
IMPROVED STOCHASTIC ESTIMATORS
FOR DISCONNECTED CONTRIBUTIONS TO MESONIC FORM FACTORS

IN LATTICE QCD

diplomarbeit im fachbereich physik

vera magdalena gülpers

Institut für Kernphysik
Johannes Gutenberg-Universität Mainz

25. Mai 2011





A B S T R A C T

To determine certain physical quantities like form factors, diagrams containing
quark disconnected loops have to be considered. For the calculation of these
loops one needs the quark propagator which on a space-time lattice requires the
inversion of a very large matrix. Since an explicit calculation is too expensive
in computer time, such inversions have to be done stochastically. In this thesis
some methods to improve the stochastic estimates for the disconnected loops are
tested. It is figured out which method works best, and the required parameters
are tuned to obtain an optimal balance between the remaining statistical errors
and the required computer time. Finally, the disconnected contribution to the
scalar form factor of the pion at zero momentum transfer Q2 = 0 is calculated.

Z U S A M M E N FA S S U N G

Bei der Berechnung bestimmter physikalischer Größen wie Formfaktoren erhält
man Beiträge von Diagrammen mit unverbundenen Quarkschleifen. Um solche
Schleifen zu berechnen, benötigt man den Quarkpropagator. Diesen erhält man
auf einem Raum-Zeit Gitter durch Invertieren einer sehr großen Matrix. Da
eine explizite Rechnung zu viel Rechenzeit erfordert würde, müssen solche Ma-
trizen stochastisch invertiert werden. In der vorliegenden Arbeit werden einige
Methoden zur Verbeserung des stochastischen Schätzers für die unverbundenen
Schleifen getestet. Die beste Methode wird bestimmt und die benötigten Pa-
rameter so angepasst, dass eine optimale Balance zwischen dem verbleibenden
statistischen Fehler und der erforderlichen Rechenzeit entsteht. Zuletzt wird der
unverbundene Beitrag zum skalaren Formfaktor des Pions bei verschwindendem
Impulsübertrag Q2 = 0 berechnet.
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I N T R O D U C T I O N

The Standard Model of particle physics [1] is the established theory to describe
the fundamental particles and their interactions. The interactions contained in
the Standard Model are the electromagnetic, the weak and the strong force,
where the electromagnetic and the weak force can be unified to the so-called
electroweak interaction. While the strong force only acts on the quarks, the
electroweak force couples to both quarks and leptons. The three fundamental
interactions can be described by gauge theories, where the gauge bosons are the
carriers of the force. The gauge theory that corresponds to the strong force is
called Quantum Chromodynamics (QCD) [2]. A more detailed introduction to
QCD will be given in chapter 1. The associated gauge bosons, i.e. the mediators
of the strong force, are the gluons. Gluons couple to objects that carry colour,
which is the charge that belongs to the strong interaction. Three different colours
are possible, conventionally called red, green and blue. Every quark has a
colour, thus quarks can interact with each other via the strong force. Since
gluons carry colour, self interactions between gluons are also possible. The
strength of the coupling of the strong interaction depends on the energy region
where the interaction takes place. The running coupling has two interesting
features. For high energies the coupling becomes small, thus the quarks and
gluons become asymptotically free. For small energies the coupling becomes
strong and quarks and gluons are confined to bound states called hadrons.
While in the region of small coupling perturbative expansions in the coupling
constant can be performed, such an expansion is not possible in the low energy
region. In 1974, K. Wilson developed a method to treat QCD non-perturbatively
by introducing an Euclidean space-time lattice [3]. Through the discretisation
of the space-time QCD is regularised. Due to the finite lattice spacing one
obtains a natural momentum cutoff, thus the ultraviolet divergences appearing
in loop integrals are removed. Another advantage of introducing a space-time
lattice is that numerical techniques from statistical mechanics can be used and
numerical simulations of physical processes on computers are possible. A short
introduction to lattice QCD can be found in chapter 2.

Many physical quantities that can be calculated in lattice QCD contain contri-
butions from diagrams with disconnected quark lines. In the following these
diagrams are called disconnected diagrams, where the terminology “discon-
nected” refers to quark disconnected and does not exclude gluons connecting
two quark lines. In the following we will concentrate on diagrams with a dis-
connected loop, thus a disconnected quark line from one lattice point to the
same point. Quantities containing disconnected loops are for example the scalar
form factor of the pion [4] or the strangeness content of the nucleon [5]. In the
following we will concentrate on the scalar form factor of the pion. A short
introduction to pions and form factors will be given in sections 1.3 and 1.4.
The scalar form factor describes the coupling of a scalar particle to a pion, for
example the coupling of a Higgs boson to a pion [6]. Since the Higgs boson
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2 introduction

has so far not been discovered, no experimental value for the scalar form factor
of the pion exists. Thus one has to obtain values from theoretical calculations.
However, lattice QCD provides a reasonable possibility to calculate form factors.
While for the vector form factor, which occurs in the coupling of a photon to a
pion, one can show [7] that the disconnected contribution vanishes, one expects
the disconnected contribution to the scalar form factor to be non-zero. Thus it is
important to develop methods to calculate these contribution as accurately as
possible. However, the calculation of diagrams containing disconnected loops
requires more numerical effort than the calculation of connected parts, since the
propagator from every lattice point to all lattice points – the so-called all-to-all
propagator – is needed. On the lattice this requires an inversion of a 12V × 12V
matrix, where V is the total number of lattice points and 12 results from three
colour- and four Dirac-components. Since V is usually of O(106) and higher,
an exact calculation using point sources (see section 3.1) is too expensive in
computer time. Therefore the matrix has to be inverted stochastically. This is
done using the method of stochastic sources [8], which is introduced in section
3.2. To invert the matrix, one has to solve the Dirac equation on the lattice for
every stochastic source. Since the solution of the Dirac equation is expensive in
computer time, one is interested in using as few sources as possible. However,
fewer sources result in larger statistical errors, which requires the development
of techniques to improve the stochastic estimates. Three techniques [9] – dilution,
the hopping parameter expansion, and the truncated solver method – will be
introduced in sections 3.3 to 3.5. In chapter 4 all three methods will be tested
with the Klein-Gordon operator as a toy model on a two-dimensional 10× 10
lattice. The tests will then be continued using the Wilson-Dirac operator in
chapter 5. At first the loop will be calculated for the unimproved Wilson-Dirac
operator on an 8× 83 lattice and afterwards for the O(a)-improved Wilson-Dirac
operator using four different lattices. Here the hopping parameter expansion
has to be adapted to the case of the improved Wilson-Dirac operator. It will be
figured out which method works most efficiently and the required parameters
will be tuned for one of the tested lattices such that one obtains an optimal
balance between the remaining statistical error and the computer time needed
for the calculation.
In chapter 6 we will discuss how the disconnected contribution to the scalar form
factor can be extracted from lattice calculations using the so-called summation
method [10]. Finally the disconnected contribution to the scalar charge, thus the
scalar form factor for zero momentum transfer Q2 = 0, will be calculated for the
E4 ensemble, where the parameters for the calculation of the loop have already
been tuned.



1
T H E O R E T I C A L B A C K G R O U N D

1.1 qcd as a gauge theory

Quantum Chromodynamics (QCD) is a non-Abelian gauge theory in SU(3)
colour-space. Since SU(3) has eight generators, there exist eight gluons which
mediate the strong force. The Lagrangian density of QCD is given by [2]

L = Ψ(iγµD
µ −m)Ψ+

1

2g2
Tr
[(
Faµνt

a
)2] , (1.1)

where the ta with a = 1, . . . , 8 are the eight generators of SU(3), which can be
represented by the Gell-Mann matrices. Dµ is the covariant derivative

Dµ = ∂µ + iAaµt
a (1.2)

with the gauge fields Aaµ and the strong coupling g. The field strength tensor
Faµν for the strong interaction is given by

Faµν = ∂µA
a
ν − ∂νA

a
µ − fabcAbµA

c
ν . (1.3)

The fabc are the SU(3) structure constants. They are defined by the commutators
of the generators of the group[

ta, tb
]
= ifabctc . (1.4)

The Lagrangian (1.1) is invariant under local SU(3) gauge transformations

Ψ(x)→ Ψ ′(x) = Ω(x)Ψ(x)

Ψ(x)→ Ψ
′
(x) = Ψ(x)Ω(x)� (1.5)

Aaµ(x)t
a → A ′aµ (x)ta = Ω(x)Aaµ(x)t

aΩ(x)� + i (∂µΩ(x))Ω(x)�

with a local SU(3) matrix Ω(x).

1.2 the running coupling constant

In QCD one can define an analogue of the fine structure constant

αs =
g2

4π
. (1.6)

As in QED, αs is not a constant but depends on the momentum transferQ2. Such
a Q2 dependence of the coupling constant is known as running coupling. After
renormalisation of QCD at a scaleΛ one finds as a solution of the renormalisation
group equation [2]

αs(Q
2) =

αs(Λ
2)

1+αs(Λ2)
33−2nf
12π log(Q

2

Λ2
)

(1.7)
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4 theoretical background

with the number nf = 6 of quark flavours in the standard model. For large
momentum transfers, i.e. small distances, the coupling αs becomes small, which
leads to the so called asymptotic freedom.
For small momentum transfers, i.e. large distances, the strong interaction gets
strong. This behaviour indicates confinement, which means that quarks or
gluons cannot exist as free particles. In this region perturbation theory cannot be
used anymore. However, QCD can be regularised by introducing a space-time
lattice. With lattice QCD one has the possibility to study also non-perturbative
phenomena.

1.3 pions

Pions are pseudoscalar mesons consisting of a quark and an antiquark of the
first generation. They have the quantum numbers JPC = 0−+. Three types of
pions with different charges are possible

π+ = |ud〉 π− = |du〉 π0 =
1√
2

(
|uu〉− |dd〉

)
, (1.8)

which form an isospin triplet. The masses [11] of the pions are

π± : m =139.57018± 0.00035MeV

π0 : m =134.9766± 0.0006MeV .
(1.9)

Pions can be identified as pseudo-Goldstone bosons of the breaking of chiral
symmetry. In exact chiral symmetry, thus vanishing masses for the light quarks,
the Lagrangian for these quarks can be separated into a left- and a right-handed
part.

L = ΨLiγµD
µΨL +ΨRiγµD

µΨR (1.10)

If nf is the number of light flavours, both parts can be transformed separately
by a global SU(nf) transformation in flavour-space

ΨL/R → eiαiγ5tiΨL/R ΨL/R → ΨL/Re
iαiγ5ti (1.11)

with the generators ti, i = 1, ...,n2f − 1 of SU(nf). Thus the Lagrangian (1.10)
has a global SU(nf)L × SU(nf)R symmetry. However, the QCD vacuum is not
invariant under the full symmetry group SU(nf)L × SU(nf)R, due to the non-
vanishing quark condensate [2]

〈0|qq|0〉 = 〈0|qLqR + qRqL|0〉 6= 0 (1.12)

that mixes the two heliticities. The vacuum (1.12) is invariant only if right- and
left-handed fields are transformed using the same SU(nf) matrix. Therefore the
SU(nf)L × SU(nf)R symmetry is broken spontaneously to SU(nf). Due to the
Goldstone theorem [12] n2f − 1 massless Goldstone bosons occur.
Since the light quarks are not massless the SU(nf)L× SU(nf)R symmetry is also
broken explicitly by the mass term in the Lagrangian. This mechanism generates
masses for the (pseudo-) Goldstone bosons. If one only considers the two lightest
flavours u and d, so nf = 2, the associated pseudo-Goldstone bosons are the 3

pions (π±,π0). For nf = 3 additionally the kaons and the η occur.



1.4 form factors 5

1.4 form factors

Form factors F(Q2) contain information about the substructure of a particle.
They describe how the differential cross section differs from the cross section of
a point-like particle [13]

dσ
dΩ

=

(
dσ
dΩ

)
point

∣∣F(Q2)∣∣2 (1.13)

with the momentum transfer q2 = (p− p ′)2 and Q2 = −q2, where p is the
four-momentum of the incoming and p ′ of the outgoing state. Form factors are
measured in scattering experiments.
In the non-relativistic case, form factors can be written as the Fourier transform
of the charge distribution. Therefore, in spherical symmetry, the form factor is
related to the charge radius.

F(Q2) = 1−
1

6

〈
r2
〉
Q2 +O(Q4) (1.14)〈

r2
〉
= −6

dF(Q2)
dQ2

∣∣∣
Q2=0

(1.15)

For the charged pion for example the vector form factor can be calculated from
the matrix element [4, 14, 15, 16, 17]

〈π
(
p ′
)
|Vµ|π (p)〉 = (p+ p ′)µFV

(
Q2
)

(1.16)

with

Vµ =
2

3
uγµu−

1

3
dγµd . (1.17)

The vector form factor occurs in the coupling of a photon to a pion, for example
in pion electron scattering.

