 ± 0.04

pade32 [0.0,3.5] 64 1.39 199.53 ± 0.03

pade33 [0.0,1.8] 31 1.51 186.35 ± 0.05

pade33 [0.0,2.0] 34 1.43 153.49 ± 0.19

pade33 [0.0,2.2] 40 1.48 193.77 ± 0.04

pade33 [0.0,2.5] 46 1.09 196.28 ± 0.06

pade33 [0.0,2.8] 52 1.24 193.82 ± 0.04

pade33 [0.0,3.0] 55 1.41 197.20 ± 0.03

pade33 [0.0,3.5] 63 1.44 198.94 ± 0.03

pade43 [0.0,1.8] 30 1.61 186.33 ± 0.05

pade43 [0.0,2.0] 33 1.73 192.73 ± 0.04

pade43 [0.0,2.2] 39 1.61 194.79 ± 0.04

pade43 [0.0,2.5] 45 1.16 196.69 ± 0.06

pade43 [0.0,2.8] 51 1.32 193.69 ± 0.04

pade43 [0.0,3.0] 54 1.50 197.20 ± 0.03

pade43 [0.0,3.5] 62 1.53 198.94 ± 0.03

pade42 [0.0,1.8] 31 1.51 186.33 ± 0.05

pade42 [0.0,2.0] 34 1.62 192.69 ± 0.04

pade42 [0.0,2.2] 40 1.51 194.87 ± 0.04

pade42 [0.0,2.5] 46 1.08 196.69 ± 0.06

pade42 [0.0,2.8] 52 1.24 193.88 ± 0.04

pade42 [0.0,3.0] 55 1.43 197.64 ± 0.04

pade42 [0.0,3.5] 63 1.47 199.53 ± 0.03

disp [0.0,1.8] 33 1.34 186.35 ± 0.05

disp [0.0,2.0] 36 1.44 192.82 ± 0.04

disp [0.0,2.2] 42 1.33 194.57 ± 0.04

disp [0.0,2.5] 48 0.98 192.91 ± 0.09

disp [0.0,2.8] 54 1.10 193.40 ± 0.04

disp [0.0,3.0] 57 1.24 196.19 ± 0.03

disp [0.0,3.5] 65 1.23 197.65 ± 0.03

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 1.42 224.18 ± 0.06

pade32 [0.0,2.0] 35 1.53 231.99 ± 0.05

pade32 [0.0,2.2] 41 1.42 234.63 ± 0.05

pade32 [0.0,2.5] 47 1.00 236.42 ± 0.08

pade32 [0.0,2.8] 53 1.16 233.24 ± 0.04

pade32 [0.0,3.0] 56 1.35 238.02 ± 0.04

pade32 [0.0,3.5] 64 1.39 240.31 ± 0.04

pade33 [0.0,1.8] 31 1.51 224.23 ± 0.05

pade33 [0.0,2.0] 34 1.60 231.34 ± 0.05

pade33 [0.0,2.2] 40 1.50 234.53 ± 0.05

pade33 [0.0,2.5] 46 1.06 236.41 ± 0.08

pade33 [0.0,2.8] 52 1.23 233.19 ± 0.04

pade33 [0.0,3.0] 55 1.41 237.49 ± 0.04

pade33 [0.0,3.5] 63 1.44 239.60 ± 0.04

pade43 [0.0,1.8] 30 1.61 224.19 ± 0.06

pade43 [0.0,2.0] 33 1.73 232.04 ± 0.05

pade43 [0.0,2.2] 39 1.61 234.53 ± 0.05

pade43 [0.0,2.5] 45 1.13 236.93 ± 0.08

pade43 [0.0,2.8] 51 1.31 233.19 ± 0.04

pade43 [0.0,3.0] 54 1.50 237.49 ± 0.04

pade43 [0.0,3.5] 62 1.53 239.60 ± 0.04

pade42 [0.0,1.8] 31 1.51 224.18 ± 0.06

pade42 [0.0,2.0] 34 1.62 231.99 ± 0.05

pade42 [0.0,2.2] 40 1.51 234.63 ± 0.05

pade42 [0.0,2.5] 46 1.06 236.93 ± 0.08

pade42 [0.0,2.8] 52 1.23 233.26 ± 0.04

pade42 [0.0,3.0] 55 1.43 238.02 ± 0.04

pade42 [0.0,3.5] 63 1.47 240.31 ± 0.04

disp [0.0,1.8] 33 1.34 224.23 ± 0.05

disp [0.0,2.0] 36 1.44 232.16 ± 0.05

disp [0.0,2.2] 42 1.33 234.28 ± 0.05

disp [0.0,2.5] 48 0.96 232.67 ± 0.12

disp [0.0,2.8] 54 1.09 232.75 ± 0.05

disp [0.0,3.0] 57 1.24 236.28 ± 0.04

disp [0.0,3.5] 65 1.23 238.03 ± 0.04

Figure 40: Results for different fits on E3 ensemble
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function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 1.18 245.36 ± 0.08