π(p) π(p ′)

e e

γ

Figure 1.1: Feynman diagram of pion electron scattering

The scalar form factor can be calculated as [4, 14, 15, 18]

〈π
(
p ′
)
|S|π (p)〉 = F

S

(
Q2
)

with S = mddd+muuu . (1.18)

This describes the coupling of a pion to a scalar particle such as the Higgs boson.
Since the Higgs boson so far is not discovered, the only possibility to obtain
values for the scalar form factor of the pions are theoretical calculations. Such
calculations can be performed on space-time lattices.





2
Q U A N T U M F I E L D T H E O R I E S O N T H E L AT T I C E

As mentioned above, QCD can be regularised by introducing a T × L3 lattice Λ
in space-time

Λ =
{
n ∈N4 |n1,n2,n3 = 0, 1, ...,L− 1 ; n0 = 0, 1, ..., T − 1

}
(2.1)

with T lattice points in time direction and L lattice points for each three spatial
directions.

The lattice in momentum space is obtained by Fourier transformation. The dual
lattice then is given by [19]

Λ∗ =

{
p ∈ R4

∣∣∣p0 = 2π

T
n0 ; pi =

2π

L
ni

}
. (2.2)

Here one can see that on the lattice the momenta are discrete and only values in
the first Brillouin zone are allowed:

−
π

a
< pµ 6

π

a
. (2.3)

Therefore on the lattice one has a “natural” momentum cutoff.

The lattice Λ (2.1) is defined in Euclidean metric. To obtain Euclidean metric
one has to switch to imaginary times t→ iτ , a procedure called Wick rotation.
In Euclidean metric the QCD action is given by [19]

SE =

Nf∑
f=1

∫
d4xΨ

(f)
(x) (γµDµ +mf)Ψ

(f)(x)+
1

2g2

∫
d4xTr [Fµν(x)Fµν(x)] (2.4)

with the covariant derivative

Dµ = ∂µ + iAµ (2.5)

and the field strength tensor for the strong interaction

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν] . (2.6)

Here we use the abbreviation Aaνta = Aν.

The Euclidean gamma matrices have to fulfil the property

{γµ,γν} = 2δµν . (2.7)

In the chiral representation they are given by [19]

γµ =

(
0 eµ

(eµ)
� 0

)
with e0 = 1

2×2 and ek = −iσk .

(2.8)

In the following some quantum field theories we will use in chapters 4 and 5,
namely the free Klein-Gordon theory, the free Dirac theory and QCD, will be
formulated on the lattice.

7



8 quantum field theories on the lattice

2.1 the klein-gordon operator on the lattice

First of all we will discretise the free Klein-Gordon operator DKG on the lattice.
Spin-0 particles with mass m fulfil the Klein-Gordon equation(

−∂µ∂µ +m2
)
Φ(x) = DKGΦ(x) = 0, (2.9)

where the Euclidean metric is used. On the lattice the partial derivative in the
Klein-Gordon operator is discretised using the difference quotient

∂µ∂µΦ(n)→ −
2d

a2
·Φ(n) +

d∑
µ=1

1

a2
(Φ(n+ aµ) +Φ(n− aµ)) , (2.10)

where n are the coordinates in lattice units, n+ aµ are the coordinates of the
neighbouring point in µ direction, a is the lattice spacing and d the dimension-
ality.
In total the Klein-Gordon operator on the lattice can be written as

DKGΦ(n) =
m2a2 + 2d

a2
Φ(n) −

d∑
µ=0

1

a2
(Φ(n+ aµ) +Φ(n− aµ)) . (2.11)

DKG can be seen as an N×N matrix where N is the total number of lattice points.
The matrix DKG can be separated into two parts, a part which is proportional to
the unit matrix and a part H that only couples nearest neighbours. Therefore
DKG can be written as

DKG = C (1− κH) , (2.12)

where for the Klein-Gordon operator κ is defined as

κ ≡ a2

2 (m2a2 + 2d)
(2.13)

and C = 1/(2κ). Since applying H means “hopping” from one lattice point to a
neighbouring point, H is called hopping matrix and κ the hopping parameter.

2.2 naive discretisation of the dirac operator

In the following the Euclidean QCD action (2.4) will be discretised as described
in [19]1.

As a starting point for the discretisation of QCD we look at the (Euclidean)
action S0F of a free fermion. In the continuum it is given by

S0F =

∫
d4xΨ(x) (γµ∂µ +m)Ψ(x) . (2.14)

When introducing the 4D lattice (2.1) with lattice spacing a the integral in (2.14)
has to be replaced by a sum over all lattice points and the derivative by a

1 similar derivations can also be found for example in [20, 21, 22, 23]



2.3 qcd on the lattice 9

symmetric difference quotient. Thus we obtain the discretisation of the free
fermion action

S0F = a
4
∑
n∈Λ

Ψ(n)

 3∑
µ=0

γµ
Ψ(n+ aµ) −Ψ(n− aµ)

2a
+mΨ(n)

 . (2.15)

2.3 qcd on the lattice

As in the continuum, invariance under local SU(3) transformations

Ψ(n)→ Ψ ′(n) = Ω(n)Ψ(n) Ψ(n)→ Ψ
′
(n) = Ψ(n)Ω(n)� (2.16)

is required. Obviously the first summand of (2.15) is not gauge invariant. To
construct a gauge invariant action one needs objects transforming like [19, 23]

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ aµ)� . (2.17)

Objects that have the required transformation behaviour are the so-called parallel
transporters

U(x,y) = P.O.exp

−

x∫
y

dzAµ(z)

 , (2.18)

where “P.O.” stands for path ordering. Under SU(3) gauge transformations (1.5)
the U(x,y) transforms as

U(x,y)→ Ω(x)U(x,y)Ω(y)� . (2.19)

A parallel transporter between two neighbouring points n and n+ aµ

U(n,n+ aµ) = Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ aµ)� (2.20)

is exactly what we need. The gauge fields Uµ(n) are elements of the gauge
group SU(3). They “live” on the links between two lattice points and therefore
are called link variables. Some link variables are shown in figure 2.1.

n n+ aµ

Uµ(n)

n− aµ n

U−µ(n) ≡ Uµ(n− aµ)�

Figure 2.1: Link variables

Now a gauge invariant action can be constructed.

SF = a
4
∑
n∈Λ

Ψ(n)

 3∑
µ=0

γµ
Uµ(n)Ψ(n+ aµ) −U−µ(n)Ψ(n− aµ)

2a
+mΨ(n)


(2.21)
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The smallest closed loop on the lattice, a so-called plaquette Uµν(n), can be
constructed as a product of four link variables,

Uµν(n) = Uµ(n)Uν(n+ aµ)Uµ(n+ aν)�Uν(n)
� . (2.22)

A picture of a plaquette is shown in figure 2.2.

Uµ(n)

Uν(n+ aµ)

Uµ(n+ aν)�

Uν(n)
�

n n+ aµ

n+ aµ+ aνn+ aν

Figure 2.2: Plaquette Uµν(n)

Under the gauge transformation (2.17) the plaquette transforms as

Uµν(n) = Ω(n)Uµν(n)Ω(n)� . (2.23)

Therefore the trace of a plaquette is gauge invariant. These traces can be used to
construct the Wilson gauge action

SG[U] =
2

g2

∑
n∈Λ

∑
µ<ν

Re Tr [1−Uµν(n)] . (2.24)

2.4 fermion doubling and wilson-dirac operator

Rewriting the fermion action (2.21) as

SF = a
4
∑

n,m∈Λ
Ψ(n)D(n|m)Ψ(m) (2.25)

results in the naive Dirac operator on the lattice

D(n|m) =

3∑
µ=0

γµ
Uµ(n)δn+aµ,m −U−µ(n)δn−aµ,m

2a
+mδn,m . (2.26)

To calculate the Dirac operator in momentum space, D(n|m) has to be Fourier
transformed according to

D̃(p|q) =
1

|Λ|

∑
n,m∈Λ

e−ip·naD(n|m) eiq·ma (2.27)

where |Λ| is the total number of lattice points. Inserting (2.26) into the Fourier
transformation one obtains

D̃(p|q) = δ(p− q)

m1+
i

a

3∑
µ=0

γµ sin(pµa)


︸ ︷︷ ︸

D̃(p)

. (2.28)
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In addition to p = (0, 0, 0, 0), the massless Dirac operator in momentum space
D̃(p)|m=0 also vanishes if the components of the four momentum are either 0
or π/a. This leads to 16 poles representing 16 fermions on the lattice compared
to one pole in the continuum. This problem is known as the so-called fermion
doubling. It can be solved by adding an additional term to the Dirac operator in
momentum space.

D̃(p) = m1+
i

a

3∑
µ=0

γµ sin(pµa) + 1
1

a

3∑
µ=0

(1− cos(pµa)) (2.29)

Obviously the new summand in (2.29) only vanishes for the physical pole
p = (0, 0, 0, 0). Transforming back to postition space one obtains an additional
term in the Dirac operator

−
a

2

3∑
µ=0

δn+aµ,m − 2δn,m + δn−aµ,m

a2
, (2.30)

which has the form of a discretised second derivative. This term can also be
made gauge invariant using gauge fields as done for the naive discretisation of
the Dirac operator. In total the so-called Wilson-Dirac operator can be written as

D
W
(n|m) =

(
4

a
+m

)
δm,n

−
1

2a

3∑
µ=0

(
Uµ(n)(1− γµ)δn+aµ,m +U−µ(n)(1+ γµ)δn−aµ,m

)
.

(2.31)

Like the Klein-Gordon operator (2.11) the Wilson-Dirac operator consists of two
parts. One part is proportional to the unit matrix 1 and the other part couples
neighbouring points. Therefore it can be rewritten as

D
W

= C (1− κH) (2.32)

with the hopping parameter

κ =
1

2 (am+ 4)
and C = m+ 4/a . (2.33)

In total the Wilson action is given by

S
W

= a4
∑
n∈Λ

Ψ(n)

[(
m+

4

a

)
Ψ(n)

−

3∑
µ=0

(1− γµ)Uµ(n)Ψ(n+ aµ) + (1+ γµ)U−µ(n)Ψ(n− aµ)

2a

]
.

(2.34)

The additional Wilson term explicitly breaks the chiral symmetry even for
massless quarks, thus (2.34) is not invariant under

Ψ(x)→ eiαγ5Ψ(x) Ψ(x)→ Ψ(x)eiαγ5 (2.35)

for m = 0 due to the non-vanishing anticommutator of the massless Wilson-
Dirac operator D

W
|m=0 and γ5 [19]

γ5 ·DW
|m=0 +DW

|m=0 · γ5 6= 0 . (2.36)



12 quantum field theories on the lattice

The No-Go Theorem

In an ideal theory the massless Dirac operator D on the lattice should fulfil the
following properties [23]:

• D is local

• D has the right continuum limit a→ 0

• The theory is free of doublers

• Chiral symmetry is preserved, thus γ5D+Dγ5 = 0

In their no-go theorem [24] Nielsen and Ninomiya have shown that these four
properties cannot be fulfilled simultaneously.

In lattice QCD several formulations of a discretised Dirac operator have been
developed. However, due to the no-go theorem, in each formulation at least one
of the four properties shown above has to be violated. Some common examples
for discretised Dirac actions in lattice QCD are

wilson-dirac (2.34): As we have already seen, the Wilson-Dirac operator
breaks the chiral symmetry.

staggered fermion action [25]: With staggered fermions the doublers are
reduced to 4, while simultaneously a subgroup of chiral symmetry is
preserved.

ginsparg-wilson [26]: The Ginsparg-Wilson action completely removes the
doublers. It does not fulfil the property γ5D+Dγ5 = 0 but γ5D+Dγ5 =

aDγ5D, which is a modified formulation of chiral symmetry on the lattice.

In the following we will concentrate on the Wilson-Dirac operator, which we
will use for our calculations in chapters 5 and 6.

2.5 the O(a)-improved wilson-dirac operator

The Wilson action (2.34) can be further improved following the guidelines of the
so-called Symanzik improvement programme [27]. Here additional terms that
vanish in the continuum limit a→ 0 can be added to the action

Seff = a
4
∑
n∈Λ

(
L(0)(n) + aL(1)(n) + a2L(2)(n) + ...

)
, (2.37)

where L(0)(n) is the Lagrangian for the Wilson action. Since the action has to
be dimensionless the improvement terms L(k) have to be of dimension length
l−(4+k).
Sheikholeslami and Wohlert have shown [28] that O(a) improvement can be
achieved by adding a term (see also the discussion in [29])

L(1)(n) = c
SW

i

4

∑
µ<ν

Ψ(n)︸ ︷︷ ︸
∝l−3/2

σµν F̂µν(n)︸ ︷︷ ︸
∝l−2

Ψ(n)︸ ︷︷ ︸
∝l−3/2

, (2.38)
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where c
SW

is a real coefficient, σµν = i
2
[γµ,γν] and F̂µν(n) is the lattice form

of the field strength tensor

F̂µν(n) =
1

8a2
{Qµν(n) −Qνµ(n)} . (2.39)

In (2.39), Qµν is the sum of 4 plaquettes,

Qµν(n) = Uµν(n) +Uν(−µ)(n) +U(−µ)(−ν)(n) +U(−ν)µ(n) . (2.40)

According to the form of Qµν, which is shown in figure 2.3, the Sheikholeslami-
Wohlert term is also called clover term.

n

µ

ν

Figure 2.3: Clover Term Qµν

The real coefficient c
SW

has to be adjusted for each lattice spacing a to remove
lattice artifacts [29]. This can also be done at a non-perturbative level [30].

In total the O(a) improved action S
SW

is

S
SW

= S
W
+ c

SW
a5
∑
n∈Λ

i

4

∑
µ<ν

Ψ(n)σµνF̂µν(n)Ψ(n) (2.41)

with the Wilson action S
W

from (2.34).

2.6 correlation functions and wick’s theorem

To calculate matrix elements for pion form factors such as (1.17) and (1.18), one
needs to consider two- and three-point correlation functions. In this section we
will derive Wick’s theorem, which can be used to calculate n-point functions. In
section 6.2 we will show how the form factors can be extracted from the two-
and three-point correlation functions.

In the path integral formalism an Euclidean correlation function on the lattice
can be written as

〈O1O2〉 =
1

Z

∫
D[Ψ,Ψ]D[U] e−SE[Ψ,Ψ,U]O2[Ψ,Ψ,U]O1[Ψ,Ψ,U] (2.42)
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with the partition function

Z =

∫
D[Ψ,Ψ]D[U] e−SE[Ψ,Ψ,U] . (2.43)

Since the action SE is a sum of a fermionic SF[Ψ,Ψ,U] and a gluonic SG[U]
action, (2.42) can be separated in a fermionic and a gluonic part.

〈O1O2〉 = 〈〈O1O2〉F〉G (2.44)

The fermionic expectation value is given by

〈O1O2〉F =
1

ZF[U]

∫
D[Ψ,Ψ] e−SF[Ψ,Ψ,U]O2[Ψ,Ψ,U]O1[Ψ,Ψ,U] (2.45)

with

ZF[U] =

∫
D[Ψ,Ψ] e−SF[Ψ,Ψ,U] . (2.46)

The gluonic part is defined as

〈B〉G =
1

Z

∫
D[U] e−SG[U] ZF[U]B[U], (2.47)

so that 〈B〉G = 〈O1O2〉 for B = 〈O1O2〉F.

If one wants to calculate the fermionic expectation value of a product of spinor
fields〈

Ψn1Ψn2 · · ·ΨnNΨm1
· · ·ΨmN

〉
F

, (2.48)

one has to consider that, due to Fermi statistics, interchanging two fermion fields
produces a minus sign. Such anticommuting numbers are called Grassmann
variables. Some properties of Grassmann numbers2 are

ηiηj = −ηjηi ⇒ η2i = 0 (2.49)∫
dηi1 = 0

∫
dηi ηi = 1 . (2.50)

First of all we want to calculate the fermionic partition function

ZF =

∫
dΨkdΨk · · ·dΨ1dΨ1 exp

 k∑
i,j=1

ΨiMijΨj

 . (2.51)

With M = −a4D the exponent of (2.51) is the fermionic action SF[Ψ,Ψ,U]. Now
a transformation of variables

Ψ ′j =

k∑
m=1

MjmΨm (2.52)

can be performed. The measure of the integral transforms as

dΨkdΨk · · ·dΨ1dΨ1 = det[M]dΨ ′kdΨk · · ·dΨ ′1dΨ1 . (2.53)

2 An introduction to Grassmann numbers can be found for example in [2] or [19].
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Inserting (2.52) and (2.53) in (2.51), one obtains

ZF = det[M]

∫
dΨ ′kdΨk · · ·dΨ ′1dΨ1 exp

(
k∑
i=1

ΨiΨ
′
i

)

= det[M]

k∏
i=1

∫
dΨ ′idΨi exp

(
ΨiΨ

′
i

)
. (2.54)

Due to (2.49), the Taylor series of the exponential in (2.54) stops after the first
two terms. Therefore the fermionic partition function is

ZF = det[M]

k∏
i=1

∫
dΨ ′idΨi

(
1+ΨiΨ

′
i

)
= det[M], (2.55)

where in the last step (2.50) was used. det[M] is the so-called fermion determi-
nant.

Now one can calculate the expectation value
〈
ΨnΨm

〉
F

.

〈
ΨnΨm

〉
F
=
1

ZF

∫
dΨkdΨk · · ·dΨ1dΨ1 ΨnΨm exp

 k∑
i,j=1

ΨiMijΨj

 (2.56)

Inserting the transformation (2.52) and applying the Taylor series to the expo-
nential, one obtains

〈
ΨnΨm

〉
F
=

k∑
h=1

M−1
nh

∫ k∏
i=1

dΨ ′idΨi
k∏
j=1

(1+ΨjΨ
′
j)︸ ︷︷ ︸

=exp

(
k∑
j=1
ΨjΨ

′
j

)
Ψ ′hΨm, (2.57)

where 1/ZF has been cancelled by the factor det[M] from the transformation of
the dΨ. Due to η2i = 0 and

∫
dηi1 = 0 the integral in (2.57) only does not vanish

if the integrand is a product that contains each Ψ ′ and Ψ exactly once. This only
is possible for h = m and the one summand of

∏
(1+ΨjΨ

′
j) where Ψ ′m and Ψm

are missing. Additionally Ψ ′m and Ψm have to change positions producing a
minus sign. Since pairs of Grassmann variables commute the pair ΨmΨ ′m can be
brought to the position where it is missing. For the expectation value

〈
ΨnΨm

〉
F

one obtains〈
ΨnΨm

〉
F
= −M−1

nm

∫
dΨ ′kdΨk · · ·dΨ ′1dΨ1 Ψ1Ψ ′1 · · ·ΨkΨ ′k

= −M−1
nm = a−4D−1

nm . (2.58)

Thus the propagator
〈
ΨnΨm

〉
F

is the inverse of the Dirac operator D−1
nm. It

describes the propagation of a fermion from lattice point n to lattice point m.

(2.58) can be generalised to the N-point function
〈
Ψn1Ψn2 · · ·ΨnNΨm1

· · ·ΨmN

〉
F〈

Ψn1 · · ·ΨnNΨm1
· · ·ΨmN

〉
F

= (−1)N
∑

P(1,...,n)

sign(P)
(
M−1

)
n1mP1

· · ·
(
M−1

)
nNmPN

, (2.59)
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where a sum over all permutations P is performed. This is equivalent to a sum
over all possible contractions. (2.59) is known as Wick’s theorem

As an example we will consider the correlator〈
Ψ(n)ΓΨ(n)Ψ(m)ΓΨ(m)

〉
F
=
〈
Ψα,a(n)ΓαβΨβ,a(n)Ψγ,b(m)ΓγδΨδ,b(m)

〉
F

, (2.60)

where all Ψ and Ψ have the same quark flavour. Greek letters denote Dirac and
Latin letters colour indices. For the indices the Einstein summation convention
is used. Γ is one of the 16 Dirac matrices Γ = {1,γµ,γ5,γµγ5,σµν}. In (2.60) two
Wick contractions are possible:〈

Ψα,a(n)ΓαβΨβ,a(n)Ψγ,b(m)ΓγδΨδ,b(m)
〉
F

+
〈
Ψα,a(n)ΓαβΨβ,a(n)Ψγ,b(m)ΓγδΨδ,b(m)

〉
F

.
(2.61)

After interchanging the spinors and performing the contractions one obtains〈
Ψ(n)ΓΨ(n)Ψ(m)ΓΨ(m)

〉
F
=−M−1(m,n)δα,baΓαβM

−1(n,m)βγ,abΓγδ

+M−1(n,n)βα,aaΓαβM
−1(m,m)δγ,bbΓγδ

=− Tr
CD

[
M−1(m,n)ΓM−1(n,m)Γ

]
+ Tr

CD

[
M−1(n,n)Γ

]
Tr
CD

[
M−1(m,m)Γ

]
,

(2.62)

where Tr
CD

denotes a trace in colour- and Dirac-space. The first summand of
(2.62) is quark connected, while the second summand is quark disconnected.
The two contributions are shown in figure 2.4.

n m n m

Figure 2.4: Connected part on the left-hand side, disconnected on the right

In general, all diagrams with quark lines that are not connected to each other
are called quark disconnected.

So far we did not consider the gauge expectation value, which has also to be cal-
culated. Therefore one creates gauge configurations Un. A gauge configuration
is a collection of link variables Uµ(n) for all links in the lattice. A set of gauge
configurations is called an ensemble. In an ensemble the gauge configurations
Un are distributed with a probability proportional to the weight exp(−S

G
[Un]).

Therefore the gauge expectation value can be approximated by calculating the
mean over the N different gauge configurations of an ensemble

〈O〉 = 1

Z

∫
D[U]e−SG [U]O[U] ≈ 1

N

N∑
n=1

O[Un] . (2.63)

The configurations are generated in a Markov chain [31]

Uµ(x)0 → Uµ(x)1 → Uµ(x)2 → . . . (2.64)

In each step the configuration is either accepted or rejected due to its weight by
the Metropolis algorithm [32]. An overview of the whole procedure of generating
ensembles can be found for example in [19].



3
I N V E R S I O N A L G O R I T H M S

3.1 point sources

According to Wick’s theorem (2.59), one has to invert the Dirac operator to calcu-
late an n-point function of fermions. On the lattice this requires an inversion of a
12M× 12M matrix1, where M = L3 × T is the total number of lattice points. For
many applications it is sufficient to calculate so called point-to-all propagators,
which describe the propagation of a quark from a fixed point m to an arbitrary
point on the lattice. To obtain a point-to-all propagator the corresponding col-
umn of the inverse Dirac matrix is needed. This can be calculated using point
sources. Therefore the point source has to be placed at point m and one has to
solve the Dirac equation

D|s〉 = (0, . . . , 0, 1, 0, . . . , 0)T . (3.1)

This calculation has to be repeated for all combinations of Dirac- and colour-
indices. Therefore 12 equations of the type (3.1) have to be solved to obtain a
point-to-all propagator.

3.2 inversion with stochastic sources

For the calculation of the scalar pion form factor (and also other quantities) one
is interested in diagrams containing a disconnected quark loop, i.e. a quark that
propagates from an arbitrary lattice point to the same point.∑

n

Tr
CD

[
M−1(n,n)Γ

]
= Tr

[
M−1Γ

]
(3.2)

Thus a calculation with point sources is very expensive, since it requires to solve
the Dirac equation 12 · L3× T times. To avoid this, one can use stochastic sources
[8, 9, 33]. For this method N random vectors |ηi〉 with i = {1, . . . ,N} are needed,
where N can be chosen small (N� 12 · L3 × T ). The random vectors |ηi〉 have to
fulfil the properties

1

N

N∑
i=1

|ηi〉 = O (1/
√
N) , and (3.3a)

1

N

N∑
i=1

|ηi〉〈ηi| = 1+O (1/
√
N) . (3.3b)

1 12 because of the four Dirac and the three colour components

17
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Now one has to (numerically) solve the N sets of linear equations

D|si〉 = |ηi〉, (3.4)

where D is the lattice Dirac operator, so D−1 is the propagator of interest. This
results in

|si〉 = D−1|ηi〉
⇒ |si〉〈ηi| = D−1|ηi〉〈ηi|

⇒ 1

N

N∑
i=1

|si〉〈ηi| = D−1 1

N

N∑
i=1

|ηi〉〈ηi|︸ ︷︷ ︸
≈1

≈ D−1, (3.5)

where one makes use of (3.3b) in the last step. Therefore

D−1 =
1

N

N∑
i=1

|si〉〈ηi| (3.6)

is an estimate for the propagator D−1. (3.6) implies that D−1 can be calculated
as the average over |si〉〈ηi| for all stochastic sources |ηi〉.

In the following sections some methods discussed in [9] will be introduced,
which either reduce the stochastic error on D−1 or the computer time needed
for the calculation.

3.3 dilution

For dilution [34] the vector space R = lattice sites⊗ colour⊗ spin is decomposed
into m subspaces Rj.

R =

m⊕
j=1

Rj (3.7)

Now the N source vectors |ηi
|j〉 are set to zero outside the subspace Rj. The solu-

tions of (3.4) with |ηi〉 = |ηi
|j〉 are called |si

|j〉. The propagator then is computed
by

D−1 =

m∑
j=1

1

N

N∑
i=1

|si|j〉〈η
i
|j| . (3.8)

Some possibilities for dilution are:

time dilution: The sources only have non-vanishing entries for one timeslice.

even-odd dilution: The sources only have non-vanishing entries for lattice
sites n where the sum n0+n1+n2+n3 is even for one subspace and odd
for the other one.