pade32 [0.0,2.0] 35 1.21 248.90 ± 0.07

pade32 [0.0,2.2] 41 1.35 241.69 ± 0.06

pade32 [0.0,2.5] 47 1.18 239.26 ± 0.07

pade32 [0.0,2.8] 53 1.11 245.73 ± 0.06

pade32 [0.0,3.0] 56 1.06 242.22 ± 0.09

pade32 [0.0,3.5] 64 1.08 246.92 ± 0.09

pade33 [0.0,1.8] 31 1.24 244.95 ± 0.08

pade33 [0.0,2.0] 34 1.26 247.99 ± 0.07

pade33 [0.0,2.2] 40 1.42 240.25 ± 0.06

pade33 [0.0,2.5] 46 1.24 237.81 ± 0.10

pade33 [0.0,2.8] 52 1.16 243.94 ± 0.06

pade33 [0.0,3.0] 55 1.12 242.16 ± 0.09

pade33 [0.0,3.5] 63 1.14 246.92 ± 0.09

pade43 [0.0,1.8] 30 1.30 242.85 ± 0.07

pade43 [0.0,2.0] 33 1.34 247.99 ± 0.07

pade43 [0.0,2.2] 39 1.50 240.26 ± 0.06

pade43 [0.0,2.5] 45 1.32 238.80 ± 0.09

pade43 [0.0,2.8] 51 1.22 243.95 ± 0.06

pade43 [0.0,3.0] 54 1.19 242.22 ± 0.09

pade43 [0.0,3.5] 62 1.21 246.96 ± 0.09

pade42 [0.0,1.8] 31 1.25 245.36 ± 0.08

pade42 [0.0,2.0] 34 1.28 248.91 ± 0.07

pade42 [0.0,2.2] 40 1.42 241.70 ± 0.06

pade42 [0.0,2.5] 46 1.24 239.29 ± 0.07

pade42 [0.0,2.8] 52 1.17 245.73 ± 0.06

pade42 [0.0,3.0] 55 1.12 242.23 ± 0.09

pade42 [0.0,3.5] 63 1.14 246.96 ± 0.09

disp [0.0,1.8] 33 1.10 244.05 ± 0.08

disp [0.0,2.0] 36 1.10 245.81 ± 0.07

disp [0.0,2.2] 42 1.27 237.61 ± 0.06

disp [0.0,2.5] 48 1.12 238.63 ± 0.10

disp [0.0,2.8] 54 1.02 240.29 ± 0.05

disp [0.0,3.0] 57 1.01 242.03 ± 0.09

disp [0.0,3.5] 65 1.05 248.70 ± 0.27

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 1.19 292.70 ± 0.10

pade32 [0.0,2.0] 35 1.21 295.94 ± 0.09

pade32 [0.0,2.2] 41 1.35 287.95 ± 0.07

pade32 [0.0,2.5] 47 1.19 284.66 ± 0.08

pade32 [0.0,2.8] 53 1.08 288.23 ± 0.07

pade32 [0.0,3.0] 56 1.08 288.40 ± 0.10

pade32 [0.0,3.5] 64 1.09 293.76 ± 0.10

pade33 [0.0,1.8] 31 1.26 292.13 ± 0.09

pade33 [0.0,2.0] 34 1.27 294.86 ± 0.08

pade33 [0.0,2.2] 40 1.42 287.95 ± 0.07

pade33 [0.0,2.5] 46 1.26 284.18 ± 0.11

pade33 [0.0,2.8] 52 1.13 286.41 ± 0.07

pade33 [0.0,3.0] 55 1.14 288.34 ± 0.10

pade33 [0.0,3.5] 63 1.15 293.55 ± 0.10

pade43 [0.0,1.8] 30 1.33 289.52 ± 0.09

pade43 [0.0,2.0] 33 1.35 294.86 ± 0.08

pade43 [0.0,2.2] 39 1.50 286.26 ± 0.07

pade43 [0.0,2.5] 45 1.34 284.24 ± 0.10

pade43 [0.0,2.8] 51 1.20 286.41 ± 0.07

pade43 [0.0,3.0] 54 1.21 288.41 ± 0.10

pade43 [0.0,3.5] 62 1.22 293.80 ± 0.10

pade42 [0.0,1.8] 31 1.27 292.71 ± 0.10

pade42 [0.0,2.0] 34 1.28 295.94 ± 0.09

pade42 [0.0,2.2] 40 1.42 287.96 ± 0.07

pade42 [0.0,2.5] 46 1.26 284.67 ± 0.08

pade42 [0.0,2.8] 52 1.14 288.24 ± 0.07

pade42 [0.0,3.0] 55 1.14 288.42 ± 0.10

pade42 [0.0,3.5] 63 1.15 293.80 ± 0.10

disp [0.0,1.8] 33 1.11 290.88 ± 0.09

disp [0.0,2.0] 36 1.11 292.28 ± 0.08

disp [0.0,2.2] 42 1.27 283.05 ± 0.07

disp [0.0,2.5] 48 1.14 284.06 ± 0.11

disp [0.0,2.8] 54 1.01 282.62 ± 0.06

disp [0.0,3.0] 57 1.03 288.18 ± 0.10

disp [0.0,3.5] 65 1.05 293.33 ± 0.11

Figure 41: Results for different fits on E4 ensemble
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function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 6 0.96 232.08 ± 0.12