One can also have non vanishing entries only on the even or odd points in
one timeslice, which is a combination of even-odd and time dilution.
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spin dilution: The sources only have non-vanishing entries for one Dirac
component.

colour dilution: The sources only have non-vanishing entries for one
colour component.

3.4 the hopping parameter expansion

The Hopping Parameter Expansion (HPE) as described in [9] is suitable for
matrices of the form

2κ ·D =1− κ ·H

⇒ D =
1

2κ
1−

1

2
H (3.9)

like the Klein-Gordon operator (2.11) or the unimproved Wilson-Dirac operator
(2.31). For the Dirac operator the unit matrix 1 in (3.9) is a unit matrix in space-
time, Dirac-space and colour-space 1

N×N ⊗ 14×4 ⊗ 13×3 . H only has entries that
link neighbouring lattice points. The propagator can be written as

D−1 =

(
1

2κ
1−

1

2
H

)−1

. (3.10)

If one applies a geometrical series to (3.10), one obtains

D−1 = 2κ

∞∑
i=0

(κH)i (3.11a)

= 2κ

k−1∑
i=0

(κH)i + 2κ

∞∑
i=k

(κH)i . (3.11b)

(3.11a) implies that the entry D−1(n,m) of the propagator can be seen as a sum
over all possible paths from n to m [19]. A path of the length i is suppressed by
a power κi of the hopping parameter.

(3.11b) can be rewritten as

D−1 = 2κ

k−1∑
i=0

(κH)i + (κH)k ·D−1 . (3.12)

On the right-hand side of (3.12) D−1 can be replaced by the inverse calculated
using stochastic sources (3.6).

D−1 = 2κ

k−1∑
i=0

(κH)i + (κH)k · 1
N

N∑
i=1

|si〉〈ηi| (3.13)

The idea of the hopping parameter expansion is to calculate the shortest paths,
which are the largest contributions to D−1, explicitly and to estimate the remain-
ing terms with stochastic sources. Thus one expects the stochastic error of the
propagator to decrease when using the HPE. When the hopping parameter κ is
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small, the influence of the longer paths decreases and the HPE is expected to
converge faster.

For the Wilson-Dirac operator the hopping matrix has the form

H
W
(n,m) =

3∑
µ=0

(
Uµ(n)(1− γµ)δn+aµ,m +U−µ(n)(1+ γµ)δn−aµ,m

)

=

±3∑
µ=±0

Uµ(n)(1− γµ)δn+aµ,m (3.14)

with

γ−µ ≡ −γµ . (3.15)

To calculate disconnected loops, the trace Tr
(
Γ ·D−1

)
has to be taken. If the

hopping parameter expansion (3.13) is used, one needs the trace of the powers
of the hopping matrix (3.14). Trivially the trace of all odd powers vanish since
it is not possible to jump from one lattice point to the same point with an odd
number of jumps. Therefore one only has to look at the even powers of the
hopping matrix. H0

W
(n,m) is just a unit matrix in space-time, colour and Dirac

space. Therefore Tr
(
Γ ·H0

W
(n,m)

)
= Tr

(
Γ · 1

12N×12N

)
= 0 except for Γ = 1 where

the calculation of the trace is trivial.
For the second power H2

W
(n,m) one obtains [19]

H2
W
(n,m) =

±3∑
µ,ν=±0

(1− γµ)(1− γν)Uµ(n)Uν(n+ aµ)δn+aµ+aν,m. (3.16)

If one takes the trace Tr
(
Γ ·H2

W
(n,m)

)
, ν has to be −µ because of δn+aµ+aν,n,

which means jumping to a neighbouring point and jumping back again. But
doing so one gets in (3.16)

(1− γµ)(1+ γµ) = 0 . (3.17)

Thus jumping backwards to get back to the starting point is not allowed.
In the forth power of H

W
(n,m), one can jump around a plaquette from a lattice

point to the same point. Therefore Tr
(
Γ ·H4

W
(n,m)

)
6= 0 for Γ = {1,γ5,σµν}. For

Γ = {γµ,γµγ5} this trace vanishes due to the trace theorems of the γ-matrices.
For γµ and γµγ5 also Tr

(
Γ ·H6

W
(n,m)

)
vanishes.

For the hopping parameter expansion (3.12) with the Wilson-Dirac operator it is
appropriate to take k = 4 for Γ = {1,γµ,σµν} and k = 8 for Γ = {γ5,γµγ5} [9].

Tr
(
Γ ·D−1

)
=


2κTr (1) + κ4Tr

(
H4D−1

)
Γ = 1

κ4Tr
(
Γ ·H4D−1

)
Γ = {γµ,σµν}

κ8Tr
(
Γ ·H8D−1

)
Γ = {γ5,γµγ5}

(3.18)
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HPE with clover Term

The O(a)-improved Wilson-Dirac operator (2.41) does not have the form (3.9).
Its form is

D
SW

=
1

2κ
1
12N×12N + cswB−

1

2
H (3.19)

with a real constant csw and

B = a
i

4
σµνF̂µν . (3.20)

B contains a unit matrix 1
N×N in space-time but not in Dirac-space (due to

σµν) and in colour-space (due to F̂µν). The complete diagonal part of D
SW

is no
longer proportional to the unit matrix 1

12N×12N when adding the clover term.
Therefore the hopping parameter expansion as described above cannot be used.

The hopping parameter expansion can be adapted to the O(a)-improved Wilson-
Dirac as follows.

At first (3.19) has to be rewritten as

D
SW

= A−
1

2
H (3.21)

with A =
1

2κ
1+ c

SW
B =

(
m+

4

a

)
1+ c

SW
B . (3.22)

The matrix A can now be factored out.

D
SW

= A(1−
1

2
A−1H)

This way one obtains for the inverse of the O(a)-improved Wilson-Dirac operator

D−1
SW

= (1−
1

2
A−1H)−1A−1 . (3.23)

The left factor of (3.23) can now be calculated using a geometrical series as done
for the hopping parameter expansion.(

1−
1

2
A−1H

)−1

=

∞∑
i=0

(
1

2
A−1H

)i

=

k−1∑
i=0

(
1

2
A−1H

)i
+

(
1

2
A−1H

)k (
1−

1

2
A−1H

)−1

(3.24)

To obtain the inverse of the O(a)-improved Wilson-Dirac operator one has to
insert (3.24) in (3.23).

D−1
SW

= (1−
1

2
A−1H)−1A−1

=

k−1∑
i=0

(
1

2
A−1H

)i
A−1 +

(
1

2
A−1H

)k
D−1
SW

(3.25)
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D−1
SW

on the right-hand side of (3.25) can now be replaced by the inverse of the
O(a)-improved Wilson-Dirac operator calculated using stochastic sources.

To calculate the hopping parameter expansion (3.25) with clover term, one
additionally has to invert the matrix A which was defined by (3.22)

A =

(
m+

4

a

)
+ c

SW
a
i

4
σµνF̂µν . (3.26)

Using the definition of the Euklidean gamma matrices in chiral representation
(see (2.8)), one obtains the following block diagonal form in Dirac space [35]

A =

(
Ã+ 0

0 Ã−

)
(3.27)

with the 6× 6 matrices

Ã± =

(
4

a
+m+ c

SW

i

16

3∑
k=1

σk (Ek ∓Bk)

)
. (3.28)

Ek and Bk are the electric and magnetic components of the field strength tensor,

Ek = 8F̂0k , Bk =

3∑
i,j=1

4εijkF̂ij . (3.29)

Due to the block structure of A, for the calculation of A−1 two 6× 6 matrices
Ã± have to be inverted for every lattice point.

3.5 the truncated solver method

The truncated solver method (TSM) [36] is a method to reduce the computational
costs of the calculation of the propagator. The idea of TSM is to solve equations
(3.4) for N random sources using a lower number nt of solver iterations. The
obtained solutions are called |si(nt)〉. Additionally more exact solutions |si〉 are
calculated for a small subset of these sources. The propagator is then calculated
by

D−1 =
1

N1

N1∑
i=1

|si(nt)〉〈η
i|+

1

N2

N1+N2∑
i=N1+1

(
|si〉− |si(nt)〉

)
〈ηi| (3.30)

with the number N1 of sources for which only the inexact solution is calculated
and the number N2 = N−N1 of sources for which unexact and more exact so-
lutions are calculated. The second summand in (3.30) can be seen as a correction
to the inverse calculated only with the solutions |si(nt)〉.
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In this section as a toy model the free Klein-Gordon propagator will be calculated
using stochastic sources. The calculation will be performed on a two-dimensional
10× 10 lattice, thus in one time and one spatial dimension. It will be tested
whether or not dilution, HPE and TSM improve the calculation.
According to (2.11)

DKGΦ(n) =
m2a2 + 2d

a2
Φ(n) −

d∑
µ=0

1

a2
(Φ(n+ aµ) +Φ(n− aµ))

the Klein-Gordon operator on the 10× 10 lattice can be written as a 100× 100
matrix since the lattice has in total 100 lattice points. The entry Dij with i, j =
1, . . . , 100 of the Klein-Gordon matrix denotes the link between lattice point
i and lattice point j. For our two-dimensional (d = 2) toy model we will use
m = 1 and a = 1, thus the matrix associated with the Klein-Gordon operator is

Dij =


5 i = j

−1 i neighbouring point of j

0 otherwise.

(4.1)

In the following we will use periodic boundary conditions. Thus the last lattice
point in one dimension is a direct neighbour of the first point in the same
dimension. An example for a 10× 10 lattice with periodic boundary conditions
is shown in figure 4.1.

• ◦ × × × × × × × ◦
◦ × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × ◦ × × × × × ×
× × ◦ • ◦ × × × × ×
× × × ◦ × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
◦ × × × × × × × × ×

Figure 4.1: 2-dimensional 10× 10 lattice with periodic boundary conditions: The points
marked with ◦ are the neighbours of those marked with • in the same colour.

To calculate the propagator, the 100× 100 matrix (4.1) has to be inverted.

23
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4.1 inversion with stochastic sources

For the inversion of the Klein-Gordon operator Z (2) sources were used. Every
element of the random vector is either 1 or −1 with a probability of 50% each.
These sources fulfil the required properties (3.3a) and (3.3b). The solution of the
sets of linear equations

D|si〉 = |ηi〉 (4.2)

was done using the Biconjugate Gradient method [37]. The Biconjugate Gradient
stops when

|D|s〉k − |η〉|
||η〉|

< 0.00001 (4.3)

is fulfilled, where |s〉k is the solution after k iterations. For the 10× 10 lattice k
is about 14 to 15.
To test whether the calculation of the propagator with stochastic sources works,
additionally the linear equation

D|s ′〉 = (1, 0, . . . , 0)T (4.4)

was solved with a point source (1, 0, . . . , 0)T using the Biconjugate Gradient
method. The solution |s ′〉 is the first column of the exact inverse of D.

For calculating the propagator 1000 stochastic sources were used, thus the
inverse of the Klein-Gordon operator can be estimated as the average over
|si〉〈ηi| for 1000 |ηi〉. In our case of a 100 × 100 matrix an exact calculation
where only 100 point sources have to be used would require less computer time.
However, we want to test the method of stochastic sources for this toy model
with a certain amount of sources. Later we will use much larger lattices and the
number of stochastic sources will be much smaller than the number of required
point sources, which equals the number of lattice points.
The first 10 entries of the first column of the propagator calculated using stochas-
tic sources and calculated exactly are shown in table 4.1.

D−1
stoch D−1

exact

0.246271 0.254066

0.062522 0.067582

0.024498 0.019774

0.000174 0.006275

0.009105 0.002279

0.001559 0.001387

-0.013380 0.002279

0.004310 0.006275

0.041162 0.019774

0.051289 0.067582

Table 4.1: The first 10 entries of the first column of the inverse of the Klein-Gordon
operator with stochastic sources (D−1

stoch) and calculated exactly (D−1
exact)

In this table one can see that the method of stochastic sources works quite well.
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4.2 testing dilution

Time Dilution

First of all it will be tested if time dilution improves the calculation of the
propagator. For time dilution the random sources have to be changed such that
only the entries for one timeslice are random numbers. All remaining entries
are set to zero. Therefore the lattice points are labelled such that the points
for timeslice n0 = 0 come first, then the ones for n0 = 1 and so on. Doing so,
the Klein-Gordon operator has a block structure, where in each 10× 10 block
only lattice points from two certain timeslices are linked. In the blocks on the
diagonal all points from the same timeslice are connected. Lattice points that
are linked in blocks that are further away from the diagonal blocks of the matrix
have a larger distance in time, where periodic boundary conditions have to be
taken into account, as depicted in figure 4.2. Since the matrix only couples a
lattice point with itself and its direct neighbours, only the blocks on the diagonal
and the blocks next to the the diagonal blocks contain entries that are non-zero.
All other blocks contain only zeros.