pade32 [0.0,2.0] 8 1.06 217.88 ± 0.08

pade32 [0.0,2.2] 9 0.92 217.95 ± 0.07

pade32 [0.0,2.5] 10 0.92 228.37 ± 0.07

pade32 [0.0,2.8] 11 1.08 226.92 ± 0.07

pade32 [0.0,3.0] 13 1.08 231.15 ± 0.15

pade32 [0.0,3.5] 14 1.08 232.40 ± 0.14

pade33 [0.0,1.8] 5 1.21 232.08 ± 0.12

pade33 [0.0,2.0] 7 1.27 217.88 ± 0.08

pade33 [0.0,2.2] 8 1.10 217.95 ± 0.07

pade33 [0.0,2.5] 9 1.07 228.37 ± 0.07

pade33 [0.0,2.8] 10 1.25 226.85 ± 0.07

pade33 [0.0,3.0] 12 1.27 225.95 ± 0.20

pade33 [0.0,3.5] 13 1.26 232.30 ± 0.15

pade43 [0.0,1.8] 4 1.61 232.08 ± 0.12

pade43 [0.0,2.0] 6 1.59 217.88 ± 0.08

pade43 [0.0,2.2] 7 1.37 217.94 ± 0.07

pade43 [0.0,2.5] 8 1.25 227.00 ± 0.06

pade43 [0.0,2.8] 9 1.49 225.69 ± 0.06

pade43 [0.0,3.0] 11 1.52 225.31 ± 0.06

pade43 [0.0,3.5] 12 1.51 232.30 ± 0.15

pade42 [0.0,1.8] 5 1.21 232.09 ± 0.12

pade42 [0.0,2.0] 7 - –

pade42 [0.0,2.2] 8 - –

pade42 [0.0,2.5] 9 1.07 228.37 ± 0.07

pade42 [0.0,2.8] 10 1.25 226.92 ± 0.07

pade42 [0.0,3.0] 12 1.26 231.19 ± 0.15

pade42 [0.0,3.5] 13 1.26 232.43 ± 0.14

disp [0.0,1.8] 7 - –

disp [0.0,2.0] 9 - –

disp [0.0,2.2] 10 - –

disp [0.0,2.5] 11 0.74 224.08 ± 0.06

disp [0.0,2.8] 12 0.91 223.18 ± 0.06

disp [0.0,3.0] 14 0.95 230.86 ± 0.16

disp [0.0,3.5] 15 0.95 232.74 ± 0.17

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 6 0.98 276.82 ± 0.14

pade32 [0.0,2.0] 8 1.08 259.89 ± 0.10

pade32 [0.0,2.2] 9 0.94 259.80 ± 0.09

pade32 [0.0,2.5] 10 1.05 278.10 ± 0.11

pade32 [0.0,2.8] 11 1.25 266.83 ± 0.09

pade32 [0.0,3.0] 13 1.09 276.00 ± 0.18

pade32 [0.0,3.5] 14 1.09 277.28 ± 0.17

pade33 [0.0,1.8] 5 1.22 276.82 ± 0.14

pade33 [0.0,2.0] 7 1.30 259.89 ± 0.10

pade33 [0.0,2.2] 8 1.12 259.80 ± 0.09

pade33 [0.0,2.5] 9 1.21 277.29 ± 0.11

pade33 [0.0,2.8] 10 1.49 266.00 ± 0.09

pade33 [0.0,3.0] 12 1.27 275.81 ± 0.18

pade33 [0.0,3.5] 13 1.27 277.16 ± 0.17

pade43 [0.0,1.8] 4 1.63 276.81 ± 0.14

pade43 [0.0,2.0] 6 1.62 259.89 ± 0.10

pade43 [0.0,2.2] 7 - –

pade43 [0.0,2.5] 8 1.52 277.29 ± 0.11

pade43 [0.0,2.8] 9 1.87 266.82 ± 0.09

pade43 [0.0,3.0] 11 1.53 276.02 ± 0.18

pade43 [0.0,3.5] 12 1.57 267.20 ± 0.07

pade42 [0.0,1.8] 5 - –

pade42 [0.0,2.0] 7 - –

pade42 [0.0,2.2] 8 - –

pade42 [0.0,2.5] 9 1.27 278.10 ± 0.11

pade42 [0.0,2.8] 10 1.50 266.83 ± 0.09

pade42 [0.0,3.0] 12 1.27 276.05 ± 0.18

pade42 [0.0,3.5] 13 1.27 277.31 ± 0.17

disp [0.0,1.8] 7 - –

disp [0.0,2.0] 9 - –

disp [0.0,2.2] 10 - –

disp [0.0,2.5] 11 0.79 275.10 ± 0.10

disp [0.0,2.8] 12 1.05 264.32 ± 0.09

disp [0.0,3.0] 14 0.96 275.74 ± 0.20

disp [0.0,3.5] 15 0.96 280.91 ± 0.34

Figure 42: Results for different fits without twisting on E4 ensemble
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function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 0.97 322.86 ± 0.14

pade32 [0.0,2.0] 35 1.10 330.56 ± 0.28

pade32 [0.0,2.2] 41 1.03 328.05 ± 0.25

pade32 [0.0,2.5] 47 1.02 331.64 ± 0.28

pade32 [0.0,2.8] 53 0.96 316.13 ± 0.21

pade32 [0.0,3.0] 56 0.90 331.16 ± 0.19

pade32 [0.0,3.5] 64 0.96 316.08 ± 0.17

pade33 [0.0,1.8] 31 1.02 322.79 ± 0.15

pade33 [0.0,2.0] 34 1.15 332.95 ± 0.30

pade33 [0.0,2.2] 40 1.08 328.28 ± 0.26

pade33 [0.0,2.5] 46 1.06 331.76 ± 0.28

pade33 [0.0,2.8] 52 1.00 316.36 ± 0.34

pade33 [0.0,3.0] 55 0.93 331.16 ± 0.19

pade33 [0.0,3.5] 63 1.00 330.37 ± 0.35

pade43 [0.0,1.8] 30 1.07 321.60 ± 0.15

pade43 [0.0,2.0] 33 1.21 332.96 ± 0.30

pade43 [0.0,2.2] 39 1.12 328.08 ± 0.26

pade43 [0.0,2.5] 45 1.11 334.62 ± 0.34

pade43 [0.0,2.8] 51 1.06 297.99 ± 0.09

pade43 [0.0,3.0] 54 0.97 331.07 ± 0.19

pade43 [0.0,3.5] 62 1.06 303.25 ± 0.08

pade42 [0.0,1.8] 31 1.02 322.89 ± 0.14

pade42 [0.0,2.0] 34 1.15 330.50 ± 0.28

pade42 [0.0,2.2] 40 1.08 327.92 ± 0.25

pade42 [0.0,2.5] 46 1.06 331.58 ± 0.28

pade42 [0.0,2.8] 52 1.00 316.12 ± 0.21

pade42 [0.0,3.0] 55 0.93 331.07 ± 0.18

pade42 [0.0,3.5] 63 1.00 316.01 ± 0.17

disp [0.0,1.8] 33 0.93 318.97 ± 0.20

disp [0.0,2.0] 36 1.06 337.34 ± 0.43

disp [0.0,2.2] 42 0.99 332.02 ± 0.53

disp [0.0,2.5] 48 0.98 345.89 ± 0.43

disp [0.0,2.8] 54 0.92 329.65 ± 0.34

disp [0.0,3.0] 57 0.88 339.77 ± 0.37

disp [0.0,3.5] 65 0.93 320.06 ± 0.23

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,1.8] 32 0.95 366.69 ± 0.15

pade32 [0.0,2.0] 35 1.11 376.29 ± 0.28

pade32 [0.0,2.2] 41 1.04 366.30 ± 0.24

pade32 [0.0,2.5] 47 1.02 373.21 ± 0.28

pade32 [0.0,2.8] 53 1.00 339.30 ± 0.09

pade32 [0.0,3.0] 56 0.92 370.74 ± 0.20

pade32 [0.0,3.5] 64 0.96 349.55 ± 0.18

pade33 [0.0,1.8] 31 0.99 366.70 ± 0.15

pade33 [0.0,2.0] 34 1.16 376.53 ± 0.29

pade33 [0.0,2.2] 40 1.09 366.31 ± 0.24

pade33 [0.0,2.5] 46 1.07 373.21 ± 0.28

pade33 [0.0,2.8] 52 1.02 357.90 ± 0.40

pade33 [0.0,3.0] 55 0.96 370.74 ± 0.20

pade33 [0.0,3.5] 63 1.00 349.69 ± 0.18

pade43 [0.0,1.8] 30 1.04 365.24 ± 0.16

pade43 [0.0,2.0] 33 1.21 377.42 ± 0.29

pade43 [0.0,2.2] 39 1.15 348.36 ± 0.11

pade43 [0.0,2.5] 45 1.11 373.21 ± 0.28

pade43 [0.0,2.8] 51 1.09 339.30 ± 0.09

pade43 [0.0,3.0] 54 1.00 370.64 ± 0.20

pade43 [0.0,3.5] 62 1.03 388.45 ± 0.56

pade42 [0.0,1.8] 31 0.99 366.73 ± 0.15

pade42 [0.0,2.0] 34 1.16 376.37 ± 0.28

pade42 [0.0,2.2] 40 1.09 366.25 ± 0.24

pade42 [0.0,2.5] 46 1.07 373.18 ± 0.28

pade42 [0.0,2.8] 52 1.02 357.59 ± 0.21

pade42 [0.0,3.0] 55 0.96 370.63 ± 0.20

pade42 [0.0,3.5] 63 1.00 349.68 ± 0.18

disp [0.0,1.8] 33 0.90 362.16 ± 0.20

disp [0.0,2.0] 36 1.06 384.67 ± 0.43

disp [0.0,2.2] 42 1.00 367.97 ± 0.39

disp [0.0,2.5] 48 0.98 387.41 ± 0.42

disp [0.0,2.8] 54 0.94 372.67 ± 0.33

disp [0.0,3.0] 57 0.90 381.34 ± 0.36

disp [0.0,3.5] 65 0.92 353.30 ± 0.24

Figure 43: Results for different fits on E5 ensemble
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−10