Figure 4.2: Schematic picture of the Klein-Gordon matrix: Every block is a 10×10matrix.
The diagonal blocks in dark blue contain all entries that couple points from
the same time, thus a point with itself and with all direct neighbours in
spatial directions. The blocks in light blue contain the entries that couple
points with a direct neighbour in time direction. The green blocks contain
only zeros, since they link points that have a temporal distance which is
larger than one in lattice units. The lighter the green of these blocks, the larger
is the time distance of the linked lattice points, where periodic boundary
conditions are used.

For the 10× 10 lattice the time diluted sources look like

|η〉 = (

10 entries︷ ︸︸ ︷
±1, . . . ,±1, 0, . . . , 0)T

|η〉 = (

10 entries︷ ︸︸ ︷
0, . . . , 0 ,

10 entries︷ ︸︸ ︷
±1, . . . ,±1, 0, . . . , 0)T

. . .

(4.5)
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To have the same computational cost as for the calculation without dilution, 100
sources were used for every timeslice. In total these are 10× 100 = 1000 sources.
Therefore 1000 sets of linear equations have to be solved as for the case without
dilution.

Now one can compare the first row of the propagator D−1
timedil calculated using

time dilution with the propagator D−1
stoch calculated without time dilution. Since

the propagator also has a block structure in time, one can compare the entries
block by block. The block structure is illustrated in figure 4.3.

1

2

3

4

5

6

7

8

9

10

Figure 4.3: Schematic picture of the Klein-Gordon propagator: Every block is a 10× 10
matrix. The blocks labelled with 1 to 10 will be used for the comparison of
the propagator calculated with and without time dilution. The yellow blocks
are the diagonal blocks. The darker the colour of a block the larger is the
temporal distance in time.

For the comparison of D−1
timedil and D−1

stoch, the first column of the propagator is
used, thus the first columns of blocks 1 to 10. In figure 4.4 it is shown in how
many cases the values for dilution are better.
One can see that for block 1 the difference of D−1

stoch and D−1
exact in most cases is

smaller than the difference between D−1
timedil and D−1

exact. In block 2 and 10 about
half of the entries are closer to the exact value when using time dilution. For
the other blocks for most entries D−1

timedil is better. Thus time dilution works best
for the blocks that are far away from block 1, which is a block on the diagonal
of the propagator. If one looks at other columns of the propagator it turns out
that time dilution improves the calculation best in the blocks that are farthest
away from the diagonal, thus blocks that link lattice points with the largest time
separation. For the diagonal blocks, thus blocks that link lattice points from the
same timeslice, time dilution does not improve the result. The darker the blocks
in figure 4.3 the larger is the distance to the diagonal of the propagator and the
better time dilution improves the values.
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Figure 4.4: Number of entries in the first column of blocks 1 to 10 for which the the
value calculated using time dilution is closer to the exact value than the one
calculated without time dilution.

In addition the propagator was calculated ten times using different seeds to
compare the variances of the values calculated with and without time dilution.
Here one can see that the variances show a similar behaviour as the differences to
the exact solution. For the blocks on the diagonal the variance of the propagator
calculated without time dilution is smaller. For the other blocks the ones with
time dilution are better and the variance is the smallest for the blocks that
are farthest away from the diagonal, taking periodic boundary conditions into
account.

Since for the disconnected loops one needs the trace - and therefore only the
diagonal entries - of the propagator, time dilution does not help.

Even-Odd Dilution

With even-odd dilution the stochastic sources look like

|ηe〉 = (

10 entries︷ ︸︸ ︷
±1, 0,±1, . . . , 0,

10 entries︷ ︸︸ ︷
0,±1, . . . ,±1, . . .)T

|ηo〉 = (

10 entries︷ ︸︸ ︷
0,±1, 0, . . . ,±1,

10 entries︷ ︸︸ ︷
±1, 0, . . . , 0, . . .)T .

(4.6)

To have the same number of sets of equations as for the calculation without
dilution, I used 500 sources for the even and 500 sources for the odd points,
which are 1000 sources in total. In figure 4.5 it is plotted for the first column of
D−1 how many entries of the propagator calculated with even-odd dilution are
closer to the exact value than the ones calculated without dilution.

If one compares the propagator calculated with and without even-odd dilution,
one can see that the numbers with even-odd dilution are better in about 40% to
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Figure 4.5: How many entries are better with than without even-odd dilution

50% of the cases, whereas the other numbers are better without dilution. Also
no dependence of the block of the propagator is observed. Therefore even-odd
dilution does not seem to improve the propagator.

4.3 testing the hopping parameter expansion

For a = 1, m = 1 and d = 2 the hopping parameter for the Klein-Gordon
operator (2.13) is

κ ≡ a2

2 (m2a2 + 2d)
=
1

10
. (4.7)

The Klein-Gordon matrix (4.1) can be split into a matrix proportional to the unit
matrix and a hopping matrix H as described in (2.12). The hopping matrix H,
which only couples nearest neighbours, is given by

Hij =

2 i neighbouring point of j

0 otherwise.
(4.8)

Now the hopping parameter expansion (3.13)

D−1 = 2κ

k−1∑
i=0

(κH)i + (κH)k · 1
N

N∑
i=1

|si〉〈ηi| (4.9)

can be applied for different numbers of terms k. The first part of the HPE

2κ

k−1∑
i=0

(κH)i (4.10)
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was calculated explicitly by inserting a unit matrix and applying (κH)i for every
summand in (4.10). For the second part

(κH)k · 1
N

N∑
i=1

|si〉〈ηi| (4.11)

again 1000 random sources |ηi〉 were used.

k = 0 is equivalent to calculating only with stochastic sources without per-
forming a hopping parameter expansion and therefore gives the same result as
before.

The difference of the (0,0)-component of the propagator from the exact value is
shown in figure 4.6 for different numbers of terms k in the HPE.
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Figure 4.6: Difference of the (0,0)-component between the exact solution and the one
calculated with stochastic sources and HPE

As one can see, the difference of the (0,0)-component to the exact solution
decreases when more terms in the HPE are calculated. Between an even number
of terms and the next odd number (from 0 to 1, from 2 to 3 and so on) the
difference nearly stays the same. This is because the diagonal elements of all
odd powers of H and therefore all diagonal elements of the odd terms in the
hopping parameter expansion vanish. It is not possible to jump from one lattice
point to the same point with an odd number of jumps. The variance of the
(0,0)-component calculated using ten different seeds, which is shown in figure
4.7, shows a similar behaviour.
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Figure 4.7: Variance of the (0,0)-component of the propagator calculated using stochastic
sources and HPE with 10 different seeds

Also for the other components of the propagator the difference to the exact
solution and the variance decrease when calculating more terms in the HPE.

Obviously the hopping parameter expansion improves the calculation of the
propagator. The difference to the exact solution as well as the variance decreases
if more terms of the HPE are calculated. Since for the disconnected loops one is
interested in the diagonal elements, one should use an even number of terms
since the next odd number does not improve the value of the propagator.

4.4 testing the truncated solver method

Since the aim of the truncated solver method is a reduction of the computational
costs, also the CPU time for the calculation has to be measured. The truncated
solver method (3.30)

D−1 =
1

N1

N1∑
i=1

|si(nt)〉〈η
i|+

1

N2

N1+N2∑
i=N1+1

(
|si〉− |si(nt)〉

)
〈ηi| (4.12)

was applied for N1 = {950, 970, 980, 990} with a fixed number of N1+N2 = 1000
sources. For the N1+N2 solutions |si(nt)〉 4, 6, 8 and 10 were used as a maximum
number of iterations for the biconjugate gradient. The N2 more exact solutions
|si〉 were calculated with the same condition (4.3) as before which is fulfilled
after about 14 or 15 solver iterations.

As expected the CPU time needed for the calculation decreases if fewer iterations
are used or fewer solutions N2 are calculated more exactly. Since the calculation
of the propagator is not done as accurately as without the TSM, the differences to
the exact solution and the variances get worse using the truncated solver method.
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To check if the time reduction is worth the bigger error of the propagator, the
variance of the (0,0)-component after 10 calculations times the CPU time needed
for the calculation was considered. In figure 4.8 this is plotted for the different
values of N1 against the maximum number of iterations used.
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Figure 4.8: TSM: variance of the (0,0) component of the propagator times CPU time
used. The horizontal black line shows the value for the calculation that is
done only with stochastic sources.

As one can see, the variance times the CPU time is smaller for most combinations
of N1 and maximum numbers of iterations than the value for the calculation
without TSM. This means that the reduction of computational costs is bigger
than the increase of the variance. The TSM is doing what it was supposed to do.
But one has to keep in mind that the bias is increased using TSM.
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TSM and HPE

The truncated solver method can also be combined with the hopping parameter
expansion. Therefore the inverse of the Klein-Gordon operator calculated with
TSM is used as a starting point for the hopping parameter expansion. For all
different combinations of parameters for the TSM that had been used before,
the propagator was calculated with k = 0, 2, 4, 6 and 10 terms in the HPE. In
addition the CPU time was measured for each calculation. Again one can look
at the variance of the (0,0)-component of the propagator times the CPU time.
For N1 = 950 the obtained values are shown in figure 4.9. For the other N1 the
plots look quite similar.
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Figure 4.9: TSM and HPE: variance of the (0,0) component of the propagator times CPU
time used

If no hopping parameter expansion is done or only few terms are used, the
values for TSM are clearly lower than the ones without. But one can also see,
that the effect of taking more terms in the HPE is bigger than the effect of the
TSM. If enough terms in the hopping parameter expansion are used the effect of
the truncated solver method is negligible.
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T H E W I L S O N - D I R A C O P E R AT O R

In the last section we have seen that the hopping parameter expansion is the
best of the tested methods to improve the calculation of the propagator from a
lattice point to itself. The HPE reduces the errors of the diagonal entries of the
propagator, while the required computer time is negligible compared to the time
needed for the inversion. Since, as the Klein-Gordon operator, the Wilson-Dirac
operator connects every lattice point only with itself and with the immediate
neighbours, the effects of the three tested methods should be similar when
applying them to the Wilson-Dirac operator. Therefore in the following we will
focus on using the HPE.

5.1 the unimproved wilson-dirac operator

To calculate a quark propagator, the Dirac operator on the lattice has to be
inverted. This can be done using stochastic sources. Since the hopping parameter
expansion is easier in this case, at first the unimproved Wilson-Dirac operator
(2.31)

D
W
(n|m) =

(
4

a
+m

)
δm,n

−
1

2a

3∑
µ=0

(
Uµ(n)(1− γµ)δn+aµ,m +U−µ(n)(1+ γµ)δn−aµ,m

) (5.1)

will be looked at. For this a 4-dimensional 8× 83 lattice with nearly free quarks,
i.e. the SU(3) gauge fields Uµ(n) are close to the unit matrix for every lattice
point, was used. For the quarks isospin symmetry is assumed, so mu = md. As
hopping parameter κ = 0.1 was chosen. For the random sources U(1) sources
were used. Thus one has an entry exp(iz) with a random number 0 6 z < 2π

for every lattice point, Dirac- and colour-component of |η〉. These sources fulfil
the required properties (3.3a) and (3.3b). As a starting point for the calculation
of the propagator the DD-HMC (domain decomposed Hybrid Monte Carlo [38])
code1 by Martin Lüscher was used. Here the Dirac equation

D|s〉 = |η〉 (5.2)

is solved using a SAP-GCR (Schwarz preconditioned Generalised Conjugate
Residual) solver. A detailed description of the algorithm can be found in [31, 39].
The general idea of the Schwarz procedure is to decompose the lattice in
rectangular blocks of equal size and solve the Dirac equation block by block. The
Schwarz procedure is used as a preconditioner for the Generalised Conjugate
Residual method where the residuals |ρ〉k = |η〉−D|s〉k with the solution |s〉k
after k solver iterations are minimised.

1 The code can be downloaded from http://luscher.web.cern.ch/luscher/DD-HMC/index.html

33
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Implementation of the Hopping Parameter Expansion

A lattice point is called even when the sum of its coordinates n0 +n1 +n2 +n3
is even and odd when this sum is odd. Now one can label the lattice points such
that all even points come first and then all odd points. By doing this, the Dirac
matrix can be split into four blocks

Q = γ5D =

(
Q̃ee Q̃eo

Q̃oe Q̃oo

)
, (5.3)

where Q is the hermitian Dirac operator. Q̃ee (Q̃oo) contains all entries that
couple an even (odd) point with an even (odd) point. Since two neighbouring
points cannot both be even or both odd, Q̃ee and Q̃oo are diagonal in space-time.
Q̃eo and Q̃oe then contain all entries that couple two neighbours.

With

D =
1

2κ
1−

1

2
H = γ5Q (5.4)

for the hopping matrix H one obtains

H = −2 (γ5Qeo + γ5Qoe) (5.5)

with

Qeo ≡

(
0 Q̃eo

0 0

)
etc. (5.6)

For the powers of the hopping matrix one obtains

Hk = (−2)k (γ5Qeo + γ5Qoe)
k

= (−2)k(· · ·γ5Qeo · γ5Qoe︸ ︷︷ ︸
k factors

+ · · ·γ5Qoe · γ5Qeo︸ ︷︷ ︸
k factors

) . (5.7)

In (5.7) one makes use of

γ5Qeo · γ5Qeo =

(
0 γ5Q̃eo

0 0

)
·

(
0 γ5Q̃eo

0 0

)
= 0

γ5Qoe · γ5Qoe = 0 .