pade32 [0.0,0.7] 23 1.51 407.37 ± 0.27

pade32 [0.0,0.8] 30 1.42 422.50 ± 0.26

pade32 [0.0,0.9] 35 1.38 418.78 ± 0.29

pade32 [0.0,1.0] 41 1.43 416.49 ± 0.28

pade32 [0.0,1.1] 44 1.37 408.18 ± 0.14

pade32 [0.0,1.3] 54 1.33 414.49 ± 0.13

pade32 [0.0,1.5] 61 1.35 398.89 ± 0.17

pade33 [0.0,0.7] 22 1.58 407.37 ± 0.27

pade33 [0.0,0.8] 29 1.47 420.65 ± 0.25

pade33 [0.0,0.9] 34 1.44 387.34 ± 0.72

pade33 [0.0,1.0] 40 1.48 402.12 ± 0.15

pade33 [0.0,1.1] 43 1.40 401.79 ± 0.13

pade33 [0.0,1.3] 53 1.36 412.96 ± 0.12

pade33 [0.0,1.5] 60 1.39 393.56 ± 0.20

pade43 [0.0,0.7] 21 1.65 404.74 ± 0.25

pade43 [0.0,0.8] 28 1.53 422.95 ± 0.26

pade43 [0.0,0.9] 33 1.47 421.31 ± 0.30

pade43 [0.0,1.0] 39 1.52 416.60 ± 0.28

pade43 [0.0,1.1] 42 1.45 407.28 ± 0.14

pade43 [0.0,1.3] 52 1.40 412.97 ± 0.12

pade43 [0.0,1.5] 59 1.42 398.89 ± 0.17

pade42 [0.0,0.7] 22 1.58 407.39 ± 0.27

pade42 [0.0,0.8] 29 1.47 423.01 ± 0.26

pade42 [0.0,0.9] 34 1.42 421.33 ± 0.30

pade42 [0.0,1.0] 40 1.48 416.63 ± 0.28

pade42 [0.0,1.1] 43 1.41 408.19 ± 0.14

pade42 [0.0,1.3] 53 1.37 414.49 ± 0.13

pade42 [0.0,1.5] 60 1.39 398.95 ± 0.18

disp [0.0,0.7] 24 1.45 405.42 ± 0.26

disp [0.0,0.8] 31 1.37 416.84 ± 0.24

disp [0.0,0.9] 36 1.35 406.47 ± 0.31

disp [0.0,1.0] 42 1.39 410.11 ± 0.20

disp [0.0,1.1] 45 1.33 405.23 ± 0.13

disp [0.0,1.3] 55 1.28 409.52 ± 0.12

disp [0.0,1.5] 62 1.31 398.02 ± 0.17

Nf = 2+ 1 partially quenched

function interval N χ2red aµ/10
−10

pade32 [0.0,0.7] 23 1.47 435.35 ± 0.24

pade32 [0.0,0.8] 30 1.43 471.74 ± 0.26

pade32 [0.0,0.9] 35 1.39 466.27 ± 0.30

pade32 [0.0,1.0] 41 1.35 436.32 ± 0.15

pade32 [0.0,1.1] 44 1.37 440.93 ± 0.14

pade32 [0.0,1.3] 54 1.33 454.28 ± 0.13

pade32 [0.0,1.5] 61 1.29 453.31 ± 0.12

pade33 [0.0,0.7] 22 1.54 435.30 ± 0.24