(5.8)

To make the calculation of the hopping parameter expansion as easy as possible
one should use a maximum number of 8 terms for Γ = {γ5,γµγ5} and 4 terms
otherwise as explained in section 3.4. Then only

D−1 = (κH)k · 1
N

N∑
i=1

|si〉〈ηi| (5.9)

has to be considered. Taking the trace Tr
(
Γ ·D−1

)
and inserting (5.7) one obtains

Tr
(
Γ ·D−1

)
= Tr

(
Γ(−2κ)k(· · ·γ5Qeoγ5Qoe + · · ·γ5Qeo)

1

N

N∑
i=1

|si〉〈ηi|

)

= (−2κ)k
1

N

N∑
i=1

〈ηi|Γ (· · ·γ5Qeoγ5Qoe + · · ·γ5Qeo) |si〉 . (5.10)
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In the last step the cyclicity and the linearity of the trace were used. This can
now be used to implement the HPE in the DD-HMC code:

1. Solve the Dirac equation D|s〉 = |η〉 with a stochastic source |η〉.

2. Apply γ5Qeo and γ5Qoe on |s〉 in turns until k factors have been applied.
Here two terms have to be calculated, one starting with γ5Qeo and one
starting with γ5Qoe. These two terms have to be summed.

· · ·γ5Qeo · γ5Qoe︸ ︷︷ ︸
k factors

|s〉+ · · ·γ5Qoe · γ5Qeo︸ ︷︷ ︸
k factors

|s〉

3. Apply the Dirac matrix Γ .

4. Calculate the scalar product with the source 〈η|.

5. Repeat 1. to 4. N times with N different random sources and sum the
results up. Divide by N and multiply with (−2κ)k.

The result in the end is a stochastic estimate for Tr
(
Γ ·D−1

)
with N stochastic

sources and k terms in the hopping expansion.
For all tests in this chapter only one gauge configuration is used. Thus in the
following only statistical means and no gauge means are calculated.
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Testing the Hopping Parameter Expansion - pseudoscalar case

To test the hopping parameter expansion for the case of the unimproved
Wilson-Dirac operator, the pseudoscalar case was chosen, thus Γ = γ5 and
Tr
(
γ5 ·D−1

)
was calculated. This was done for different numbers of random

sources N = {5, 10, 20, 30, 50, 100, 200} and different numbers of terms for the
hopping parameter expansion k = {0, 2, 4, 6, 8}. The calculation was performed
12 times with different seeds for the random number generator, whereas the
same seeds for every combination of the parameters was used. With the values
from the 12 seeds the mean and the standard deviation σ for the real part of
the traces were calculated. All obtained means are approximately 0 and in most
cases smaller than the standard deviations, thus in agreement with a vanishing
pseudoscalar loop. The standard deviation σ one expects to be proportional
to 1/

√
N. In figure 5.1 the standard deviations are plotted against 1/

√
N for the

different values of k. Additionally a function f(x) = a · x was fitted to the data
with gnuplot [40] to show the proportionality.
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Figure 5.1: Standard deviation after 12 seeds of Re
[
Tr
(
γ5 ·D−1

)]
calculated with hop-

ping parameter expansion without clover term

It is obvious that also for the Wilson-Dirac operator the calculation of the
propagator is improved when the hopping parameter expansion is applied. The
standard deviation gets smaller if more terms are considered. For 8 terms, σ is
more than a factor 10 smaller then for 0 terms.
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Testing the Hopping Parameter Expansion - scalar case

As a next step one can test if it depends on the choice of Γ how much the
hopping expansion improves the calculation. Therefore Γ = 1 was tested with
the same 8× 83 lattice as before. For the calculation k = {0, 2, 4} terms were
used in the HPE. If k > 0 additionally the first term in the hopping parameter
expansion has to be calculated which is trivial (see section 3.4).

Tr
(
1 ·D−1

)
= 2κ Tr (1)︸ ︷︷ ︸

=12×84

+κkTr
(
HkD−1

)
0 < k 6 4 (5.11)

As for the pseudoscalar case N = {5, 10, 20, 30, 50, 100, 200} random sources
were used. Every calculation was performed 12 times with different seeds for
the random number generator and the mean and the standard deviation of
Re
[
Tr
(
1 ·D−1

)]
were calculated. For the mean one gets values of the order of

the volume of the lattice, so the scalar loop does not vanish. This is expected
since the gauge mean of the scalar loop would be the quark condensate on the
lattice. In figure 5.2 the standard deviations are plotted against 1/

√
N.
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Figure 5.2: Standard deviation after 12 seeds of Re
[
Tr
(
1 ·D−1

)]
calculated with hop-

ping parameter expansion without clover term

Also for the scalar case the calculation of the trace is improved if more terms
of the hopping parameter expansion are calculated. The effect of the hopping
expansion seems to be independent of the choice of Γ .
In addition one can see that like in the pseudoscalar case σ is proportional to
1/
√
N which is shown by the linear fits.
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Testing of Spin Dilution

With the Dirac operator also spin dilution can be tested. Here the random
sources have only non-vanishing entries for one Dirac component. For the test
the pseudoscalar case Tr

(
γ5 ·D−1

)
was used. To obtain about the same numbers

of sources as for the calculation without spin dilution, Ns = {1, 3, 5, 7, 12, 25, 50}
sources for every Dirac component were used. This are in total N = {4, 12, 20,
28, 48, 100, 200} random sources. Again the calculation was performed 12 times
with different seeds and the standard deviation σ was calculated. In figure 5.3
the standard deviations are shown for the calculation with spin dilution and for
the calculation without spin dilution. For these values no hopping parameter
expansion was performed.
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Figure 5.3: Standard deviation after 12 seeds of Re
[
Tr
(
γ5 ·D−1

)]
calculated with and

without spin dilution

As one can see for the standard deviation of Re
[
Tr
(
γ5 ·D−1

)]
it makes no

difference if spin dilution is used in the calculation.
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5.2 the wilson-dirac operator with clover term

For the O (a)-improved Wilson-Dirac operator the hopping parameter expansion
has to be adapted as described in section 3.4. The propagator then can be
calculated according to (3.25).

D−1
SW

=

k−1∑
i=0

(
1

2
A−1H

)i
A−1 +

(
1

2
A−1H

)k
· 1
N

N∑
i=1

|si〉〈ηi| (5.12)

Implementation of the hopping parameter expansion for the O (a)-improved Wilson-
Dirac operator

As already mentioned in the case of the O (a)-improved Wilson-Dirac operator
additionally the matrix

A =

(
m+

4

a

)
+ c

SW
a
i

4
σµνF̂µν (5.13)

has to be inverted. In section 3.4 it was shown that this requires the inversion of
two 6× 6 matrices for every lattice point. In the DD-HMC code this is done by
Householder triangularisation [35].

The first part of the hopping parameter expansion

k−1∑
i=0

(
1

2
A−1H

)i
A−1 (5.14)

now also has to be calculated since the traces do not vanish up to some order
k. This can also be done stochastically by inserting a unit matrix in (5.14) and
calculating it with M stochastic sources |θi〉 using (3.3b).

1

M

M∑
j=1

|θj〉〈θj| = 1+O (1/
√
M)

For the traces Tr
(
Γ ·D−1

SW

)
one obtains

Tr
(
Γ ·D−1

SW

)
=
1

M

M∑
j=1

k−1∑
i=0

〈θj|Γ
(
1

2
A−1H

)i
A−1 |θj〉

+
1

N

N∑
i=1

〈ηi|Γ
(
1

2
A−1H

)k
|si〉 .

(5.15)

Therefore one has to calculate the powers of
(
1
2 A

−1H
)
. The hopping matrix H

can again be replaced by H = (−2) (γ5Qeo + γ5Qoe). Then one obtains(
1

2
A−1H

)i
=
(
−A−1 (γ5Qeo + γ5Qoe)

)i
=(−1)i

(
· · ·A−1γ5Qeo ·A−1γ5Qoe︸ ︷︷ ︸

i factors

+ · · ·A−1γ5Qoe ·A−1γ5Qeo︸ ︷︷ ︸
i factors

)
. (5.16)
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The code for the second term in (5.15)

(−1)k
1

N

N∑
i=1

〈ηi|Γ
(
· · ·A−1γ5Qeo ·A−1γ5Qoe + · · ·A−1γ5Qeo

)k
|si〉 (5.17)

can in principle stay the same as for the unimproved Dirac-Wilson operator,
except that one has to apply A−1 after every step where γ5Qeo or γ5Qoe has
been applied and also the factor (−2κ)k has to be replaced by (−1)k.

For the first term of (5.15)

1

M

M∑
j=1

k−1∑
i=0

(−1)i〈θj|Γ
(
· · ·A−1γ5Qoe + · · ·A−1γ5Qeo

)i
A−1 |θj〉 (5.18)

one first has to apply A−1 to the source |θj〉. After this(
· · ·A−1γ5Qeo ·A−1γ5Qoe + · · ·A−1γ5Qeo

)
has to be applied on A−1|θj〉 which can be done in the same manner as for the
other term. Then Γ is multiplied and the scalar product with 〈θj| is performed.
Now all scalar products for the different values of i have to be summed up. A
sum over M different random sources has to be performed and the result has to
be divided by M.

For the standard deviation of the traces, one now has two influences: The part
in the hopping expansion where the inverse calculated by N stochastic sources
is needed and the other part which is calculated by M stochastic sources. One
expects that the variances for these two parts add up, thus for the standard
deviation a behaviour

σ =

√
a

N
+
b

M
(5.19)

is expected. M can be chosen quite large, since no solution of the Dirac equation
is required for the M sources, and therefore the calculation is cheap.

The 8× 83 Lattice

A first test of the hopping parameter expansion with clover term is done with
the same 8× 83 lattice as before. The HPE adapted to the improved Wilson-Dirac
operator, should also work for c

SW
= 0. For the matrix A one simply obtains

A =

(
m+

4

a

)
+ c

SW
a
i

4
σµνF̂µν =

(
m+

4

a

)
=
1

2κ
. (5.20)

The trace was calculated for the scalar case Tr (1 ·H) with N = {5, 10, 20, 30, 50,
100} sources for the inversion and M = {100, 200, 500} sources for all other terms
in the hopping expansion. The HPE was calculated with k = {0, 2, 4, 6} terms.
This again was done with 12 different random seeds for every combination
of the three parameters N, M and k. The same seeds were used for every
combination of the three parameters, so that the first estimation of D−1 with
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stochastic sources is the same for all calculations with the sameN, no matter how
many terms in the HPE are calculated afterwards. In figure (5.4) the standard
deviations are plotted against 1/

√
N for M = 500. The plots for M = 100 und

M = 200 can be found in the appendix (A.1,A.2). To show the behaviour (5.19)
a function f(x) =

√
ax2 + b with x = 1/

√
N was fitted to the data with hopping

parameter expansion. For the data without HPE (0 terms) f(x) = ax was used
again since here no additional terms have to be calculated.
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Figure 5.4: Standard deviation after 12 seeds for Re
[
Tr
(
1 ·D−1

)]
of an 84 lattice calcu-

lated with HPE and M = 500 sources for the additional terms

One can clearly see, that the HPE improves the inversion of the Dirac operator
even with the additional error of the extra terms that are also calculated stochas-
tically. The standard deviations show the expected dependence on the number
of sources N.
If one compares the data for the different values of M, one can see that for
bigger M the y-axis intercept decreases a bit as expected. But in the region of
interest, namely only few sources for the inversion and therefore high 1/

√
N, the

influence of the different values of M gets negligible.

CLS configurations

For the following tests and calculations with the O(a)-improved Wilson-Dirac
operator we will use configurations from gauge ensembles created as a part
of the CLS (Coordinate Lattice Simulations) project [41]. Each CLS ensemble
is labelled with a letter and a numeral, for example A5 or E4. Ensembles
with the same letter have the same lattice size and the same inverse gauge
coupling β = 6/g2. Within the ensembles with the same letter an increasing
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numeral denotes an increasing value of the hopping parameter κ. In table 5.1
the ensembles we will use are shown with their parameters [42, 43].