pade33 [0.0,0.8] 29 1.49 464.33 ± 0.24

pade33 [0.0,0.9] 34 1.44 466.25 ± 0.30

pade33 [0.0,1.0] 40 1.39 436.31 ± 0.15

pade33 [0.0,1.1] 43 1.41 440.90 ± 0.14

pade33 [0.0,1.3] 53 1.37 454.27 ± 0.13

pade33 [0.0,1.5] 60 1.33 451.28 ± 0.12

pade43 [0.0,0.7] 21 1.62 435.20 ± 0.24

pade43 [0.0,0.8] 28 1.54 464.24 ± 0.24

pade43 [0.0,0.9] 33 1.48 469.67 ± 0.31

pade43 [0.0,1.0] 39 1.43 453.81 ± 0.30

pade43 [0.0,1.1] 42 1.46 440.30 ± 0.14

pade43 [0.0,1.3] 52 1.41 452.73 ± 0.13

pade43 [0.0,1.5] 59 1.37 453.30 ± 0.12

pade42 [0.0,0.7] 22 1.54 435.36 ± 0.24

pade42 [0.0,0.8] 29 1.49 472.05 ± 0.26

pade42 [0.0,0.9] 34 1.43 468.71 ± 0.30

pade42 [0.0,1.0] 40 1.39 453.71 ± 0.29

pade42 [0.0,1.1] 43 1.41 440.94 ± 0.14

pade42 [0.0,1.3] 53 1.37 454.28 ± 0.13

pade42 [0.0,1.5] 60 1.33 453.35 ± 0.12

disp [0.0,0.7] 24 1.41 434.78 ± 0.23

disp [0.0,0.8] 31 1.38 467.99 ± 0.24

disp [0.0,0.9] 36 1.36 447.97 ± 0.70

disp [0.0,1.0] 42 1.30 444.18 ± 0.26

disp [0.0,1.1] 45 1.33 438.89 ± 0.14

disp [0.0,1.3] 55 1.29 449.27 ± 0.12

disp [0.0,1.5] 62 1.25 449.39 ± 0.16

Figure 44: Results for different fits on F6 ensemble
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fit results for chiral extrapolation of aµ

This part of the appendix shows the fit results for the chiral extrapolation.

Nf = 2+ 1 partially quenched

function N χ2red A B C aµ/10
−10

Poly (6.6) 2 16.9 590.6 1551.1 1626.5 562.9

Chiral (6.5) 2 20.2 688.0 -316.8 894.0 617.0

Table 4: Extrapolation results for Nf = 2+ 1 partially quenched

Nf = 2

function N χ2red A B C aµ/10
−10

Poly (6.6) 2 8.2 516.1 -1283.3 1205.7 493.1

Chiral (6.5) 2 9.7 588.9 -373.4 657.0 534.2

Table 5: Extrapolation results for Nf = 2
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