Label lattice a[fm] mπ[MeV] β κ c
SW

A5 64× 323 0.082 305.9 5.2 0.13594 2.01715

E2 64× 323 0.0689 696.5 5.3 0.13590 1.90952

E4 64× 323 0.0689 554.2 5.3 0.13610 1.90952

Table 5.1: Parameters of the CLS configurations used in this thesis

E4 Lattice

As the first lattice with c
SW
6= 0 an E4 configuration was used to test the

hopping parameter expansion. The E4 lattices have 64× 323 lattice points. The
hopping parameter is κ = 0.13610, the inverse gauge coupling is β = 5.30 and
c
SW

= 1.90952.
The scalar loop Tr

(
1 ·D−1

)
was calculated for one E4 configuration. For thisN =

{3, 5, 7, 10, 15, 20} sources for the inversion and M = {50, 100, 200} sources for the
other k = {0, 2, 4, 6} terms in the hopping expansion were used. The calculation
was repeated with 15 different seeds for the random number generator for all
possible combinations of the parameter N, M and k. For M = 100 the obtained
standard deviations for Re

[
Tr
(
1 ·D−1

)]
are shown in figure 5.5. For the other

M the plots can be found in the appendix (A.4,A.6). Again f(x) = ax was fitted
to the data with 0 terms and f(x) =

√
ax2 + b to the data with HPE, where

x = 1/
√
N.
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Figure 5.5: Standard deviation after 15 seeds for Re
[
Tr
(
1 ·D−1

)]
of an E4 configuration

calculated with HPE and M = 100 sources for the additional terms
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In the plot one can see that the hopping parameter expansion improves the
calculation when just a few sources N are used for the inversion. Since the
calculation of D−1 with stochastic sources is very expensive in computer time
one is interested to minimise the numer of sources N. In the region of interest,
i.e. small N, the hopping parameter expansion improves the calculation. In the
region of many sources for the stochastic calculation of the propagator, thus
small 1/

√
N, the hopping parameter expansion worsens the result, because every

additional term that is calculated stochastically introduces an additional error.
This can be seen in the increasing y-axis intercept for higher k.
As in the case of the 8× 83 lattice when using more sources M for the additional
terms in the HPE the y-axis intercept trends to become smaller. But if only few
sources N are used for the inversion, the influence of M is small compared to
the influence of the number of terms k in the hopping parameter expansion.
If one compares the effect of the HPE for the E4 lattice and for the 8× 83 lattice,
one can clearly see that the hopping parameter expansion decreases the standard
deviation more for the 8× 83 lattice. This is because of the smaller hopping
parameter, which was κ = 0.1 for the 8× 83 lattice compared to κ = 0.13610 in
the case of E4. Since the HPE is an expansion in κ, one expects the hopping
parameter expansion to better improve the result for smaller κ, thus higher
quark masses.

To figure out which set of the parameters is the best, additionally the CPU
time needed for every combination of N, M and k was measured. The CPU
time turned out to be linear in every parameter except for a slightly larger gap
between k = 0 and k = 2. This is because of the required inversion of A =(
m+ 4

a

)
+ c

SW
a i4σµνF̂µν for the hopping parameter expansion. This inversion

has to be done only once, no matter how many terms are calculated. Additionally
one can see that computing more terms in the HPE is cheap compared to more
sources for the inversion. Most of the time needed for the calculation is used for
the solution of the sets of linear equations D|s〉 = |η〉.
In figure 5.6 the variances (standard deviation squared) are plotted against
1/CPUtime. Points lying on a vertical line need the same CPU time in the cal-
culation, while the ones that are lowest have the smallest variance for this
computational cost.

In the plot one can see that the variance is approximately linear to 1/CPUtime. The
points marked with arrows are the combinations of parameters M, N and k for
which the computational costs seem to be most efficient. These are from left
to right {N = 7,M = 100,k = 6}, {N = 7,M = 100,k = 4}, {N = 7,M = 50,k = 6}

and {N = 7,M = 50,k = 4}.
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Figure 5.6: Variance after 15 seeds for Re
[
Tr
(
1 ·D−1

)]
of an E4 configuration calculated

with HPE against 1/CPUtime

E2 Lattice

To investigate the dependence of the hopping parameter expansion of the hop-
ping parameter κ, the same as for the E4 lattice was done for an E2 configuration.
β = 5.30 and c

SW
= 1.90952 are the same for E2 and E4. For E2 κ = 0.13590 is

smaller than for E4 (κE4 = 0.13610).
Again Re

[
Tr
(
1 ·D−1

)]
was computed using 15 different seeds for the random

number generator. In figure 5.7 the standard deviation is plotted against 1/
√
N

for M = 100 stochastic sources for the additional terms in the HPE. For M = 50

and M = 200 the plots can be found in the appendix (A.7,A.9).
One can see that for the E2 lattice the curve for 2 terms in the hopping parameter
expansion lies below the other curves. So 2 terms seems to be even better than 4
or 6. This means that for more terms than 2 in the HPE the additional error from
the extra terms calculated stochastically is bigger than the gain of the hopping
parameter expansion. For this smaller value of κ for the E2 lattice the hopping
parameter expansion seems to converge faster.

Additionally the CPU time was measured for every calculation as for the E4
lattice. In figure 5.8 the variance is plotted against 1/CPUtime. As expected 2 terms
is best, since the standard deviation is the smallest and less terms need less CPU
time in the calculation.
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Figure 5.7: Standard deviation after 15 seeds for Re
[
Tr
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1 ·D−1

)]
of an E2 configuration

calculated with HPE and M = 100 sources for the additional terms
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with HPE against 1/CPUtime
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A5 Lattice

To obtain more information on the dependence of the HPE on the value of κ,
the calculation was repeated for an A5 configuration. Here κ = 0.13594 is in
between the values for E2 and E4. The other parameters of the A5 lattice are
β = 5.2 and c

SW
= 2.01715.

In figure 5.9 the standard deviations of Re
[
Tr
(
1 ·D−1

)]
after 15 different seeds

are plotted for M = 100 random sources for the additional terms. Again for
M = 50 and M = 200 the plots can be found in the appendix (A.10,A.12).
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Figure 5.9: Standard deviation after 15 seeds for Re
[
Tr
(
1 ·D−1

)]
of an A5 configuration

calculated with HPE and M = 100 sources for the additional terms

On can see that for the A5 lattice the hopping parameter expansion improves the
calculation most from 0 to 2 terms. From 2 to 4 terms the standard deviations
get a bit smaller, but from 4 to 6 terms the standard deviations nearly stay the
same.

In figure 5.10 the variances are plotted against 1/CPUtime as done for E4 and E2.
The point marked with the arrow seems to be the best one. This is N = 7

stochastic sources for the inversion, k = 4 terms in the hopping parameter
expansion and M = 50 sources for the additional terms. If one looks again
at the plots of standard deviation against 1/

√
N one can see that for N = 7

(1/
√
N ≈ 0.378) the values are below the fit curves due to statistical fluctuations.

All standard deviations with 7 sources for the inversion are too small, because the
same seeds were used for the random number generators for every combination
of the parameters. Therefore all values withN = 7 start with the same estimation
of D−1 before HPE is applied. So if the trace of D−1 without hopping parameter
expansion is too small, also the term in the HPE containing D−1 is too small.
All points lying in the circle in figure 5.10 belong to calculations with N = 7

and therefore should have a slightly higher variance. But also then the value
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Figure 5.10: Variance after 15 seeds for Re
[
Tr
(
1 ·D−1

)]
of an A5 configuration calcu-

lated with HPE against 1/CPUtime

for N = 7, M = 50 and k = 4 would be one of the best. But to really figure out
which combination of parameters is the best, one would need more statistics,
which means more different seeds, to remove such statistical fluctuations.
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Comparison of E4, E2 and A5

Now one can compare the three different lattices for which Tr
(
1 ·D−1

)
was cal-

culated. For the hopping parameter expansion one expects a different behaviour
of convergence for different values of κ. In table 5.2 the values of κ and the pion
masses mπ are shown for the three different lattices. In the last row one can find,
how many terms k in the hopping parameter expansion it was figured out to
be best for the calculation. The columns E2, E4 and A5 are sorted in ascending
order of κ.

E2 A5 E4

κ 0.13590 0.13594 0.13610

mπ[MeV] 696.5 305.9 554.2

HPE 2 terms best 4 terms best 4-6 terms best

Table 5.2: Comparison of E4, E2 and A5

In the table one can see that the number of terms, for which the calculation of
the propagator is best, increases with increasing κ. This means for small values
of κ the hopping parameter expansion converges faster, as expected. Further
dependencies on other lattice parameters could not be observed.
To really confirm the dependency of the convergence of the HPE on the hopping
parameter, one would need higher statistics for the lattices already calculated
and additional lattices with different values of κ.

The number of sources N can be chosen relatively small for all lattices if HPE is
used additionally, for example N = 7. Since the inversion with stochastic sources
is the most expensive part in CPU time during the calculation, it is favourably
that N is as small as possible.
For all lattices one has seen that the number of sources M for the additional
terms does not seem to have a big influence on the standard deviations. Therefore
M = 50 should be sufficient for following calculations.
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6.1 hpe and gauge mean

For the calculation of observables such as form factors on the lattice, one
additionally has to calculate the gauge mean. Taking the gauge mean one
obtains two contributions to the variance of the loop, on the one hand the
variance due to the gauge fields – the gauge noise – and on the other hand
the variance of the stochastic estimate for the propagator. Now one has to
check if the reduction of the standard deviations with HPE is also visible after
calculating the gauge mean. This is the case if the gauge noise is smaller than
the statistical error introduced by the stochastic sources, which can be decreased
by the hopping parameter expansion. To obtain the gauge mean, the loop has to
be calculated for different gauge configurations of a gauge ensemble. Then the
mean of the values for the different configurations has to be taken.
For the form factors one needs the loops at a fixed timeslice, so the traces that are
taken are traces over colour-, Dirac- and space-indices. Therefore random sources
are used that only have non-vanishing entries for one timeslice as done in time
dilution. First of all the scalar loop for 33 different configurations of E4 was
calculated for every timeslice. While the number of sources for the additional
terms in the HPE was fixed to M = 50, the number of terms k = {0, 2, 4, 6} in the
hopping parameter expansion and the number of sources N = {3, 5, 7} for the
inversion were varied. For each combination of k and N the gauge mean over the
33 configurations was calculated for every timeslice. In figure 6.1 the obtained
standard deviations divided by the means, i.e. the relative errors σ/〈loop〉, are
plotted against 1/

√
N for the timeslice 0.

Clearly one can see that the hopping parameter expansion improves the calcula-
tion of the propagator also in the gauge mean. The y-axis intercept of the linear
fit without hopping parameter expansion is the pure gauge noise. The y-axis
intercepts gets a bit larger for higher k because of the statistical error from the
calculation of the additional terms. One can also see that for 6 terms in the HPE
3 sources for the inversion are sufficient since one gets near the gauge noise and
reduction of the standard deviation gets small if more sources are used.

6.2 the scalar charge of the pion

As already mentioned in the introduction, in order to calculate the scalar form
factor for the charged pion, one has to consider the matrix element [4, 14, 15, 18]

〈π±
(
p ′
)
|S|π± (p)〉 = F

S

(
Q2
)

with S = mddd+muuu . (6.1)

In the following we will concentrate on the scalar charge of the pion, thus the
form factor for Q2 = −(p ′ − p)2 = 0. Therefore all momenta in (6.1) are set to

49
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Figure 6.1: Standard deviation divided by gauge mean for the scalar loop at timeslice 0
calculated with stochastic sources and HPE using 33 E4 configurations

zero. For the calculation of the scalar charge one has to calculate three-point
functions of the form

C3pt(q
2 = 0) =∑

#»x , #»y , #»z

〈
Ψ(x)α,a(γ5)αβΨ(x)β,aΨ(z)γ,bΨ(z)γ,bΨ(y)δ,c(γ5)δεΨ(y)ε,c

〉
. (6.2)

Greek letters denote Dirac- and Latin letters colour-indices, respectively. In (6.2)
time ordering is assumed, so x0 > z0 > y0. For simplicity we choose y0 = 0.

As shown in Wick’s theorem (2.59) one has to take the sum over all possible
contractions. Since only a spinor and an anti-spinor of the same flavour can be
contracted only two contractions are possible.∑

#»x , #»y , #»z

〈
Ψ(x)α,a(γ5)αβΨ(x)β,aΨ(z)γ,bΨ(z)γ,bΨ(y)δ,c(γ5)δεΨ(y)ε,c

〉
+
∑

#»x , #»y , #»z

〈
Ψ(x)α,a(γ5)αβΨ(x)β,aΨ(z)γ,bΨ(z)γ,bΨ(y)δ,c(γ5)δεΨ(y)ε,c

〉 (6.3)

Now the spinors have to be interchanged such, that they are in the right position
for the contractions. For the contraction shown below (6.3) this in total produces
a minus sign. For the contraction shown above (6.3) one obtains a plus sign.
Performing the contractions one finds

C3pt(0) =−
∑

#»x , #»y , #»z

〈Tr {S( #»y , 0; #»x , x0)γ5S( #»x , x0; #»z , z0)S( #»z , z0; #»y , 0)γ5}〉G

+
∑

#»x , #»y , #»z

〈Tr {S( #»y , 0; #»x , x0)γ5S( #»x , x0; #»y , 0)γ5}Tr {S( #»z , z0; #»z , z0}〉G .
(6.4)

with the propagators S(x,y) = D−1(x,y). In (6.4) the traces are taken in colour-
and Dirac-space.
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The three-point function C3pt consists of two parts. The first term in (6.4) is
connected, whereas the second term is quark disconnected. The corresponding
diagrams are shown in figure 6.2.

x0t = 0

z0

t = 0 x0

z0

Figure 6.2: The pion three-point function: on the left-hand side the connected part, on
the right hand side the quark disconnected part

The three-point function can also be rewritten in terms of creation and annihila-
tion operators of the pion.

C3pt = 〈π
(
p ′
)
|O|π (p)〉 =

〈
ηπ(x0)O(z0)η

�
π(0)

〉
(6.5)

with

O(z0) = Ψ(z0)Ψ(z0) .

In (6.5) the momentum and space arguments are supressed. Using the Euclidean
time evolution operators one obtains〈

ηπ(x0)O(z0)η
�
π(0)

〉
=
〈
ηπ(0)e

−(x0−z0)ĤO(0)ez0Ĥη�π(0)e
−(T−x0)Ĥ

〉
=
∑
i

〈i|ηπ(0)e−(x0−z0)ĤO(0)e−z0Ĥη�π(0)e
−(T−x0)Ĥ|i〉

=
∑
i,j,k

e−(x0−z0)Eje−z0Eke−(T−x0)Ei〈i|ηπ(0)|j〉〈j|O(0)|k〉〈k|η�π(0)|i〉 . (6.6)

For 0 � z0 � x0 � T states with high energies are exponentially suppressed.
In first order only the state with lowest possible energy contributes to the
three-point function. Since ηπ(0)|0〉 = 〈0|η�π(0) = 0 one obtains

C3pt = e
−(x0−z0)Eπe−z0Eπ〈0|ηπ(0)|π〉〈π|O(0)|π〉〈π|η�π(0)|0〉+ . . .

= e−x0mπ〈0|ηπ(0)|π〉〈π|O(0)|π〉〈π|η�π(0)|0〉+ . . . (6.7)

with Eπ = mπ for #»p = 0.

A similar calculation can be done for the two-point function 〈π(p ′) |π(p)〉. Using
Wick’s theorem one obtains

C2pt(q
2 = 0) =

∑
#»x , #»y

〈
Ψ(x)α,a(γ5)αβΨ(x)β,aΨ(y)γ,b(γ5)γδΨ(y)δ,b

〉
= −
∑
#»x , #»y

〈Tr {S( #»y , 0; #»x , x0)γ5S( #»x , x0; #»y , 0)γ5}〉G . (6.8)
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Again creation and annihilation operators can be used. Inserting time evolution
for the two-point function one obtains

C2pt = e
−x0mπ〈0|ηπ(0)|π〉〈π|η�π(0)|0〉+ . . . (6.9)

If one takes the ratio of the three-point function (6.7) and the two-point function
(6.9) the exponential behaviour of C2pt and C3pt cancels out.

R(x0, z0) =
C2pt

C3pt
= 〈π( #»p = 0)|O(0)|π( #»p = 0)〉 = 〈π( #»p = 0)|ΨΨ|π( #»p = 0)〉 (6.10)

This is the form factor at Q2 = 0 we are interested in.

To calculate the disconnected contribution to the ratio (6.10) one has to take into
account the non-vanishing vacuum expectation value

〈Tr {S( #»y , 0; #»x , x0)γ5S( #»x , x0; #»y , 0)γ5}〉G 〈Tr {S( #»z , z0; #»z , z0}〉G , (6.11)

which has to be subtracted from the disconnected part of the three-point function.
Thus the disconnected contribution Rdisc to the ratio (6.10) is obtained through

0 x0

z0
0 x0

z0

0 x0

where the brackets stand for taking the gauge mean.

The required loop was calculated for 81 E4 configurations with 3 stochastic
sources for the inversion and 50 stochastic sources for the additional 6 terms
in the hopping parameter expansion. The two-point functions were already
calculated [44].

To extract the disconnected contribution from the data the summation method
[10, 45] was used. Here the ratios R(x0, z0) are summed for z0 up to x0 to reduce
the influence of the higher order corrections to (6.10). For the summed ratios
one expects that

x0∑
z0=0

R(x0, z0) = 〈π|ΨΨ |π〉 · x0 . (6.12)

The summed ratio is calculated up to x0 = 31, i.e. for half of the timeslices of
the lattice. The timeslices x0 > 31 would have to be treated differently due to
the periodic boundary conditions of the lattice and time ordering.

The errors for the summed ratios were calculated using the jackknife procedure
[19]. Using jackknife the value of interest, here the summed ratio, is calculated
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once for all measured configurations. Then one configuration is left out. This is
done for all configurations. An estimate for the error of the value is obtained
through

σ2 =
N− 1

N

N∑
i=1

(θ− θi)
2 , (6.13)

where θ is calculated using all configurations and for θi configuration i is left
out. N is the total number of configurations that are used in the calculation.

In figure 6.3 the summed ratios for the scalar case are plotted against the
timeslice x0. Since one expects a linear behaviour, where the ascending slope
is the disconnected contribution to the scalar form factor at Q2 = 0, a linear
function was fitted to the data. For the fit timeslices 8 to 31 were used. The
errors of the fit parameters were calculated using jackknife.
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Figure 6.3: Summed ratios for 81 E4 configurations for the disconnected contribution to
the scalar charge of the pion

In figure 6.3 one can see the expected linear behaviour of the data, although
the errors for the summed ratios are large. When calculating the disconnected
contribution one has to subtract two large numbers, the disconnected part of
the three point function and the vacuum expectation value. This results in large
errors. For the descending slope, which we are interested in, the fit returns

a = −0.89± 0.40 . (6.14)

Even with the large error the value is more than 2σ away from a vanishing
contribution of the disconnected diagram. Of course one should increase the
statistics, i.e. calculate more configurations, to reduce the errors of the summed
ratios.
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Currently it is not possible to compare the disconnected contribution to the
connected one, since the connected part of the three-point function has not been
measured yet for the scalar case.

6.3 the vector charge of the pion

Additionally the calculation of the ratios described in the previous section
was repeated for the vector form factor. The vector form factor is given by
[4, 14, 15, 16, 17]

〈π
(
p ′
)
|Vµ|π (p)〉 = (p+p ′)µFV

(
Q2
)

with Vµ =
2

3
uγµu−

1

3
dγµd . (6.15)

One can show [7] that in the gauge mean the disconnected loop vanishes in the
vector case. Therefore one expects the disconnected contribution to the vector
form factor to be zero. In figure 6.4 the summed ratios with γµ = γ0 for 61
E4 configurations are plotted against the timeslices. Again the errors for the
summed ratios were calculated using jackknife.
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Figure 6.4: Summed ratios for 61 E4 configurations for the disconnected contribution to
the vector charge of the pion with γ0

One can see that this plot is in perfect agreement with a vanishing ascending
slope, so a vanishing contribution to the pion vector form factor. If one compares
the plots for the disconnected contributions to the scalar form factor 6.3, which is
expected to be non-vanishing, and the vector form factor 6.4, which is expected
to vanish, one can clearly see a big difference. For the disconnected contribution
to the vector form factor no ascending slope can be observed and for the
disconnected contribution to the scalar form factor the descending slope is
non-zero in a range of 2σ. Thus we have a clear evidence for a non-vanishing
contribution to the scalar form factor.
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The computation of diagrams with quark disconnected loops on the lattice has
to be done stochastically, since an explicit calculation with point sources is too
expensive in computational costs. Therefore one uses the method of stochastic
sources to obtain an estimate for the propagator. Since solving the Dirac equation
needs much computer time, one is interested in using as few sources as possible.
However, few sources result in larger statistical errors. Thus techniques to
improve the stochastic estimates are required. In total three methods - dilution,
the hopping parameter expansion and the truncated solver method - have been
tested whether they improve the calculation.

Dilution was tested with several dilution schemes. Time dilution turned out
to improve the calculation for most entries of the propagator but not for the
diagonal ones, which are relevant for the trace and thus for disconnected loops.
For even-odd dilution as well as for spin dilution no improvement could be
observed in the calculation.
The truncated solver method on the one hand reduces the computer time needed
for the calculation, but on the other hand it introduces an additional bias. Thus
we decided not to use the TSM for further calculations.
The hopping parameter expansion turned out to improve the stochastic estimates
of the quark loops. If the hopping parameter expansion is applied, the statistical
error of Tr

(
Γ ·D−1

)
decreases without requiring much additional computer time.

We were also able to adapt the hopping parameter expansion to the case of
the O(a)-improved Wilson-Dirac operator. Even though the additional terms
that do not contain the inverse of the Dirac operator also have to be calculated
stochastically in this case, a reduction of stochastic errors could be observed
when using the HPE. For the lattices we looked at so far (E4, E2 and A5) we
figured out that a number of sources N of O(1) for the inversion is sufficient,
if the hopping parameter expansion is used in addition. Also the number of
sources for the terms that do not contain the inverse of the Dirac operator can
be chosen relatively small, for example M = 50. A slight trend was observed
that more terms in the HPE are needed for larger values of κ . It seems that the
hopping parameter expansion converges faster for smaller κ, thus fewer terms
are sufficient. But this trend has to be confirmed with more different lattices and
more statistics for a single lattice.

For the E4 lattice the standard deviations in the gauge mean were calculated
for various combinations of the number of sources N for the inversion and the
number of terms k in the hopping parameter expansion with fixed M = 50.
When calculating 6 terms in the HPE it turned out that N = 3 sources for the
inversion are enough, since the reduction of standard deviation gets small when
using more sources. For N = 3 the standard deviation decreases by a factor of
≈ 2 from 0 to 6 terms. Thus the hopping parameter expansion is an effective tool
to improve the stochastic estimate of the disconnected loop. For the calculation
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of the form factors we decided to use N = 3 sources for the inversion and 6
terms in the HPE.

For the future we have planned to calculate the form factors also on different
CLS ensembles, thus different lattice sizes, different hopping parameters κ etc.
To perform the calculation of the form factors on other lattices one first has to
figure out the best combination of the number of sources N for the inversion, the
number of sources M for the additional terms and the order k of the hopping
parameter expansion. For this one should start calculating the loop at a single
configuration and look at the standard deviations as already done for E4, E2
and A5 in chapter 5. To finally decide which parameters one wants to use for
the calculation of the disconnected contribution to the form factor, one has to
examine the standard deviations when taking the gauge mean of the loop for
different configurations of an ensemble. For E4 this was done in section 6.1.

For in total 81 E4 configurations the disconnected contribution to the scalar
charge of the pion was obtained using the ratios of the three-point and the two-
point functions and applying the summation method. Here we could confirm in
the range of 2σ that the disconnected contribution to the scalar charge of the
pion does not vanish. Currently the absolute value

a = −0.89± 0.40

we obtained cannot be combined with the connected contribution, which has
not been calculated for the scalar case yet. Nevertheless, the data have shown
how important it is to look at the disconnected contribution to the scalar form
factor, since it does not vanish.
For the disconnected contribution to the vector charge, which was calculated
on 61 E4 configurations, the obtained data are in complete agreement with a
vanishing disconnected contribution as expected. This shows that the applied
methods work quite well. But the relative error of the disconnected contribution
to the scalar charge still is 0.40/0.89 ≈ 45%. Thus one needs higher statistics, i.e.
more configurations, to further reduce the statistical error of the gauge noise.
One also could aim at developing new methods that are even better than the
ones used so far.

So far we only have looked at the form factors for momentum transfer Q2 =

0. To investigate the Q2-dependence of the form factors, the disconnected
contributions have to be calculated for different momenta.

The developed methods will also be used for other physical quantities containing
disconnected contributions. An example is the strangeness content 〈N|ss|N〉 of
the nucleon [5] where these methods can be adapted directly. For some other
quantities like the anomalous magnetic moment of the muon [46] the developed
methods need further adaptation.
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A P P E N D I X

In the following, some plots for the hopping parameter expansion for the O(a)-
improved Wilson-Dirac operator are shown, thus the plots belong to section 5.2.
There the trace of the propagator was calculated using 5.15:

Tr
(
Γ ·D−1

SW

)
=
1

M

M∑
j=1

k−1∑
i=0

〈θj|Γ
(
1

2
A−1H

)i
A−1 |θj〉

+
1

N

N∑
i=1

〈ηi|Γ
(
1

2
A−1H

)k
|si〉 .

For the tests of the hopping parameter expansion four different lattices were used
(8× 83, E4, E2 and A5). In all plots the standard deviation is plotted against 1/

√
N

each with k = {0, 2, 4, 6} terms for the hopping parameter expansion. The data
for k = 0 is fitted with f(x) = ax and the data for k > 0 with f(x) =

√
ax2 + b,

where x = 1/
√
N. For all lattices three plots are shown for three different values

of M (M = {100, 200, 500} for 8× 83 and M = {50, 100, 200} for E4, E2 and A5).
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The 8× 83 Lattice
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The E4 Lattice
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The E2 Lattice
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The A5 Lattice
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